Citation: Ahmed M. Gemeay, Najwan Alsadat, Christophe Chesneau, Mohammed Elgarhy. Power unit inverse Lindley distribution with different measures of uncertainty, estimation and applications[J]. AIMS Mathematics, 2024, 9(8): 20976-21024. doi: 10.3934/math.20241021
[1] | D. V. Lindley, Fiducial distributions and Bayes' theorem, J. R. Stat. Soc., 20 (1958), 102–107. https://doi.org/10.1111/j.2517-6161.1958.tb00278.x doi: 10.1111/j.2517-6161.1958.tb00278.x |
[2] | M. E. Ghitany, A. Barbra, S. Nadarajah, Lindley distribution and its application, Math. Comput. Simul., 78 (2008), 493–506. https://doi.org/10.1016/j.matcom.2007.06.007 doi: 10.1016/j.matcom.2007.06.007 |
[3] | M. Sankaran, The discrete Poisson-Lindley distribution, Biometrics, 26 (1970), 145–149. |
[4] | M. Ghitany, D. Al-Mutairi, S. Nadarajah, Zero-truncated Poisson-Lindley distribution and its application, Math. Comput. Simul., 79 (2008), 279–287. https://doi.org/10.1016/j.matcom.2007.11.021 doi: 10.1016/j.matcom.2007.11.021 |
[5] | H. Zakerzadeh, A. Dolati, Generalized Lindley distribution, J. Math. Ext., 3 (2009), 13–25. |
[6] | S. Nadarajah, H. S. Bakouch, R. Tahmasbi, A generalized Lindley distribution, Sankhya B, 73 (2011), 331–359. https://doi.org/10.1007/s13571-011-0025-9 doi: 10.1007/s13571-011-0025-9 |
[7] | M. Ghitany, F. Alqallaf, D. Al-Mutairi, H. A. Husain, A two-parameter weighted Lindley distribution and its applications to survival data, Math. Comput. Simul., 81 (2011), 1190–1201. https://doi.org/10.1016/j.matcom.2010.11.005 doi: 10.1016/j.matcom.2010.11.005 |
[8] | H. Bakouch, B. Al-Zahrani, A. Al-Shomrani, V. Marchi, F. Louzada, An extended Lindley distribution, J. Korean Stat. Soc., 41 (2012), 75–85. https://doi.org/10.1016/j.jkss.2011.06.002 doi: 10.1016/j.jkss.2011.06.002 |
[9] | W. Barreto-Souza, H. S. Bakouch, A new lifetime model with decreasing failure rate, Statistics, 47 (2013), 465–476. https://doi.org/10.1080/02331888.2011.595489 doi: 10.1080/02331888.2011.595489 |
[10] | R. Shanker, S. Sharma, R. Shanker, A two-parameter Lindley distribution for modeling waiting and survival times data, Appl. Math., 4 (2013), 363–368. https://doi.org/10.4236/am.2013.42056 doi: 10.4236/am.2013.42056 |
[11] | M. Ghitany, D. Al-Mutairi, N. Balakrishnan, L. Al-Enezi, Power Lindley distribution and associated inference, Comput. Stat. Data Anal., 64 (2013), 20–33. https://doi.org/10.1016/j.csda.2013.02.026 doi: 10.1016/j.csda.2013.02.026 |
[12] | A. Asgharzadeh, H. S. Bakouch, S. Nadarajah, F. Sharafi, A new weighted Lindley distribution with application, Braz. J. Probab. Stat., 30 (2016), 1–27. https://doi.org/10.1214/14-BJPS253 doi: 10.1214/14-BJPS253 |
[13] | M. Elgarhy, A. S. Hassan, S. Fayomi, Maximum likelihood and Bayesian estimation for two-parameter type I half logistic Lindley distribution, J. Comput. Theor. Nanos., 15 (2018), 3093–3101. https://doi.org/10.1166/jctn.2018.7600 doi: 10.1166/jctn.2018.7600 |
[14] | A. S. Hassan, R. E. Mohamed, M. Elgarhy, S. Alrajhi, On the alpha power transformed power Lindley distribution, J. Prob. Stat., 2019 (2019), 8024769. https://doi.org/10.1155/2019/8024769 doi: 10.1155/2019/8024769 |
[15] | V. K. Sharma, S. K. Singh, U. Singh, V. Agiwal, The inverse Lindley distribution: A stress-strength reliability model with application to head and neck cancer data, J. Ind. Prod. Eng., 32 (2015), 162–173. https://doi.org/10.1080/21681015.2015.1025901 doi: 10.1080/21681015.2015.1025901 |
[16] | A. M. Abd AL-Fattah, A. A. El-Helbawy, G. R. Al-Dayian, Inverted Kumaraswamy distribution: Properties and estimation, Pak. J. Stat., 33 (2017), 37–61. |
[17] | K. V. P. Barco, J. Mazucheli, V. Janeiro, The inverse power Lindley distribution, Commun. Stat.-Simul. Comput., 46 (2017), 6308–6323. https://doi.org/10.1080/03610918.2016.1202274 doi: 10.1080/03610918.2016.1202274 |
[18] | A. S. Yadav, S. S. Maiti, M. Saha, The inverse xgamma distribution: Statistical properties and different methods of estimation, Ann. Data. Sci., 8 (2021), 275–293. https://doi.org/10.1007/s40745-019-00211-w doi: 10.1007/s40745-019-00211-w |
[19] | S. Lee, Y. Noh, Y. Chung, Inverted exponentiated Weibull distribution with applications to lifetime data, Commun. Stat. Appl. Methods, 24 (2017), 227–240. https://doi.org/10.5351/CSAM.2017.24.3.227 doi: 10.5351/CSAM.2017.24.3.227 |
[20] | A. S. Hassan, M. Abd-Allah, On the inverse power Lomax distribution, Ann. Data. Sci., 6 (2019), 259–278. https://doi.org/10.1007/s40745-018-0183-y doi: 10.1007/s40745-018-0183-y |
[21] | A. S. Hassan, R. E. Mohamed, Parameter estimation of inverse exponentiated Lomax with right censored data, Gazi Univ. J. Sci., 32 (2019), 1370–1386. |
[22] | J. Y. Falgore, M. N. Isah, H. A. Abdulsalam, Inverse Lomax-Rayleigh distribution with application, Heliyon, 7 (2021), e08383. https://doi.org/10.1016/j.heliyon.2021.e08383 doi: 10.1016/j.heliyon.2021.e08383 |
[23] | M. H. Tahir, G. M. Cordeiro, S. Ali, S. Dey, A. Manzoor, The inverted Nadarajah-Haghighi distribution: Estimation methods and applications, J. Stat. Comput. Simul., 88 (2018), 2775–2798. https://doi.org/10.1080/00949655.2018.1487441 doi: 10.1080/00949655.2018.1487441 |
[24] | F. Louzada, P. L. Ramos, Nascimento, D. The inverse Nakagami-m distribution: A novel approach in reliability, IEEE Trans. Reliab., 67 (2018), 1030–1042. https://doi.org/10.1109/TR.2018.2829721 doi: 10.1109/TR.2018.2829721 |
[25] | A. S. Hassan, M. Elgarhy, R. Ragab, Statistical properties and estimation of inverted Topp-Leone distribution, J. Stat. Appl. Probab., 9 (2020), 319–331. |
[26] | C. Chesneau, V. Agiwal, Statistical theory and practice of the inverse power Muth distribution, J. Comput. Math. Data Sci., 1 (2021), 100004. https://doi.org/10.1016/j.jcmds.2021.100004 doi: 10.1016/j.jcmds.2021.100004 |
[27] | M. H. Omar, S. Y. Arafat, M. P. Hossain, M. Riaz, Inverse Maxwell distribution and statistical process control: An efficient approach for monitoring positively skewed process, Symmetry, 13 (2021), 189. https://doi.org/10.3390/sym13020189 doi: 10.3390/sym13020189 |
[28] | N. Alsadat, M. Elgarhy, K. Karakaya, A. M. Gemeay, C. Chesneau, M. M. Abd El-Raouf, Inverse unit Teissier distribution: Theory and practical Examples, Axioms, 12 (2023), 502. https://doi.org/10.3390/axioms12050502 doi: 10.3390/axioms12050502 |
[29] | L. P. Sapkota, V. Kumar, Applications and some characteristics of inverse power Cauchy distribution, RT & A, 18 (2023), 301–315. |
[30] | J. Mazucheli, A. F. B. Menezes, S. Dey, The unit Birnbaum-Saunders distribution with applications, Chil. J. Stat., 9 (2018), 47–57. |
[31] | J. Mazucheli, A. F. B. Menezes, M. E. Ghitany, The unit Weibull distribution and associated inference, J. Appl. Probab. Stat., 13 (2018), 1–22. |
[32] | J. Mazucheli, A. F. B. Menezes, L. B. Fernandes, R. P. de Oliveira, M. E. Ghitany, The unit Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates, J. Appl. Probab. Stat., 47 (2020), 954–974. |
[33] | A. F. B. Menezes, J. Mazucheli, M. Bourguignon, A parametric quantile regression approach for modelling zero-or-one inflated double bounded data, The unit Weibull distribution and associated inference, Biometrical J., 63 (2021), 841–858. |
[34] | J. Mazucheli, A. F. B. Menezes, S. Dey, Unit-Gompertz distribution with applications, Statistica, 79 (2019), 25–43. |
[35] | J. Mazucheli, A. F. B. Menezes, S. Chakraborty, On the one parameter unit Lindley distribution and its associated regression model for proportion data, J. Appl. Stat., 46 (2019), 700–714. https://doi.org/10.1080/02664763.2018.1511774 doi: 10.1080/02664763.2018.1511774 |
[36] | M. E. Ghitany, J. Mazucheli, A. F. B. Menezes, F. Alqallaf, The unit-inverse Gaussian distribution: A new alternative to two parameter distributions on the unit interval, Commun. Stat. Theory Methods, 48 (2019), 3423–3438. https://doi.org/10.1080/03610926.2018.1476717 doi: 10.1080/03610926.2018.1476717 |
[37] | M. C. Korkmaz, C. Chesneau, On the unit Burr-XII distribution with the quantile regression modeling and applications, Comp. Appl. Math., 40 (2021), 29. https://doi.org/10.1007/s40314-021-01418-5 doi: 10.1007/s40314-021-01418-5 |
[38] | A.S. Hassan, A. Fayomi, A. Algarni, E. M. Almetwally, Bayesian and non-Bayesian inference for unit-exponentiated half-logistic distribution with data analysis, Appl. Sci., 12 (2022), 11253. https://doi.org/10.3390/app122111253 doi: 10.3390/app122111253 |
[39] | A. T. Ramadan, A. H. Tolba, B. S. El-Desouky, A unit half-logistic geometric distribution and its application in insurance, Axioms, 11 (2022), 676. https://doi.org/10.3390/axioms11120676 doi: 10.3390/axioms11120676 |
[40] | M. M. E. Abd El-Monsef, M. M. El-Awady, M. M. Seyam, A new quantile regression model for modelling child mortality, Int. J. Biomath., 10 (2022), 142–149. |
[41] | A. Fayomi, A. S. Hassan, H. M. Baaqeel, E. M. Almetwally, Bayesian inference and data analysis of the unit-power Burr X distribution, Axioms, 12 (2023), 297. https://doi.org/10.3390/axioms12030297 doi: 10.3390/axioms12030297 |
[42] | A. S. Hassan, R. S. Alharbi, Different estimation methods for the unit inverse exponentiated Weibull distribution, Commun. Stat. Appl. Methods, 30 (2023), 191–213. https://doi.org/10.29220/CSAM.2023.30.2.191 doi: 10.29220/CSAM.2023.30.2.191 |
[43] | S. Nasiru, C. Chesneau, A. G. Abubakari, I. D. Angbing, Generalized unit half-logistic geometric distribution: Properties and regression with applications to insurance, Analytics, 2 (2023), 438–462. https://doi.org/10.3390/analytics2020025 doi: 10.3390/analytics2020025 |
[44] | C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x |
[45] | A. Rényi, On measures of entropy and information, Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, 1 (1960), 547–561. |
[46] | L. L. Campbell, Exponential entropy as a measure of extent of a distribution, Z. Wahrscheinlichkeitstheorie verw Gebiete, 5 (1966), 217–225. https://doi.org/10.1007/BF00533058 doi: 10.1007/BF00533058 |
[47] | J. Havrda, F. Charvát, Quantification method of classification processes, concept of Structural $ a $-entropy, Kybernetika, 3 (1967), 30–35. |
[48] | S. Arimoto, Information-theoretical considerations on estimation problems, Inf. Control, 19 (1971), 181–194. https://doi.org/10.1016/S0019-9958(71)90065-9 doi: 10.1016/S0019-9958(71)90065-9 |
[49] | C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat Phys., 52 (1988), 479–487. https://doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429 |
[50] | A. M. Awad, A. J. Alawneh, Application of entropy to a life-time model, IMA J. Math. Control Inf., 4 (1987), 143–148. https://doi.org/10.1093/imamci/4.2.143 doi: 10.1093/imamci/4.2.143 |
[51] | F. Lad, G. Sanfilippo, G. Agr, Extropy: Complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. https://doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430 |
[52] | N. Balakrishnan, F. Buono, M. Longobardi, On weighted extropies, Commun. Stat.-Theory Methods, 51 (2022), 6250–6267. https://doi.org/10.1080/03610926.2020.1860222 |
[53] | D. P. Murthy, M. Xie, R. Jiang, Weibull models, New York: John Wiley & Sons, 2004. |
[54] | A. Krishna, R. Maya, C. Chesneau, M. R. Irshad, The unit Teissier distribution and its applications, Math. Comput. Appl., 27 (2022), 12. https://doi.org/10.3390/mca27010012 doi: 10.3390/mca27010012 |
[55] | A. Pourdarvish, S. M. T. K. Mirmostafaee, K. Naderi, The exponentiated Topp-Leone distribution: Properties and application, J. Appl. Environ. Biol. Sci., 5 (2015), 251–256. |
[56] | A. Grassia, On a family of distributions with argument between 0 and 1 obtained by transformation of the gamma and derived compound distributions, Austral. J. Statist., 19 (1977), 108–114. https://doi.org/10.1111/j.1467-842X.1977.tb01277.x doi: 10.1111/j.1467-842X.1977.tb01277.x |