Research article

Optical applications of a generalized fractional integro-differential equation with periodicity

  • Received: 09 October 2022 Revised: 13 March 2023 Accepted: 15 March 2023 Published: 20 March 2023
  • MSC : 34A37, 26A33

  • Impulsive is the affinity to do something without thinking. In this effort, we model a mathematical formula types integro-differential equation (I-DE) to describe this behavior. We investigate periodic boundary value issues in Banach spaces for fractional a class of I-DEs with non-quick impulses. We provide numerous sufficient conditions of the existence of mild outcomes for I-DE utilizing the measure of non-compactness, the method of resolving domestic, and the fixed point result. Lastly, we illustrate a set of examples, which is given to demonstrate the investigations key findings. Our findings are generated some recent works in this direction.

    Citation: Dumitru Baleanu, Rabha W. Ibrahim. Optical applications of a generalized fractional integro-differential equation with periodicity[J]. AIMS Mathematics, 2023, 8(5): 11953-11972. doi: 10.3934/math.2023604

    Related Papers:

  • Impulsive is the affinity to do something without thinking. In this effort, we model a mathematical formula types integro-differential equation (I-DE) to describe this behavior. We investigate periodic boundary value issues in Banach spaces for fractional a class of I-DEs with non-quick impulses. We provide numerous sufficient conditions of the existence of mild outcomes for I-DE utilizing the measure of non-compactness, the method of resolving domestic, and the fixed point result. Lastly, we illustrate a set of examples, which is given to demonstrate the investigations key findings. Our findings are generated some recent works in this direction.



    加载中


    [1] D. G. Zill, Differential equations with boundary-value problems. Cengage Learning, 2016.
    [2] J. D. Earn, A light introduction to modelling recurrent epidemics, Math. Epid., (2008), 3–17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78911-6_1
    [3] J. P. Medlock, Integro-differential-equation models in ecology and epidemiology, University of Washington, 2004.
    [4] W. Xue, B. Zhu, On the periodic boundary value problems for fractional nonautonomous differential equations with non-instantaneous impulses, Adv. Cont. Disc. Mod., 1 (2022), 1–16. https://doi.org/10.1186/s13662-022-03708-6 doi: 10.1186/s13662-022-03708-6
    [5] R. W. Ibrahim, K-symbol fractional order discrete-time models of Lozi system, J. Diff. Equ. App., (2022), 1–20. https://doi.org/10.1080/10236198.2022.2158736 doi: 10.1080/10236198.2022.2158736
    [6] M. Muslim, V. Kumar, Existence, stability and controllability results of a Volterra integro-dynamic system with non-instantaneous impulses on time scales, IMA J. Math. Con. Info. 37 (2020), 276–299.
    [7] P. Michelle, H. R. Henriquez, A. Prokopczyk, Global solutions for abstract differential equations with non-instantaneous impulses, Med. J. Math., 13 (2016), 1685–1708. https://doi.org/10.1007/s00009-015-0609-0 doi: 10.1007/s00009-015-0609-0
    [8] A. Ravi, S. Hristova, D. O'Regan, Non-instantaneous impulses in differential equations, Non-Instantaneous Impu. Diff. Equ., (2017), 1–72. https://doi.org/10.1007/978-3-319-66384-5_1 doi: 10.1007/978-3-319-66384-5_1
    [9] A. Hamdy, M. M. El-Borai, A. S. El Bab, M. Elsaid Ramadan, Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion, Boun. Value Pro., 2020 (2020), 1–25. https://doi.org/10.1186/s13661-020-01418-0 doi: 10.1186/s13661-020-01418-0
    [10] S. Surang, S. K. Ntouyas, P. Agarwal, J. Tariboon, Noninstantaneous impulsive inequalities via conformable fractional calculus, J. Ineq. App., 2018 (2018), 1–14. https://doi.org/10.1186/s13660-018-1855-z doi: 10.1186/s13660-018-1855-z
    [11] R. Saadati, E. Pourhadi, B. Samet, On the PC $\mathcal PC $-mild solutions of abstract fractional evolution equations with non-instantaneous impulses via the measure of noncompactness, Boun. Value Prob., 2019 (2019), 1–23. https://doi.org/10.1186/s13661-019-1137-9 doi: 10.1186/s13661-019-1137-9
    [12] L. Weijie, M. Pinto, Y. Xia, Smooth stable manifolds for the non-instantaneous impulsive equations with applications to Duffing oscillators, Proc. Royal Soc. A, 478 (2022), 20210957. https://doi.org/10.1098/rspa.2021.0957 doi: 10.1098/rspa.2021.0957
    [13] C. Renu, S. Reich, Extremal mild solutions to fractional delay integro-differential equations with non-instantaneous impulses, App. Analy., (2021), 1–20. https://doi.org/10.1080/00036811.2021.2011245 doi: 10.1080/00036811.2021.2011245
    [14] Z. Bo, L. Liu, Periodic boundary value problems for fractional semilinear integro-differential equations with non-instantaneous impulses, Boun. Value Prob., 2018 (2018), 1–14. https://doi.org/10.1186/s13661-018-1048-1 doi: 10.1186/s13661-018-1048-1
    [15] N. H. Kumar, R. W. Ibrahim, R. Arab, M. Rabbani, Solvability of fractional dynamic systems utilizing measure of noncompactness, Non. Analy.: Mod. Cont., 25 (2020), 618–637. https://doi.org/10.15388/namc.2020.25.17896 doi: 10.15388/namc.2020.25.17896
    [16] S. B. Hadid, R. W. Ibrahim, On new symmetric Schur functions associated with integral and integro-differential functional expressions in a complex domain, Symmetry, 15 (2023), 235. https://doi.org/10.3390/sym15010235 doi: 10.3390/sym15010235
    [17] L. Craig, V. R. Basili, Iterative and incremental developments, a brief history, Computer, 36 (2003), 47–56. https://doi.org/10.1109/MC.2003.1204375 doi: 10.1109/MC.2003.1204375
    [18] D. Klaus, Nonlinear functional analysis, Courier Corporation, 2010.
    [19] L. Lishan, Iterative method for solutions and coupled quasi-solutions of nonlinear integro-differential equations of mixed type in Banach spaces, Non. Analy.: Th., Meth. Appl., 42 (2000), 583–598. https://doi.org/10.1016/S0362-546X(99)00116-9 doi: 10.1016/S0362-546X(99)00116-9
    [20] L. Lishan, F. Guo, C. Wu, Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl., 309 (2005), 638–649. https://doi.org/10.1016/j.jmaa.2004.10.069 doi: 10.1016/j.jmaa.2004.10.069
    [21] B. Jozef, On measures of noncompactness in Banach spaces, Comm. Math. Univ. Carolinae, 21 (1980), 131–143.
    [22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006.
    [23] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, arXiv preprint arXiv: 1602.03408, (2016).
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(969) PDF downloads(59) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog