Research article Special Issues

Comparison of dynamic behavior between continuous- and discrete-time models of intraguild predation


  • Received: 31 March 2023 Revised: 21 May 2023 Accepted: 22 May 2023 Published: 31 May 2023
  • Intraguild predation is a common ecological phenomenon that manifests itself by the aggression of one predator by another to obtain a shared prey species. In this paper, we develop a discrete analog of a stoichiometric continuous-time intraguild predation model. We analyze the dynamics of the discrete-time model, such as boundedness and invariance, stability of equilibria, and features of ecological matrices. The dynamic behavior of the two models is compared and analyzed through numerical analysis. We observe the same coexistence region of populations and stoichiometric effects of food quality of the shared prey in both models. Obvious differences between the discrete- and continuous-time models can be observed with intermediate and high levels of light intensity. The multistability characteristics and the existence interval of chaos differ among the different time scale models. This study provides evidence of the importance of time scales on intraguild predation.

    Citation: Ming Chen, Menglin Gong, Jimin Zhang, Lale Asik. Comparison of dynamic behavior between continuous- and discrete-time models of intraguild predation[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12750-12771. doi: 10.3934/mbe.2023569

    Related Papers:

  • Intraguild predation is a common ecological phenomenon that manifests itself by the aggression of one predator by another to obtain a shared prey species. In this paper, we develop a discrete analog of a stoichiometric continuous-time intraguild predation model. We analyze the dynamics of the discrete-time model, such as boundedness and invariance, stability of equilibria, and features of ecological matrices. The dynamic behavior of the two models is compared and analyzed through numerical analysis. We observe the same coexistence region of populations and stoichiometric effects of food quality of the shared prey in both models. Obvious differences between the discrete- and continuous-time models can be observed with intermediate and high levels of light intensity. The multistability characteristics and the existence interval of chaos differ among the different time scale models. This study provides evidence of the importance of time scales on intraguild predation.



    加载中


    [1] R. W. Sterner, J. J. Elser, Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere, 1st edition, Princeton University Press, 2002. https://doi.org/10.1515/9781400885695
    [2] R. W. Sterner, The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena, Am. Nat., 136 (1990), 209–229. https://doi.org/10.1086/285092 doi: 10.1086/285092
    [3] R. W. Sterner, D. O. Hessen, Algal nutrient limitation and the nutrition of aquatic herbivores, Ann. Rev. Ecol. Evol. Syst., 5 (1994), 1–29.
    [4] D. Waal, J. Elser, A. Martiny, R. Sterner, J. Cotner, Progress in ecological stoichiometry, Front. Microbiol., 9 (2018), 1957. https://doi.org/10.3389/fmicb.2018.01957 doi: 10.3389/fmicb.2018.01957
    [5] G. Polis, C. Myers, R. Holt, The ecology and evolution of intraguild predation: potential competitors that eat each other, Annu. Rev. Ecol. Syst., 20 (1989), 297–330.
    [6] Y. Kuang, M. Fan, S. Liu, W. Ma, Dynamical Models of Biology and Medicine, 1st edition, MDPI, 2019. https://doi.org/10.3390/books978-3-03921-218-7
    [7] R. Holt, G. Polis, A theoretical framework for intraguild predation, Am. Nat., 149 (1997), 745–764. https://doi.org/10.1086/286018 doi: 10.1086/286018
    [8] S. Hsu, S. Ruan, T. Yang, Analysis of three species Lotka-Volterra food web models with omnivory, J. Math. Anal. Appl., 426 (2015), 659–687. https://doi.org/10.1016/j.jmaa.2015.01.035 doi: 10.1016/j.jmaa.2015.01.035
    [9] E. Shchekinova, M. Loder, M. Boersma, K. Wiltshire, Facilitation of intraguild prey by its intraguild predator in a three-species Lotka-Volterra model, Theor. Popul. Biol., 92 (2014), 55–61. https://doi.org/10.1016/j.tpb.2013.11.005 doi: 10.1016/j.tpb.2013.11.005
    [10] I. Velazquez, D. Kaplan, J. Velasco-Hernandez, S. Navarrete, Multistability in an open recruitment food web model, Appl. Math. Comput., 163 (2005), 275–294. https://doi.org/10.1016/j.amc.2004.02.005 doi: 10.1016/j.amc.2004.02.005
    [11] P. Abrams, S. Fung, Prey persistence and abundance in systems with intraguild predation and type-2 functional responses, J. Theor. Biol., 264 (2010), 1033–1042. https://doi.org/10.1016/j.jtbi.2010.02.045 doi: 10.1016/j.jtbi.2010.02.045
    [12] M. Freeze, Y. Chang, W. Feng, Analysis of dynamics in a complex food chain with ratio-dependent functional response, J. Appl. Anal., 4 (2014), 69–87. https://doi.org/10.11948/2014002 doi: 10.11948/2014002
    [13] A. Verdy, P. Amarasekare, Alternative stable states in communities with intraguild predation, J. Theor. Biol., 262 (2010), 116–128. https://doi.org/10.1016/j.jtbi.2009.09.011 doi: 10.1016/j.jtbi.2009.09.011
    [14] P. Urbani, R. Ramos-Jiliberto, Adaptive prey behavior and the dynamics of intraguild predation systems, Ecol. Model., 221 (2010), 2628–2633. https://doi.org/10.1016/j.ecolmodel.2010.08.009 doi: 10.1016/j.ecolmodel.2010.08.009
    [15] J. Zabalo, Permanence in an intraguild predation model with prey switching, Bull. Math. Biol., 74 (2012), 1957–1984. https://doi.org/10.1007/s11538-012-9740-2 doi: 10.1007/s11538-012-9740-2
    [16] M. Fan, Y. Kuang, Z. Feng, Cats protecting birds revisited, Bull. Math. Biol., 67 (2005), 1081–1106. https://doi.org/10.1016/j.bulm.2004.12.002 doi: 10.1016/j.bulm.2004.12.002
    [17] Y. Kang, L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, J. Math. Biol., 67 (2013), 1227–1259. https://doi.org/10.1007/s00285-012-0584-z doi: 10.1007/s00285-012-0584-z
    [18] H. Shu, X. Hu, L. Wang, J. Watmough, Delay induced stability switch, multitype bistability and chaos in an intraguild predation model, J. Math. Biol., 71 (2015), 1269–1298. https://doi.org/10.1007/s00285-015-0857-4 doi: 10.1007/s00285-015-0857-4
    [19] R. Liu, G. Liu, Dynamics of a stochastic three species prey-predator model with intraguild predation, J. Appl. Anal. Comput., 10 (2020), 81–103. https://doi/10.11948/jaac20190002 doi: 10.11948/jaac20190002
    [20] Z. Xing, H. Cui, J. Zhang, Dynamics of a stochastic intraguild predation model, Appl. Sci., 6 (2016), 118. https://doi.org/10.3390/app6040118 doi: 10.3390/app6040118
    [21] J. Yang, W. Wang, Persistence in a stochastic intraguild predation model, Appl. Math. Lett., 63 (2017), 59–64. https://doi.org/10.1016/j.aml.2016.07.022 doi: 10.1016/j.aml.2016.07.022
    [22] S. Diehl, The evolution and maintenance of omnivory: dynamic constraints and the role of food quality, Ecology, 84 (2003), 2557–2567. https://doi.org/10.1890/02-0399 doi: 10.1890/02-0399
    [23] G. Takimoto, T. Miki, M. Kagami, Intraguild predation promotes complex alternative states along a productivity gradient, Theor. Popul. Biol., 72 (2007), 264–273. https://doi.org/10.1016/j.tpb.2007.04.005 doi: 10.1016/j.tpb.2007.04.005
    [24] I. Loladze, Y. Kuang, J. J. Elser, W. F. Fagan, Competition and stoichiometry: coexistence of two predators on one prey, Theor. Popul. Biol., 65 (2004), 1–15. https://doi.org/10.1016/S0040-5809(03)00105-9 doi: 10.1016/S0040-5809(03)00105-9
    [25] M. Fan, I. Loladze, Y. Kuang, J. J. Elser, Dynamics of a stoichiometric discrete prey-grazer model, J. Differ. Equations, 11 (2005), 347–364. https://doi.org/10.1080/10236190412331335427 doi: 10.1080/10236190412331335427
    [26] M. Chen, M. Fan, Y. Kuang, Global dynamics in a stoichiometric food chain model with two limiting nutrients, Math. Biosci., 298 (2017), 9–19. https://doi.org/10.1016/j.mbs.2017.04.004 doi: 10.1016/j.mbs.2017.04.004
    [27] S. Kartal, Flip and Neimark–Sacker bifurcation in a differential equation with piecewise constant arguments model, J. Differ. Equations Appl., 23 (2017), 763–778. https://doi.org/10.1080/10236198.2016.1277214 doi: 10.1080/10236198.2016.1277214
    [28] S. Kartal, Multiple bifurcations in an early brain tumor model with piecewise constant arguments, Int. J. Biomath., 11 (2018), 1850055. https://doi.org/10.1142/S1793524518500559 doi: 10.1142/S1793524518500559
    [29] I. Loladze, Y. Kuang, J. J. Elser, Stoichiometry in prey-grazer systems: linking energy flow with element cycling, Bull. Math. Biol., 62 (2000), 1137–1162. https://doi.org/10.1006/bulm.2000.0201 doi: 10.1006/bulm.2000.0201
    [30] M. Chen, M. Fan, C. B. Xie, A. Peace, H. Wang, Stoichiometric food chain model on discrete time scale, Math. Biosci. Eng., 16 (2018), 101–118. https://doi.org/10.3934/mbe.2019005 doi: 10.3934/mbe.2019005
    [31] M. Chen, H. Wang, M. L. Gong, Discrete-time versus continuous-time toxic predation models, J. Differ. Equations, 28 (2022), 244–258. https://doi.org/10.1080/10236198.2022.2038586 doi: 10.1080/10236198.2022.2038586
    [32] T. Gao, X. Y. Meng, Stability and Hopf bifurcation of a delayed diffusive phytoplankton-zooplankton-fish model with refuge and two functional responses, AIMS Math., 8 (2023), 8867–8901. https://doi.org/10.3934/math.2023445 doi: 10.3934/math.2023445
    [33] P. Panja, T. Kar, D. K. Jana, Stability and bifurcation analysis of a phytoplankton-zooplankton-fish model involving fear in zooplankton species and fish harvesting, Int. J. Model. Simul., 2022 (2022), 1–16. http://doi.org/10.1080/02286203.2022.2118020 doi: 10.1080/02286203.2022.2118020
    [34] Sajan, S. K. Sasmal, B. Dubey, A phytoplankton-zooplankton-fish model with chaos control: In the presence of fear effect and an additional food, Chaos, 32 (2022), 103114. http://doi.org/10.1063/5.0069474 doi: 10.1063/5.0069474
    [35] M. Babaei, M. B. Tayemeh, M. S. Jo, I. J. Yu, S. A. Johari, Trophic transfer and toxicity of silver nanoparticles along a phytoplankton-zooplankton-fish food chain, Sci. Total. Environ., 842 (2022), 156807. https://doi.org/10.1016/j.scitotenv.2022.156807 doi: 10.1016/j.scitotenv.2022.156807
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1202) PDF downloads(75) Cited by(2)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog