Citation: Ahmed M. Gemeay, Najwan Alsadat, Christophe Chesneau, Mohammed Elgarhy. Power unit inverse Lindley distribution with different measures of uncertainty, estimation and applications[J]. AIMS Mathematics, 2024, 9(8): 20976-21024. doi: 10.3934/math.20241021
[1] | Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan . Existence of S-asymptotically ω-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order 1<α<2. AIMS Mathematics, 2023, 8(1): 76-101. doi: 10.3934/math.2023004 |
[2] | Dongdong Gao, Daipeng Kuang, Jianli Li . Some results on the existence and stability of impulsive delayed stochastic differential equations with Poisson jumps. AIMS Mathematics, 2023, 8(7): 15269-15284. doi: 10.3934/math.2023780 |
[3] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536 |
[4] | Huanhuan Zhang, Jia Mu . Periodic problem for non-instantaneous impulsive partial differential equations. AIMS Mathematics, 2022, 7(3): 3345-3359. doi: 10.3934/math.2022186 |
[5] | Ahmed Salem, Kholoud N. Alharbi . Fractional infinite time-delay evolution equations with non-instantaneous impulsive. AIMS Mathematics, 2023, 8(6): 12943-12963. doi: 10.3934/math.2023652 |
[6] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[7] | Marimuthu Mohan Raja, Velusamy Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, Wedad Albalawi, Abdel-Haleem Abdel-Aty . A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order r∈(1,2) with impulses. AIMS Mathematics, 2023, 8(5): 10802-10821. doi: 10.3934/math.2023548 |
[8] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[9] | M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran . Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses. AIMS Mathematics, 2023, 8(2): 4645-4665. doi: 10.3934/math.2023229 |
[10] | Dumitru Baleanu, Rabha W. Ibrahim . Optical applications of a generalized fractional integro-differential equation with periodicity. AIMS Mathematics, 2023, 8(5): 11953-11972. doi: 10.3934/math.2023604 |
Fractional differential equations rise in many fields, such as biology, physics and engineering. There are many results about the existence of solutions and control problems (see [1,2,3,4,5,6]).
It is well known that the nonexistence of nonconstant periodic solutions of fractional differential equations was shown in [7,8,11] and the existence of asymptotically periodic solutions was derived in [8,9,10,11]. Thus it gives rise to study the periodic solutions of fractional differential equations with periodic impulses.
Recently, Fečkan and Wang [12] studied the existence of periodic solutions of fractional ordinary differential equations with impulses periodic condition and obtained many existence and asymptotic stability results for the Caputo's fractional derivative with fixed and varying lower limits. In this paper, we study the Caputo's fractional evolution equations with varying lower limits and we prove the existence of periodic mild solutions to this problem with the case of general periodic impulses as well as small equidistant and shifted impulses. We also study the Caputo's fractional evolution equations with fixed lower limits and small nonlinearities and derive the existence of its periodic mild solutions. The current results extend some results in [12].
Set ξq(θ)=1qθ−1−1qϖq(θ−1q)≥0, ϖq(θ)=1π∑∞n=1(−1)n−1θ−nq−1Γ(nq+1)n!sin(nπq), θ∈(0,∞). Note that ξq(θ) is a probability density function defined on (0,∞), namely ξq(θ)≥0, θ∈(0,∞) and ∫∞0ξq(θ)dθ=1.
Define T:X→X and S:X→X given by
T(t)=∫∞0ξq(θ)S(tqθ)dθ, S(t)=q∫∞0θξq(θ)S(tqθ)dθ. |
Lemma 2.1. ([13,Lemmas 3.2,3.3]) The operators T(t) and S(t),t≥0 have following properties:
(1) Suppose that supt≥0‖S(t)‖≤M. For any fixed t≥0, T(⋅) and S(⋅) are linear and bounded operators, i.e., for any u∈X,
‖T(t)u‖≤M‖u‖ and ‖S(t)u‖≤MΓ(q)‖u‖. |
(2) {T(t),t≥0} and {S(t),t≥0} are strongly continuous.
(3) {T(t),t>0} and {S(t),t>0} are compact, if {S(t),t>0} is compact.
Let N0={0,1,⋯,∞}. We consider the following impulsive fractional equations
{cDqtk,tu(t)=Au(t)+f(t,u(t)), q∈(0,1), t∈(tk,tk+1), k∈N0,u(t+k)=u(t−k)+Δk(u(t−k)), k∈N,u(0)=u0, | (2.1) |
where cDqtk,t denotes the Caputo's fractional time derivative of order q with the lower limit at tk, A:D(A)⊆X→X is the generator of a C0-semigroup {S(t),t≥0} on a Banach space X, f:R×X→X satisfies some assumptions. We suppose the following conditions:
(Ⅰ) f is continuous and T-periodic in t.
(Ⅱ) There exist constants a>0, bk>0 such that
{‖f(t,u)−f(t,v)‖≤a‖u−v‖,∀ t∈R, u,v∈X,‖u−v+Δk(u)−Δk(v)‖≤bk‖u−v‖,∀ k∈N, u,v∈X. |
(Ⅲ) There exists N∈N such that T=tN+1,tk+N+1=tk+T and Δk+N+1=Δk for any k∈N.
It is well known [3] that (2.1) has a unique solution on R+ if the conditions (Ⅰ) and (Ⅱ) hold. So we can consider the Poincaré mapping
P(u0)=u(T−)+ΔN+1(u(T−)). |
By [14,Lemma 2.2] we know that the fixed points of P determine T-periodic mild solutions of (2.1).
Theorem 2.2. Assume that (I)-(III) hold. Let Ξ:=∏Nk=0MbkEq(Ma(tk+1−tk)q), where Eq is the Mittag-Leffler function (see [3, p.40]), then there holds
‖P(u)−P(v)‖≤Ξ‖u−v‖, ∀u,v∈X. | (2.2) |
If Ξ<1, then (2.1) has a unique T-periodic mild solution, which is also asymptotically stable.
Proof. By the mild solution of (2.1), we mean that u∈C((tk,tk+1),X) satisfying
u(t)=T(t−tk)u(t+k)+∫ttkS(t−s)f(s,u(s))ds. | (2.3) |
Let u and v be two solutions of (2.3) with u(0)=u0 and v(0)=v0, respectively. By (2.3) and (II), we can derive
‖u(t)−v(t)‖≤‖T(t−tk)(u(t+k)−v(t+k))‖+∫ttk(t−s)q−1‖S(t−s)(f(s,u(s)−f(s,v(s))‖ds≤M‖u(t+k)−v(t+k)‖+MaΓ(q)∫ttk(t−s)q−1‖f(s,u(s)−f(s,v(s))‖ds. | (2.4) |
Applying Gronwall inequality [15, Corollary 2] to (2.4), we derive
‖u(t)−v(t)‖≤M‖u(t+k)−v(t+k)‖Eq(Ma(t−tk)q), t∈(tk,tk+1), | (2.5) |
which implies
‖u(t−k+1)−v(t−k+1)‖≤MEq(Ma(tk+1−tk)q)‖u(t+k)−v(t+k)‖,k=0,1,⋯,N. | (2.6) |
By (2.6) and (Ⅱ), we derive
‖P(u0)−P(v0)‖=‖u(t−N+1)−v(t−N+1)+ΔN+1(u(t−N+1))−ΔN+1(v(t−N+1))‖≤bN+1‖u(t−N+1)−v(t−N+1)‖≤(N∏k=0MbkEq(Ma(tk+1−tk)q))‖u0−v0‖=Ξ‖u0−v0‖, | (2.7) |
which implies that (2.2) is satisfied. Thus P:X→X is a contraction if Ξ<1. Using Banach fixed point theorem, we obtain that P has a unique fixed point u0 if Ξ<1. In addition, since
‖Pn(u0)−Pn(v0)‖≤Ξn‖u0−v0‖, ∀v0∈X, |
we get that the corresponding periodic mild solution is asymptotically stable.
We study
{cDqkhu(t)=Au(t)+f(u(t)), q∈(0,1), t∈(kh,(k+1)h), k∈N0,u(kh+)=u(kh−)+ˉΔhq, k∈N,u(0)=u0, | (2.8) |
where h>0, ˉΔ∈X, and f:X→X is Lipschitz. We know [3] that under above assumptions, (2.8) has a unique mild solution u(u0,t) on R+, which is continuous in u0∈X, t∈R+∖{kh|k∈N} and left continuous in t ant impulsive points {kh|k∈N}. We can consider the Poincaré mapping
Ph(u0)=u(u0,h+). |
Theorem 2.3. Let w(t) be a solution of following equations
{w′(t)=ˉΔ+1Γ(q+1)f(w(t)), t∈[0,T],w(0)=u0. | (2.9) |
Then there exists a mild solution u(u0,t) of (2.8) on [0,T], satisfying
u(u0,t)=w(tqq−1)+O(hq). |
If w(t) is a stable periodic solution, then there exists a stable invariant curve of Poincaré mapping of (2.8) in a neighborhood of w(t). Note that h is sufficiently small.
Proof. For any t∈(kh,(k+1)h),k∈N0, the mild solution of (2.8) is equivalent to
u(u0,t)=T(t−kh)u(kh+)+∫tkh(t−s)q−1S(t−s)f(u(u0,s))ds=T(t−kh)u(kh+)+∫t−kh0(t−kh−s)q−1S(t−kh−s)f(u(u(kh+),s))ds. | (2.10) |
So
u((k+1)h+)=T(h)u(kh+)+ˉΔhq+∫h0(h−s)q−1S(h−s)f(u(u(kh+),s))ds=Ph(u(kh+)), | (2.11) |
and
Ph(u0)=u(u0,h+)=T(h)u0+ˉΔhq+∫h0(h−s)q−1S(h−s)f(u(u0,s))ds. | (2.12) |
Inserting
u(u0,t)=T(t)u0+hqv(u0,t), t∈[0,h], |
into (2.10), we obtain
v(u0,t)=1hq∫t0(t−s)q−1S(t−s)f(T(t)u0+hqv(u0,t))ds=1hq∫t0(t−s)q−1S(t−s)f(T(t)u0)ds+1hq∫t0(t−s)q−1S(t−s)(f(T(t)u0+hqv(u0,t))−f(T(t)u0))ds=1hq∫t0(t−s)q−1S(t−s)f(T(t)u0)ds+O(hq), |
since
‖∫t0(t−s)q−1S(t−s)(f(T(t)u0+hqv(u0,t))−f(T(t)u0))ds‖≤∫t0(t−s)q−1‖S(t−s)‖‖f(T(t)u0+hqv(u0,t))−f(T(t)u0)‖ds≤MLlochqtqΓ(q+1)maxt∈[0,h]{‖v(u0,t)‖}≤h2qMLlocΓ(q+1)maxt∈[0,h]{‖v(u0,t)‖}, |
where Lloc is a local Lipschitz constant of f. Thus we get
u(u0,t)=T(t)u0+∫t0(t−s)q−1S(t−s)f(T(t)u0)ds+O(h2q), t∈[0,h], | (2.13) |
and (2.12) gives
Ph(u0)=T(h)u0+ˉΔhq+∫h0(h−s)q−1S(h−s)f(T(h)u0)ds+O(h2q). |
So (2.11) becomes
u((k+1)h+)=T(h)u(kh+)+ˉΔhq+∫(k+1)hkh((k+1)h−s)q−1S((k+1)h−s)f(T(h)u(kh+))ds+O(h2q). | (2.14) |
Since T(t) and S(t) are strongly continuous,
limt→0T(t)=I and limt→0S(t)=1Γ(q)I. | (2.15) |
Thus (2.14) leads to its approximation
w((k+1)h+)=w(kh+)+ˉΔhq+hqΓ(q+1)f(w(kh+)), |
which is the Euler numerical approximation of
w′(t)=ˉΔ+1Γ(q+1)f(w(t)). |
Note that (2.10) implies
‖u(u0,t)−T(t−kh)u(kh+)‖=O(hq), ∀t∈[kh,(k+1)h]. | (2.16) |
Applying (2.15), (2.16) and the already known results about Euler approximation method in [16], we obtain the result of Theorem 2.3.
Corollary 2.4. We can extend (2.8) for periodic impulses of following form
{cDqkhu(t)=Au(t)+f(u(t)), t∈(kh,(k+1)h), k∈N0,u(kh+)=u(kh−)+ˉΔkhq, k∈N,u(0)=u0, | (2.17) |
where ˉΔk∈X satisfy ˉΔk+N+1=ˉΔk for any k∈N. Then Theorem 2.3 can directly extend to (2.17) with
{w′(t)=∑N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t)), t∈[0,T], k∈N,w(0)=u0 | (2.18) |
instead of (2.9).
Proof. We can consider the Poincaré mapping
Ph(u0)=u(u0,(N+1)h+), |
with a form of
Ph=PN+1,h∘⋯∘P1,h |
where
Pk,h(u0)=ˉΔkhq+u(u0,h). |
By (2.13), we can derive
Pk,h(u0)=ˉΔkhq+u(u0,h)=T(h)u0+ˉΔkhq+∫h0(h−s)q−1S(h−s)f(T(h)u0)ds+O(h2q). |
Then we get
Ph(u0)=T(h)u0+N+1∑k=1ˉΔkhq+(N+1)∫h0(h−s)q−1S(h−s)f(T(h)u0)ds+O(h2q). |
By (2.15), we obtain that Ph(u0) leads to its approximation
u0+N+1∑k=1ˉΔkhq+(N+1)hqΓ(q+1)f(u0). | (2.19) |
Moreover, equations
w′(t)=∑N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t)) |
has the Euler numerical approximation
u0+hq(∑N+1k=1ˉΔkN+1+1Γ(q+1)f(u0)) |
with the step size hq, and its approximation of N+1 iteration is (2.19), the approximation of Ph. Thus Theorem 2.3 can directly extend to (2.17) with (2.18).
Now we consider following equations with small nonlinearities of the form
{cDq0u(t)=Au(t)+ϵf(t,u(t)), q∈(0,1), t∈(tk,tk+1), k∈N0,u(t+k)=u(t−k)+ϵΔk(u(t−k)), k∈N,u(0)=u0, | (3.1) |
where ϵ is a small parameter, cDq0 is the generalized Caputo fractional derivative with lower limit at 0. Then (3.1) has a unique mild solution u(ϵ,t). Give the Poincaré mapping
P(ϵ,u0)=u(ϵ,T−)+ϵΔN+1(u(ϵ,T−)). |
Assume that
(H1) f and Δk are C2-smooth.
Then P(ϵ,u0) is also C2-smooth. In addition, we have
u(ϵ,t)=T(t)u0+ϵω(t)+O(ϵ2), |
where ω(t) satisfies
{cDq0ω(t)=Aω(t)+f(t,T(t)u0), t∈(tk,tk+1), k=0,1,⋯,N,ω(t+k)=ω(t−k)+Δk(T(tk)u0), k=1,2,⋯,N+1,ω(0)=0, |
and
ω(T−)=N∑k=1T(T−tk)Δk(T(tk)u0)+∫T0(T−s)q−1S(T−s)f(s,T(s)u0)ds. |
Thus we derive
{P(ϵ,u0)=u0+M(ϵ,u0)+O(ϵ2)M(ϵ,u0)=(T(T)−I)u0+ϵω(T−)+ϵΔN+1(T(T)u0). | (3.2) |
Theorem 3.1. Suppose that (I), (III) and (H1) hold.
1). If (T(T)−I) has a continuous inverse, i.e. (T(T)−I)−1 exists and continuous, then (3.1) has a unique T-periodic mild solution located near 0 for any ϵ≠0 small.
2). If (T(T)−I) is not invertible, we suppose that ker(T(T)−I)=[u1,⋯,uk] and X=im(T(T)−I)⊕X1 for a closed subspace X1 with dimX1=k. If there is v0∈[u1,⋯,uk] such that B(0,v0)=0 (see (3.7)) and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ≠0 small.
3). If rσ(Du0M(ϵ,u0))<0, then the T-periodic mild solution is asymptotically stable. If rσ(Du0M(ϵ,u0))∩(0,+∞)≠∅, then the T-periodic mild solution is unstable.
Proof. The fixed point u0 of P(ϵ,x0) determines the T-periodic mild solution of (3.1), which is equivalent to
M(ϵ,u0)+O(ϵ2)=0. | (3.3) |
Note that M(0,u0)=(T(T)−I)u0. If (T(T)−I) has a continuous inverse, then (3.3) can be solved by the implicit function theorem to get its solution u0(ϵ) with u0(0)=0.
If (T(T)−I) is not invertible, then we take a decomposition u0=v+w, v∈[u1,⋯,uk], take bounded projections Q1:X→im(T(T)−I), Q2:X→X1, I=Q1+Q2 and decompose (3.3) to
Q1M(ϵ,v+w)+Q1O(ϵ2)=0, | (3.4) |
and
Q2M(ϵ,v+w)+Q2O(ϵ2)=0. | (3.5) |
Now Q1M(0,v+w)=(T(T)−I)w, so we can solve by implicit function theorem from (3.4), w=w(ϵ,v) with w(0,v)=0. Inserting this solution into (3.5), we get
B(ϵ,v)=1ϵ(Q2M(ϵ,v+w)+Q2O(ϵ2))=Q2ω(T−)+Q2ΔN+1(T(t)v+w(ϵ,v))+O(ϵ). | (3.6) |
So
B(0,v)=N∑k=1Q2T(T−tk)Δk(T(tk)v)+Q2∫T0(T−s)q−1S(T−s)f(s,T(s)v)ds. | (3.7) |
Consequently we get, if there is v0∈[u1,⋯,uk] such that B(0,v0)=0 and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ≠0 small.
In addition, Du0P(ϵ,u0(ϵ))=I+Du0M(ϵ,u0)+O(ϵ2). Thus we can directly derive the stability and instability results by the arguments in [17].
In this section, we give an example to demonstrate Theorem 2.2.
Example 4.1. Consider the following impulsive fractional partial differential equation:
{ cD12tk,tu(t,y)=∂2∂y2u(t,y)+sinu(t,y)+cos2πt, t∈(tk,tk+1), k∈N0, y∈[0,π], Δk(u(t−k,y))=u(t+k,y)−u(t−k,y)=ξu(t−k,y), k∈N, y∈[0,π], u(t,0)=u(t,π)=0, t∈(tk,tk+1), k∈N0, u(0,y)=u0(y), y∈[0,π], | (4.1) |
for ξ∈R, tk=k3. Let X=L2[0,π]. Define the operator A:D(A)⊆X→X by Au=d2udy2 with the domain
D(A)={u∈X∣dudy,d2udy2∈X, u(0)=u(π)=0}. |
Then A is the infinitesimal generator of a C0-semigroup {S(t),t≥0} on X and ‖S(t)‖≤M=1 for any t≥0. Denote u(⋅,y)=u(⋅)(y) and define f:[0,∞)×X→X by
f(t,u)(y)=sinu(y)+cos2πt. |
Set T=t3=1, tk+3=tk+1, Δk+3=Δk, a=1, bk=|1+ξ|. Obviously, conditions (I)-(III) hold. Note that
Ξ=2∏k=0|1+ξ|E12(1√3)=|1+ξ|3(E12(1√3))3. |
Letting Ξ<1, we get −E12(1√3)−1<ξ<E12(1√3)−1. Now all assumptions of Theorem 2.2 hold. Hence, if −E12(1√3)−1<ξ<E12(1√3)−1, (4.1) has a unique 1-periodic mild solution, which is also asymptotically stable.
This paper deals with the existence and stability of periodic solutions of impulsive fractional evolution equations with the case of varying lower limits and fixed lower limits. Although, Fečkan and Wang [12] prove the existence of periodic solutions of impulsive fractional ordinary differential equations in finite dimensional Euclidean space, we extend some results to impulsive fractional evolution equation on Banach space by involving operator semigroup theory. Our results can be applied to some impulsive fractional partial differential equations and the proposed approach can be extended to study the similar problem for periodic impulsive fractional evolution inclusions.
The authors are grateful to the referees for their careful reading of the manuscript and valuable comments. This research is supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Major Research Project of Innovative Group in Guizhou Education Department ([2018]012), Foundation of Postgraduate of Guizhou Province (YJSCXJH[2019]031), the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 2/0153/16 and No. 1/0078/17.
All authors declare no conflicts of interest in this paper.
[1] |
D. V. Lindley, Fiducial distributions and Bayes' theorem, J. R. Stat. Soc., 20 (1958), 102–107. https://doi.org/10.1111/j.2517-6161.1958.tb00278.x doi: 10.1111/j.2517-6161.1958.tb00278.x
![]() |
[2] |
M. E. Ghitany, A. Barbra, S. Nadarajah, Lindley distribution and its application, Math. Comput. Simul., 78 (2008), 493–506. https://doi.org/10.1016/j.matcom.2007.06.007 doi: 10.1016/j.matcom.2007.06.007
![]() |
[3] | M. Sankaran, The discrete Poisson-Lindley distribution, Biometrics, 26 (1970), 145–149. |
[4] |
M. Ghitany, D. Al-Mutairi, S. Nadarajah, Zero-truncated Poisson-Lindley distribution and its application, Math. Comput. Simul., 79 (2008), 279–287. https://doi.org/10.1016/j.matcom.2007.11.021 doi: 10.1016/j.matcom.2007.11.021
![]() |
[5] | H. Zakerzadeh, A. Dolati, Generalized Lindley distribution, J. Math. Ext., 3 (2009), 13–25. |
[6] |
S. Nadarajah, H. S. Bakouch, R. Tahmasbi, A generalized Lindley distribution, Sankhya B, 73 (2011), 331–359. https://doi.org/10.1007/s13571-011-0025-9 doi: 10.1007/s13571-011-0025-9
![]() |
[7] |
M. Ghitany, F. Alqallaf, D. Al-Mutairi, H. A. Husain, A two-parameter weighted Lindley distribution and its applications to survival data, Math. Comput. Simul., 81 (2011), 1190–1201. https://doi.org/10.1016/j.matcom.2010.11.005 doi: 10.1016/j.matcom.2010.11.005
![]() |
[8] |
H. Bakouch, B. Al-Zahrani, A. Al-Shomrani, V. Marchi, F. Louzada, An extended Lindley distribution, J. Korean Stat. Soc., 41 (2012), 75–85. https://doi.org/10.1016/j.jkss.2011.06.002 doi: 10.1016/j.jkss.2011.06.002
![]() |
[9] |
W. Barreto-Souza, H. S. Bakouch, A new lifetime model with decreasing failure rate, Statistics, 47 (2013), 465–476. https://doi.org/10.1080/02331888.2011.595489 doi: 10.1080/02331888.2011.595489
![]() |
[10] |
R. Shanker, S. Sharma, R. Shanker, A two-parameter Lindley distribution for modeling waiting and survival times data, Appl. Math., 4 (2013), 363–368. https://doi.org/10.4236/am.2013.42056 doi: 10.4236/am.2013.42056
![]() |
[11] |
M. Ghitany, D. Al-Mutairi, N. Balakrishnan, L. Al-Enezi, Power Lindley distribution and associated inference, Comput. Stat. Data Anal., 64 (2013), 20–33. https://doi.org/10.1016/j.csda.2013.02.026 doi: 10.1016/j.csda.2013.02.026
![]() |
[12] |
A. Asgharzadeh, H. S. Bakouch, S. Nadarajah, F. Sharafi, A new weighted Lindley distribution with application, Braz. J. Probab. Stat., 30 (2016), 1–27. https://doi.org/10.1214/14-BJPS253 doi: 10.1214/14-BJPS253
![]() |
[13] |
M. Elgarhy, A. S. Hassan, S. Fayomi, Maximum likelihood and Bayesian estimation for two-parameter type I half logistic Lindley distribution, J. Comput. Theor. Nanos., 15 (2018), 3093–3101. https://doi.org/10.1166/jctn.2018.7600 doi: 10.1166/jctn.2018.7600
![]() |
[14] |
A. S. Hassan, R. E. Mohamed, M. Elgarhy, S. Alrajhi, On the alpha power transformed power Lindley distribution, J. Prob. Stat., 2019 (2019), 8024769. https://doi.org/10.1155/2019/8024769 doi: 10.1155/2019/8024769
![]() |
[15] |
V. K. Sharma, S. K. Singh, U. Singh, V. Agiwal, The inverse Lindley distribution: A stress-strength reliability model with application to head and neck cancer data, J. Ind. Prod. Eng., 32 (2015), 162–173. https://doi.org/10.1080/21681015.2015.1025901 doi: 10.1080/21681015.2015.1025901
![]() |
[16] | A. M. Abd AL-Fattah, A. A. El-Helbawy, G. R. Al-Dayian, Inverted Kumaraswamy distribution: Properties and estimation, Pak. J. Stat., 33 (2017), 37–61. |
[17] |
K. V. P. Barco, J. Mazucheli, V. Janeiro, The inverse power Lindley distribution, Commun. Stat.-Simul. Comput., 46 (2017), 6308–6323. https://doi.org/10.1080/03610918.2016.1202274 doi: 10.1080/03610918.2016.1202274
![]() |
[18] |
A. S. Yadav, S. S. Maiti, M. Saha, The inverse xgamma distribution: Statistical properties and different methods of estimation, Ann. Data. Sci., 8 (2021), 275–293. https://doi.org/10.1007/s40745-019-00211-w doi: 10.1007/s40745-019-00211-w
![]() |
[19] |
S. Lee, Y. Noh, Y. Chung, Inverted exponentiated Weibull distribution with applications to lifetime data, Commun. Stat. Appl. Methods, 24 (2017), 227–240. https://doi.org/10.5351/CSAM.2017.24.3.227 doi: 10.5351/CSAM.2017.24.3.227
![]() |
[20] |
A. S. Hassan, M. Abd-Allah, On the inverse power Lomax distribution, Ann. Data. Sci., 6 (2019), 259–278. https://doi.org/10.1007/s40745-018-0183-y doi: 10.1007/s40745-018-0183-y
![]() |
[21] | A. S. Hassan, R. E. Mohamed, Parameter estimation of inverse exponentiated Lomax with right censored data, Gazi Univ. J. Sci., 32 (2019), 1370–1386. |
[22] |
J. Y. Falgore, M. N. Isah, H. A. Abdulsalam, Inverse Lomax-Rayleigh distribution with application, Heliyon, 7 (2021), e08383. https://doi.org/10.1016/j.heliyon.2021.e08383 doi: 10.1016/j.heliyon.2021.e08383
![]() |
[23] |
M. H. Tahir, G. M. Cordeiro, S. Ali, S. Dey, A. Manzoor, The inverted Nadarajah-Haghighi distribution: Estimation methods and applications, J. Stat. Comput. Simul., 88 (2018), 2775–2798. https://doi.org/10.1080/00949655.2018.1487441 doi: 10.1080/00949655.2018.1487441
![]() |
[24] |
F. Louzada, P. L. Ramos, Nascimento, D. The inverse Nakagami-m distribution: A novel approach in reliability, IEEE Trans. Reliab., 67 (2018), 1030–1042. https://doi.org/10.1109/TR.2018.2829721 doi: 10.1109/TR.2018.2829721
![]() |
[25] | A. S. Hassan, M. Elgarhy, R. Ragab, Statistical properties and estimation of inverted Topp-Leone distribution, J. Stat. Appl. Probab., 9 (2020), 319–331. |
[26] |
C. Chesneau, V. Agiwal, Statistical theory and practice of the inverse power Muth distribution, J. Comput. Math. Data Sci., 1 (2021), 100004. https://doi.org/10.1016/j.jcmds.2021.100004 doi: 10.1016/j.jcmds.2021.100004
![]() |
[27] |
M. H. Omar, S. Y. Arafat, M. P. Hossain, M. Riaz, Inverse Maxwell distribution and statistical process control: An efficient approach for monitoring positively skewed process, Symmetry, 13 (2021), 189. https://doi.org/10.3390/sym13020189 doi: 10.3390/sym13020189
![]() |
[28] |
N. Alsadat, M. Elgarhy, K. Karakaya, A. M. Gemeay, C. Chesneau, M. M. Abd El-Raouf, Inverse unit Teissier distribution: Theory and practical Examples, Axioms, 12 (2023), 502. https://doi.org/10.3390/axioms12050502 doi: 10.3390/axioms12050502
![]() |
[29] | L. P. Sapkota, V. Kumar, Applications and some characteristics of inverse power Cauchy distribution, RT & A, 18 (2023), 301–315. |
[30] | J. Mazucheli, A. F. B. Menezes, S. Dey, The unit Birnbaum-Saunders distribution with applications, Chil. J. Stat., 9 (2018), 47–57. |
[31] | J. Mazucheli, A. F. B. Menezes, M. E. Ghitany, The unit Weibull distribution and associated inference, J. Appl. Probab. Stat., 13 (2018), 1–22. |
[32] | J. Mazucheli, A. F. B. Menezes, L. B. Fernandes, R. P. de Oliveira, M. E. Ghitany, The unit Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates, J. Appl. Probab. Stat., 47 (2020), 954–974. |
[33] | A. F. B. Menezes, J. Mazucheli, M. Bourguignon, A parametric quantile regression approach for modelling zero-or-one inflated double bounded data, The unit Weibull distribution and associated inference, Biometrical J., 63 (2021), 841–858. |
[34] | J. Mazucheli, A. F. B. Menezes, S. Dey, Unit-Gompertz distribution with applications, Statistica, 79 (2019), 25–43. |
[35] |
J. Mazucheli, A. F. B. Menezes, S. Chakraborty, On the one parameter unit Lindley distribution and its associated regression model for proportion data, J. Appl. Stat., 46 (2019), 700–714. https://doi.org/10.1080/02664763.2018.1511774 doi: 10.1080/02664763.2018.1511774
![]() |
[36] |
M. E. Ghitany, J. Mazucheli, A. F. B. Menezes, F. Alqallaf, The unit-inverse Gaussian distribution: A new alternative to two parameter distributions on the unit interval, Commun. Stat. Theory Methods, 48 (2019), 3423–3438. https://doi.org/10.1080/03610926.2018.1476717 doi: 10.1080/03610926.2018.1476717
![]() |
[37] |
M. C. Korkmaz, C. Chesneau, On the unit Burr-XII distribution with the quantile regression modeling and applications, Comp. Appl. Math., 40 (2021), 29. https://doi.org/10.1007/s40314-021-01418-5 doi: 10.1007/s40314-021-01418-5
![]() |
[38] |
A.S. Hassan, A. Fayomi, A. Algarni, E. M. Almetwally, Bayesian and non-Bayesian inference for unit-exponentiated half-logistic distribution with data analysis, Appl. Sci., 12 (2022), 11253. https://doi.org/10.3390/app122111253 doi: 10.3390/app122111253
![]() |
[39] |
A. T. Ramadan, A. H. Tolba, B. S. El-Desouky, A unit half-logistic geometric distribution and its application in insurance, Axioms, 11 (2022), 676. https://doi.org/10.3390/axioms11120676 doi: 10.3390/axioms11120676
![]() |
[40] | M. M. E. Abd El-Monsef, M. M. El-Awady, M. M. Seyam, A new quantile regression model for modelling child mortality, Int. J. Biomath., 10 (2022), 142–149. |
[41] |
A. Fayomi, A. S. Hassan, H. M. Baaqeel, E. M. Almetwally, Bayesian inference and data analysis of the unit-power Burr X distribution, Axioms, 12 (2023), 297. https://doi.org/10.3390/axioms12030297 doi: 10.3390/axioms12030297
![]() |
[42] |
A. S. Hassan, R. S. Alharbi, Different estimation methods for the unit inverse exponentiated Weibull distribution, Commun. Stat. Appl. Methods, 30 (2023), 191–213. https://doi.org/10.29220/CSAM.2023.30.2.191 doi: 10.29220/CSAM.2023.30.2.191
![]() |
[43] |
S. Nasiru, C. Chesneau, A. G. Abubakari, I. D. Angbing, Generalized unit half-logistic geometric distribution: Properties and regression with applications to insurance, Analytics, 2 (2023), 438–462. https://doi.org/10.3390/analytics2020025 doi: 10.3390/analytics2020025
![]() |
[44] |
C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
![]() |
[45] | A. Rényi, On measures of entropy and information, Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, 1 (1960), 547–561. |
[46] |
L. L. Campbell, Exponential entropy as a measure of extent of a distribution, Z. Wahrscheinlichkeitstheorie verw Gebiete, 5 (1966), 217–225. https://doi.org/10.1007/BF00533058 doi: 10.1007/BF00533058
![]() |
[47] | J. Havrda, F. Charvát, Quantification method of classification processes, concept of Structural a-entropy, Kybernetika, 3 (1967), 30–35. |
[48] |
S. Arimoto, Information-theoretical considerations on estimation problems, Inf. Control, 19 (1971), 181–194. https://doi.org/10.1016/S0019-9958(71)90065-9 doi: 10.1016/S0019-9958(71)90065-9
![]() |
[49] |
C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat Phys., 52 (1988), 479–487. https://doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429
![]() |
[50] |
A. M. Awad, A. J. Alawneh, Application of entropy to a life-time model, IMA J. Math. Control Inf., 4 (1987), 143–148. https://doi.org/10.1093/imamci/4.2.143 doi: 10.1093/imamci/4.2.143
![]() |
[51] |
F. Lad, G. Sanfilippo, G. Agr, Extropy: Complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. https://doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430
![]() |
[52] | N. Balakrishnan, F. Buono, M. Longobardi, On weighted extropies, Commun. Stat.-Theory Methods, 51 (2022), 6250–6267. https://doi.org/10.1080/03610926.2020.1860222 |
[53] | D. P. Murthy, M. Xie, R. Jiang, Weibull models, New York: John Wiley & Sons, 2004. |
[54] |
A. Krishna, R. Maya, C. Chesneau, M. R. Irshad, The unit Teissier distribution and its applications, Math. Comput. Appl., 27 (2022), 12. https://doi.org/10.3390/mca27010012 doi: 10.3390/mca27010012
![]() |
[55] | A. Pourdarvish, S. M. T. K. Mirmostafaee, K. Naderi, The exponentiated Topp-Leone distribution: Properties and application, J. Appl. Environ. Biol. Sci., 5 (2015), 251–256. |
[56] |
A. Grassia, On a family of distributions with argument between 0 and 1 obtained by transformation of the gamma and derived compound distributions, Austral. J. Statist., 19 (1977), 108–114. https://doi.org/10.1111/j.1467-842X.1977.tb01277.x doi: 10.1111/j.1467-842X.1977.tb01277.x
![]() |
1. | Xinguang Zhang, Lixin Yu, Jiqiang Jiang, Yonghong Wu, Yujun Cui, Gisele Mophou, Solutions for a Singular Hadamard-Type Fractional Differential Equation by the Spectral Construct Analysis, 2020, 2020, 2314-8888, 1, 10.1155/2020/8392397 | |
2. | Xinguang Zhang, Jiqiang Jiang, Lishan Liu, Yonghong Wu, Extremal Solutions for a Class of Tempered Fractional Turbulent Flow Equations in a Porous Medium, 2020, 2020, 1024-123X, 1, 10.1155/2020/2492193 | |
3. | Jingjing Tan, Xinguang Zhang, Lishan Liu, Yonghong Wu, Mostafa M. A. Khater, An Iterative Algorithm for Solving n -Order Fractional Differential Equation with Mixed Integral and Multipoint Boundary Conditions, 2021, 2021, 1099-0526, 1, 10.1155/2021/8898859 | |
4. | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad, Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions, 2022, 7, 2473-6988, 8314, 10.3934/math.2022463 | |
5. | Lianjing Ni, Liping Wang, Farooq Haq, Islam Nassar, Sarp Erkir, The Effect of Children’s Innovative Education Courses Based on Fractional Differential Equations, 2022, 0, 2444-8656, 10.2478/amns.2022.2.0039 |