In this article, we look into the important requirements for exact controllability of fractional impulsive differential systems of order $ 1 < r < 2 $. Definitions of mild solutions are given for fractional integrodifferential equations with impulses. In addition, applying fixed point methods, fractional derivatives, essential conditions, mixed Volterra-Fredholm integrodifferential type, for exact controllability of the solutions are produced. Lastly, a case study is supplied to show the illustration of the primary theorems.
Citation: Marimuthu Mohan Raja, Velusamy Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, Wedad Albalawi, Abdel-Haleem Abdel-Aty. A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order $ {r} \in (1, 2) $ with impulses[J]. AIMS Mathematics, 2023, 8(5): 10802-10821. doi: 10.3934/math.2023548
In this article, we look into the important requirements for exact controllability of fractional impulsive differential systems of order $ 1 < r < 2 $. Definitions of mild solutions are given for fractional integrodifferential equations with impulses. In addition, applying fixed point methods, fractional derivatives, essential conditions, mixed Volterra-Fredholm integrodifferential type, for exact controllability of the solutions are produced. Lastly, a case study is supplied to show the illustration of the primary theorems.
[1] | W. M. Abd-Elhameed, Y. H. Youssri, Numerical solutions for Volterra-Fredholm-Hammerstein integral equations via second kind Chebyshev quadrature collocation algorithm, Adv. Math. Sci. Appl., 24 (2014), 129–141. |
[2] | J. Banas, K. Goebel, Measure of noncompactness in Banach spaces, In: Lecture Notes in Pure and Applied Matyenath, Marcel Dekker, New York, 1980. |
[3] | K. Deimling, Multivalued differential equations, De Gruyter, Berlin, 1992. |
[4] | C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay, Chaos Soliton. Fract., 157 (2022), 1–17. https://doi.org/10.1016/j.chaos.2022.111916 doi: 10.1016/j.chaos.2022.111916 |
[5] | Z. Fu, L. Yang, Q. Xi, C. Liu, A boundary collocation method for anomalous heat conduction analysis in functionally graded materials, Comput. Math. Appl., 88 (2021), 91–109. https://doi.org/10.1016/j.camwa.2020.02.023 doi: 10.1016/j.camwa.2020.02.023 |
[6] | J. W. He, Y. Liang, B. Ahmad, Y. Zhou, Nonlocal fractional evolution inclusions of order $\alpha \in (1, 2)$, Mathematics, 209 (2019), 1–17. https://doi.org/10.3390/math7020209 doi: 10.3390/math7020209 |
[7] | S. Ji, G. Li, M. Wang, Controllability of impulsive differential systems with nonlocal conditions, Appl. Math. Comput., 217 (2011), 6981–6989. https://doi.org/10.1016/j.amc.2011.01.107 doi: 10.1016/j.amc.2011.01.107 |
[8] | M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter, 2001. https://doi.org/10.1515/97831108 |
[9] | K. Kavitha, V. Vijayakumar, R. Udhayakumar, C. Ravichandran, Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness, Asian J. Control., 24 (2021), 1406–1415. https://doi.org/10.1002/asjc.2549 doi: 10.1002/asjc.2549 |
[10] | K. Kavitha, K. S. Nisar, A. Shukla, V. Vijayakumar, S. Rezapour, A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems, Adv. Differ. Equ., 2021 (2021), 467. https://doi.org/10.1186/s13662-021-03624-1 doi: 10.1186/s13662-021-03624-1 |
[11] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006. |
[12] | X. Liu, Z. Liu, M. Bin, The solvability and optimal controls for some fractional impulsive equations of order $1 < \alpha < 2$, Abstr. Appl. Anal., 2014 (2014), 1–9. https://doi.org/10.1155/2014/142067 doi: 10.1155/2014/142067 |
[13] | Y. K. Ma, M. M. Raja, K. S. Nisar, A. Shukla, V. Vijayakumar, Results on controllability for Sobolev type fractional differential equations of order $1 < r < 2$ with finite delay, AIMS Math., 7 (2022), 10215–10233. https://doi.org/10.3934/math.2022568 doi: 10.3934/math.2022568 |
[14] | Y. K. Ma, C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, K. S. Nisar, Approximate controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with nonlocal conditions, Ain Shams Eng. J., 14 (2023), 1–13. 101882. https://doi.org/10.1016/j.asej.2022.101882 doi: 10.1016/j.asej.2022.101882 |
[15] | Y. K. Ma, M. M. Raja, V. Vijayakumar, A. Shukla, W. Albalawi, K. S. Nisar, Existence and continuous dependence results for fractional evolution integrodifferential equations of order $r \in (1, 2)$, Alex. Eng. J., 61 (2022), 9929–9939. https://doi.org/10.1016/j.aej.2022.03.010 doi: 10.1016/j.aej.2022.03.010 |
[16] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993. |
[17] | M. M. Raja, A. Shukla, J. J. Nieto, V. Vijayakumar, K. S. Nisar, A note on the existence and controllability results for fractional integrodifferential inclusions of order $r \in (1, 2]$ with impulses, Qual. Theor. Dyn. Syst., 21 (2022), 1–41. https://doi.org/10.1007/s12346-022-00681-z doi: 10.1007/s12346-022-00681-z |
[18] | M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, S. Rezapour, New discussion on nonlocal controllability for fractional evolution system of order $1 < r < 2$, Adv. Differ. Equ., 2021 (2021), 481. https://doi.org/10.1186/s13662-021-03630-3 doi: 10.1186/s13662-021-03630-3 |
[19] | M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, N. Sakthivel, K. Kaliraj, Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order $r \in (1, 2)$, Optim. Contr. Appl. Met., 43 (2022), 996–1019. https://doi.org/10.1002/oca.2867 doi: 10.1002/oca.2867 |
[20] | M. M. Raja, V. Vijayakumar, Optimal control results for Sobolev-type fractional mixed Volterra-Fredholm type integrodifferential equations of order $1 < r < 2$ with sectorial operators, Optim. Contr. Appl. Met., 43 (2022), 1314–1327. https://doi.org/10.1002/oca.2892 doi: 10.1002/oca.2892 |
[21] | M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, H. M. Baskonus, On the approximate controllability results for fractional integrodifferential systems of order $1 < r < 2$ with sectorial operators, J. Comput. Appl. Math., 415 (2022), 1–12. https://doi.org/10.1016/j.cam.2022.114492 doi: 10.1016/j.cam.2022.114492 |
[22] | M. M. Raja, V. Vijayakumar, New results concerning to approximate controllability of fractional integrodifferential evolution equations of order $1 < r < 2$, Numer. Meth. Part. D. E., 38 (2022), 509–524. https://doi.org/10.1002/num.22653 doi: 10.1002/num.22653 |
[23] | H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal.-Real, 4 (1980), 985–999. https://doi.org/10.1016/0362-546X(80)90010-3 doi: 10.1016/0362-546X(80)90010-3 |
[24] | D. O'Regan, R. Precup, Existence criteria for integral equations in Banach spaces, J. Inequal. Appl., 6 (2001), 77–97. https://doi.org/10.1155/S1025583401000066 doi: 10.1155/S1025583401000066 |
[25] | A. E. Ofem, A. Hussain, O. Joseph, M. O. Udo, U. Ishtiaq, H. Al Sulami, et al., Solving fractional Volterra-Fredholm integro-differential equations via $A^{**}$ iteration method, Axioms, 11 (2022), 470. https://doi.org/10.3390/axioms11090470 doi: 10.3390/axioms11090470 |
[26] | A. E. Ofem, U. Udofia, D. I. Igbokwe, A robust iterative approach for solving nonlinear volterra delay integro-differential equations, Ural Math. J., 7 (2021), 59–85. https://doi.org/10.15826/umj.2021.2.005 doi: 10.15826/umj.2021.2.005 |
[27] | G. A. Okeke, A. E. Ofem, T. Abdeljawad, M. A. Alqudah, A. Khan, A solution of a nonlinear Volterra integral equation with delay via a faster iteration method, AIMS Math., 8 (2022), 102–124. https://doi.org/10.3934/math.2023005 doi: 10.3934/math.2023005 |
[28] | G. A. Okeke, A. E. Ofem, A novel iterative scheme for solving delay differential equations and nonlinear integral equations in Banach spaces, Math. Method. Appl. Sci., 45 (2022), 5111–5134. https://doi.org/10.1002/mma.8095 doi: 10.1002/mma.8095 |
[29] | R. Patel, A. Shukla, J. J. Nieto, V. Vijayakumar, S. S. Jadon, New discussion concerning to optimal control for semilinear population dynamics system in Hilbert spaces, Nonlinear Anal.-Model., 27 (2022), 496–512. https://doi.org/10.15388/namc.2022.27.26407 doi: 10.15388/namc.2022.27.26407 |
[30] | R. Patel, A. Shukla, S. S. Jadon, Existence and optimal control problem for semilinear fractional order $(1, 2]$ control system, Math. Method. Appl. Sci., 2020, 1–12. https://doi.org/10.1002/mma.6662 |
[31] | I. Podlubny, Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to method of their solution and some of their applications, San Diego, CA: Acad. Press, 1999. |
[32] | H. Qin, X. Zuo, J. Liu, L. Liu, Approximate controllability and optimal controls of fractional dynamical systems of order $1 < q < 2$ in Banach spaces, Adv. Differ. Equ., 73 (2015), 1–17. https://doi.org/10.1186/s13662-015-0399-5 doi: 10.1186/s13662-015-0399-5 |
[33] | C. Ravichandran, D. Baleanu, On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, Adv. Differ. Equ., 291 (2013), 1–13. https://doi.org/10.1186/1687-1847-2013-291 doi: 10.1186/1687-1847-2013-291 |
[34] | L. Shu, X. B. Shu, J. Mao, Approximate controllability and existence of mild solutions for Riemann-Liouville fractional Stochastic evolution equations with nonlocal conditions of order $1 < \alpha < 2$, Fract. Calc. Appl. Anal., 22 (2019), 1086–1112. http://dx.doi.org/10.1515/fca-2019-0057 doi: 10.1515/fca-2019-0057 |
[35] | X. B. Shu, Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1 < \alpha < 2$, Comput. Math. with Appl., 64 (2012), 2100–2110. http://dx.doi.org/10.1016/j.camwa.2012.04.006 doi: 10.1016/j.camwa.2012.04.006 |
[36] | X. B. Shu, F. Xu, Upper and lower solution method for factional evolution equations with order $1 < \alpha < 2$, J. Korean Math. Soc., 51 (2014), 1123–1139. https://doi.org/10.4134/JKMS.2014.51.6.1123 doi: 10.4134/JKMS.2014.51.6.1123 |
[37] | A. Shukla, V. Vijayakumar, K. S. Nisar, A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order $r \in (1, 2)$, Chaos Soliton. Fract., 154 (2022), 1–8. https://doi.org/10.1016/j.chaos.2021.111615 doi: 10.1016/j.chaos.2021.111615 |
[38] | S. Sivasankaran, M. M. Arjunan, V. Vijayakumar, Existence of global solutions for second order impulsive abstract partial differential equations, Nonlinear Anal.-Theor., 74 (2011), 6747–6757. https://doi.org/10.1016/j.na.2011.06.054 doi: 10.1016/j.na.2011.06.054 |
[39] | Z. Tang, Z. Fu, H. Sun, X. Liu, An efficient localized collocation solver for anomalous diffusion on surfaces, Fract. Calc. Appl. Anal., 24 (2021), 865–894. https://doi.org/10.1515/fca-2021-0037 doi: 10.1515/fca-2021-0037 |
[40] | V. Vijayakumar, C. Ravichandran, K. S. Nisar, K. D. Kucche, New discussion on approximate controllability results for fractional Sobolev type Volterra-Fredholm integro-differential systems of order $1 < r < 2$, Numer. Meth. Part. D. E., 2021, 1–19. https://doi.org/10.1002/num.22772 |
[41] | V. Vijayakumar, K. S. Nisar, D. Chalishajar, A. Shukla, M. Malik, A. Alsaadi, et al., A note on approximate controllability of fractional semilinear integro-differential control systems via resolvent operators, Fractal Fract., 6 (2022), 1–14. https://doi.org/10.3390/fractalfract6020073 doi: 10.3390/fractalfract6020073 |
[42] | J. R. Wang, M. Feckan, Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dynam. Part. Differ. Eq., 8 (2011), 345–361. |
[43] | J. R. Wang, X. Li, W. Wei, On the natural solution of an impulsive fractional differential equations of order $q \in (1, 2)$, Commun. Nonlinear. Sci., 17 (2012), 4384–4394. https://doi.org/10.1016/j.cnsns.2012.03.011 doi: 10.1016/j.cnsns.2012.03.011 |
[44] | X. Wang, X. B. Shu, The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions of order $1 < \alpha < 2$, Adv. Differ. Equ., 159 (2015), 1–15. https://doi.org/10.1186/s13662-015-0461-3 doi: 10.1186/s13662-015-0461-3 |
[45] | Q. Xi, Z. Fu, T. Rabczuk, D. Yin, A localized collocation scheme with fundamental solutions for long-time anomalous heat conduction analysis in functionally graded materials, Int. J. Heat Mass Tran., 64 (2012), 2100–2110. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121778 doi: 10.1016/j.ijheatmasstransfer.2021.121778 |
[46] | Y. H. Youssri, R. M. Hafez, Chebyshev collocation treatment of Volterra-Fredholm integral equation with error analysis, Arab. J. Math., 9 (2020), 471–480. https://doi.org/10.1007/s40065-019-0243-y doi: 10.1007/s40065-019-0243-y |
[47] | Y. Zhou, Basic theory of fractional differential equations, World Scientific, Singapore, 2014. https://doi.org/10.1142/9069 |
[48] | Y. Zhou, Fractional evolution equations and inclusion: Analysis and control, Elsevier, New York, 2015. |
[49] | Y. Zhou, J. W. He, New results on controllability of fractional evolution systems with order $\alpha \in (1, 2)$, Evol. Equ. Control The., 10 (2021), 491–509. https://doi.org/10.3934/eect.2020077 doi: 10.3934/eect.2020077 |