Research article Special Issues

A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order $ {r} \in (1, 2) $ with impulses

  • Received: 07 January 2023 Revised: 21 February 2023 Accepted: 22 February 2023 Published: 06 March 2023
  • MSC : 26A33, 34A08, 35R12, 47B12, 47H08, 46E36, 93B05

  • In this article, we look into the important requirements for exact controllability of fractional impulsive differential systems of order $ 1 < r < 2 $. Definitions of mild solutions are given for fractional integrodifferential equations with impulses. In addition, applying fixed point methods, fractional derivatives, essential conditions, mixed Volterra-Fredholm integrodifferential type, for exact controllability of the solutions are produced. Lastly, a case study is supplied to show the illustration of the primary theorems.

    Citation: Marimuthu Mohan Raja, Velusamy Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, Wedad Albalawi, Abdel-Haleem Abdel-Aty. A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order $ {r} \in (1, 2) $ with impulses[J]. AIMS Mathematics, 2023, 8(5): 10802-10821. doi: 10.3934/math.2023548

    Related Papers:

  • In this article, we look into the important requirements for exact controllability of fractional impulsive differential systems of order $ 1 < r < 2 $. Definitions of mild solutions are given for fractional integrodifferential equations with impulses. In addition, applying fixed point methods, fractional derivatives, essential conditions, mixed Volterra-Fredholm integrodifferential type, for exact controllability of the solutions are produced. Lastly, a case study is supplied to show the illustration of the primary theorems.



    加载中


    [1] W. M. Abd-Elhameed, Y. H. Youssri, Numerical solutions for Volterra-Fredholm-Hammerstein integral equations via second kind Chebyshev quadrature collocation algorithm, Adv. Math. Sci. Appl., 24 (2014), 129–141.
    [2] J. Banas, K. Goebel, Measure of noncompactness in Banach spaces, In: Lecture Notes in Pure and Applied Matyenath, Marcel Dekker, New York, 1980.
    [3] K. Deimling, Multivalued differential equations, De Gruyter, Berlin, 1992.
    [4] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay, Chaos Soliton. Fract., 157 (2022), 1–17. https://doi.org/10.1016/j.chaos.2022.111916 doi: 10.1016/j.chaos.2022.111916
    [5] Z. Fu, L. Yang, Q. Xi, C. Liu, A boundary collocation method for anomalous heat conduction analysis in functionally graded materials, Comput. Math. Appl., 88 (2021), 91–109. https://doi.org/10.1016/j.camwa.2020.02.023 doi: 10.1016/j.camwa.2020.02.023
    [6] J. W. He, Y. Liang, B. Ahmad, Y. Zhou, Nonlocal fractional evolution inclusions of order $\alpha \in (1, 2)$, Mathematics, 209 (2019), 1–17. https://doi.org/10.3390/math7020209 doi: 10.3390/math7020209
    [7] S. Ji, G. Li, M. Wang, Controllability of impulsive differential systems with nonlocal conditions, Appl. Math. Comput., 217 (2011), 6981–6989. https://doi.org/10.1016/j.amc.2011.01.107 doi: 10.1016/j.amc.2011.01.107
    [8] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter, 2001. https://doi.org/10.1515/97831108
    [9] K. Kavitha, V. Vijayakumar, R. Udhayakumar, C. Ravichandran, Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness, Asian J. Control., 24 (2021), 1406–1415. https://doi.org/10.1002/asjc.2549 doi: 10.1002/asjc.2549
    [10] K. Kavitha, K. S. Nisar, A. Shukla, V. Vijayakumar, S. Rezapour, A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems, Adv. Differ. Equ., 2021 (2021), 467. https://doi.org/10.1186/s13662-021-03624-1 doi: 10.1186/s13662-021-03624-1
    [11] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
    [12] X. Liu, Z. Liu, M. Bin, The solvability and optimal controls for some fractional impulsive equations of order $1 < \alpha < 2$, Abstr. Appl. Anal., 2014 (2014), 1–9. https://doi.org/10.1155/2014/142067 doi: 10.1155/2014/142067
    [13] Y. K. Ma, M. M. Raja, K. S. Nisar, A. Shukla, V. Vijayakumar, Results on controllability for Sobolev type fractional differential equations of order $1 < r < 2$ with finite delay, AIMS Math., 7 (2022), 10215–10233. https://doi.org/10.3934/math.2022568 doi: 10.3934/math.2022568
    [14] Y. K. Ma, C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, K. S. Nisar, Approximate controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with nonlocal conditions, Ain Shams Eng. J., 14 (2023), 1–13. 101882. https://doi.org/10.1016/j.asej.2022.101882 doi: 10.1016/j.asej.2022.101882
    [15] Y. K. Ma, M. M. Raja, V. Vijayakumar, A. Shukla, W. Albalawi, K. S. Nisar, Existence and continuous dependence results for fractional evolution integrodifferential equations of order $r \in (1, 2)$, Alex. Eng. J., 61 (2022), 9929–9939. https://doi.org/10.1016/j.aej.2022.03.010 doi: 10.1016/j.aej.2022.03.010
    [16] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
    [17] M. M. Raja, A. Shukla, J. J. Nieto, V. Vijayakumar, K. S. Nisar, A note on the existence and controllability results for fractional integrodifferential inclusions of order $r \in (1, 2]$ with impulses, Qual. Theor. Dyn. Syst., 21 (2022), 1–41. https://doi.org/10.1007/s12346-022-00681-z doi: 10.1007/s12346-022-00681-z
    [18] M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, S. Rezapour, New discussion on nonlocal controllability for fractional evolution system of order $1 < r < 2$, Adv. Differ. Equ., 2021 (2021), 481. https://doi.org/10.1186/s13662-021-03630-3 doi: 10.1186/s13662-021-03630-3
    [19] M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, N. Sakthivel, K. Kaliraj, Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order $r \in (1, 2)$, Optim. Contr. Appl. Met., 43 (2022), 996–1019. https://doi.org/10.1002/oca.2867 doi: 10.1002/oca.2867
    [20] M. M. Raja, V. Vijayakumar, Optimal control results for Sobolev-type fractional mixed Volterra-Fredholm type integrodifferential equations of order $1 < r < 2$ with sectorial operators, Optim. Contr. Appl. Met., 43 (2022), 1314–1327. https://doi.org/10.1002/oca.2892 doi: 10.1002/oca.2892
    [21] M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, H. M. Baskonus, On the approximate controllability results for fractional integrodifferential systems of order $1 < r < 2$ with sectorial operators, J. Comput. Appl. Math., 415 (2022), 1–12. https://doi.org/10.1016/j.cam.2022.114492 doi: 10.1016/j.cam.2022.114492
    [22] M. M. Raja, V. Vijayakumar, New results concerning to approximate controllability of fractional integrodifferential evolution equations of order $1 < r < 2$, Numer. Meth. Part. D. E., 38 (2022), 509–524. https://doi.org/10.1002/num.22653 doi: 10.1002/num.22653
    [23] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal.-Real, 4 (1980), 985–999. https://doi.org/10.1016/0362-546X(80)90010-3 doi: 10.1016/0362-546X(80)90010-3
    [24] D. O'Regan, R. Precup, Existence criteria for integral equations in Banach spaces, J. Inequal. Appl., 6 (2001), 77–97. https://doi.org/10.1155/S1025583401000066 doi: 10.1155/S1025583401000066
    [25] A. E. Ofem, A. Hussain, O. Joseph, M. O. Udo, U. Ishtiaq, H. Al Sulami, et al., Solving fractional Volterra-Fredholm integro-differential equations via $A^{**}$ iteration method, Axioms, 11 (2022), 470. https://doi.org/10.3390/axioms11090470 doi: 10.3390/axioms11090470
    [26] A. E. Ofem, U. Udofia, D. I. Igbokwe, A robust iterative approach for solving nonlinear volterra delay integro-differential equations, Ural Math. J., 7 (2021), 59–85. https://doi.org/10.15826/umj.2021.2.005 doi: 10.15826/umj.2021.2.005
    [27] G. A. Okeke, A. E. Ofem, T. Abdeljawad, M. A. Alqudah, A. Khan, A solution of a nonlinear Volterra integral equation with delay via a faster iteration method, AIMS Math., 8 (2022), 102–124. https://doi.org/10.3934/math.2023005 doi: 10.3934/math.2023005
    [28] G. A. Okeke, A. E. Ofem, A novel iterative scheme for solving delay differential equations and nonlinear integral equations in Banach spaces, Math. Method. Appl. Sci., 45 (2022), 5111–5134. https://doi.org/10.1002/mma.8095 doi: 10.1002/mma.8095
    [29] R. Patel, A. Shukla, J. J. Nieto, V. Vijayakumar, S. S. Jadon, New discussion concerning to optimal control for semilinear population dynamics system in Hilbert spaces, Nonlinear Anal.-Model., 27 (2022), 496–512. https://doi.org/10.15388/namc.2022.27.26407 doi: 10.15388/namc.2022.27.26407
    [30] R. Patel, A. Shukla, S. S. Jadon, Existence and optimal control problem for semilinear fractional order $(1, 2]$ control system, Math. Method. Appl. Sci., 2020, 1–12. https://doi.org/10.1002/mma.6662
    [31] I. Podlubny, Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to method of their solution and some of their applications, San Diego, CA: Acad. Press, 1999.
    [32] H. Qin, X. Zuo, J. Liu, L. Liu, Approximate controllability and optimal controls of fractional dynamical systems of order $1 < q < 2$ in Banach spaces, Adv. Differ. Equ., 73 (2015), 1–17. https://doi.org/10.1186/s13662-015-0399-5 doi: 10.1186/s13662-015-0399-5
    [33] C. Ravichandran, D. Baleanu, On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, Adv. Differ. Equ., 291 (2013), 1–13. https://doi.org/10.1186/1687-1847-2013-291 doi: 10.1186/1687-1847-2013-291
    [34] L. Shu, X. B. Shu, J. Mao, Approximate controllability and existence of mild solutions for Riemann-Liouville fractional Stochastic evolution equations with nonlocal conditions of order $1 < \alpha < 2$, Fract. Calc. Appl. Anal., 22 (2019), 1086–1112. http://dx.doi.org/10.1515/fca-2019-0057 doi: 10.1515/fca-2019-0057
    [35] X. B. Shu, Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1 < \alpha < 2$, Comput. Math. with Appl., 64 (2012), 2100–2110. http://dx.doi.org/10.1016/j.camwa.2012.04.006 doi: 10.1016/j.camwa.2012.04.006
    [36] X. B. Shu, F. Xu, Upper and lower solution method for factional evolution equations with order $1 < \alpha < 2$, J. Korean Math. Soc., 51 (2014), 1123–1139. https://doi.org/10.4134/JKMS.2014.51.6.1123 doi: 10.4134/JKMS.2014.51.6.1123
    [37] A. Shukla, V. Vijayakumar, K. S. Nisar, A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order $r \in (1, 2)$, Chaos Soliton. Fract., 154 (2022), 1–8. https://doi.org/10.1016/j.chaos.2021.111615 doi: 10.1016/j.chaos.2021.111615
    [38] S. Sivasankaran, M. M. Arjunan, V. Vijayakumar, Existence of global solutions for second order impulsive abstract partial differential equations, Nonlinear Anal.-Theor., 74 (2011), 6747–6757. https://doi.org/10.1016/j.na.2011.06.054 doi: 10.1016/j.na.2011.06.054
    [39] Z. Tang, Z. Fu, H. Sun, X. Liu, An efficient localized collocation solver for anomalous diffusion on surfaces, Fract. Calc. Appl. Anal., 24 (2021), 865–894. https://doi.org/10.1515/fca-2021-0037 doi: 10.1515/fca-2021-0037
    [40] V. Vijayakumar, C. Ravichandran, K. S. Nisar, K. D. Kucche, New discussion on approximate controllability results for fractional Sobolev type Volterra-Fredholm integro-differential systems of order $1 < r < 2$, Numer. Meth. Part. D. E., 2021, 1–19. https://doi.org/10.1002/num.22772
    [41] V. Vijayakumar, K. S. Nisar, D. Chalishajar, A. Shukla, M. Malik, A. Alsaadi, et al., A note on approximate controllability of fractional semilinear integro-differential control systems via resolvent operators, Fractal Fract., 6 (2022), 1–14. https://doi.org/10.3390/fractalfract6020073 doi: 10.3390/fractalfract6020073
    [42] J. R. Wang, M. Feckan, Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dynam. Part. Differ. Eq., 8 (2011), 345–361.
    [43] J. R. Wang, X. Li, W. Wei, On the natural solution of an impulsive fractional differential equations of order $q \in (1, 2)$, Commun. Nonlinear. Sci., 17 (2012), 4384–4394. https://doi.org/10.1016/j.cnsns.2012.03.011 doi: 10.1016/j.cnsns.2012.03.011
    [44] X. Wang, X. B. Shu, The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions of order $1 < \alpha < 2$, Adv. Differ. Equ., 159 (2015), 1–15. https://doi.org/10.1186/s13662-015-0461-3 doi: 10.1186/s13662-015-0461-3
    [45] Q. Xi, Z. Fu, T. Rabczuk, D. Yin, A localized collocation scheme with fundamental solutions for long-time anomalous heat conduction analysis in functionally graded materials, Int. J. Heat Mass Tran., 64 (2012), 2100–2110. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121778 doi: 10.1016/j.ijheatmasstransfer.2021.121778
    [46] Y. H. Youssri, R. M. Hafez, Chebyshev collocation treatment of Volterra-Fredholm integral equation with error analysis, Arab. J. Math., 9 (2020), 471–480. https://doi.org/10.1007/s40065-019-0243-y doi: 10.1007/s40065-019-0243-y
    [47] Y. Zhou, Basic theory of fractional differential equations, World Scientific, Singapore, 2014. https://doi.org/10.1142/9069
    [48] Y. Zhou, Fractional evolution equations and inclusion: Analysis and control, Elsevier, New York, 2015.
    [49] Y. Zhou, J. W. He, New results on controllability of fractional evolution systems with order $\alpha \in (1, 2)$, Evol. Equ. Control The., 10 (2021), 491–509. https://doi.org/10.3934/eect.2020077 doi: 10.3934/eect.2020077
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1333) PDF downloads(75) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog