Research article Special Issues

Homoclinic solutions of discrete $ p $-Laplacian equations containing both advance and retardation

  • Received: 11 September 2021 Revised: 12 December 2021 Accepted: 18 December 2021 Published: 21 April 2022
  • We consider a $ 2m $th-order nonlinear $ p $-Laplacian difference equation containing both advance and retardation. Using the critical point theory, we establish some new and weaker criteria on the existence of homoclinic solutions with mixed nonlinearities.

    Citation: Peng Mei, Zhan Zhou, Yuming Chen. Homoclinic solutions of discrete $ p $-Laplacian equations containing both advance and retardation[J]. Electronic Research Archive, 2022, 30(6): 2205-2219. doi: 10.3934/era.2022112

    Related Papers:

  • We consider a $ 2m $th-order nonlinear $ p $-Laplacian difference equation containing both advance and retardation. Using the critical point theory, we establish some new and weaker criteria on the existence of homoclinic solutions with mixed nonlinearities.



    加载中


    [1] Z. Guo, J. Yu, Existence of periodic and subharmonic solutions for second order superlinear difference equations, Sci. China Ser. A: Math., 46 (2003), 506–515. https://doi.org/10.1007/BF02884022 doi: 10.1007/BF02884022
    [2] L. Erbe, B. Jia, Q. Zhang, Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl. Anal. Comput., 9 (2019), 271–294. https://doi.org/10.11948/2019.271 doi: 10.11948/2019.271
    [3] S. Elaydi, An Introduction to Difference Equations, Springer New York, 2005.
    [4] B. Zheng, J. Li, J. Yu, One discrete dynamical model on Wolbachia infection frequency in mosquito populations, Sci. China Math., 65 (2022), https://doi.org/10.1007/s11425–021–1891–7 doi: 10.1007/s11425–021–1891–7
    [5] Z. Balanov, C. García-Azpeitia, W. Krawcewicz, On variational and topological methods in nonlinear difference equations, Commun. Pure Appl. Anal., 17 (2018), 2813–2844. https://doi.org/10.3934/cpaa.2018133 doi: 10.3934/cpaa.2018133
    [6] A. Iannizzotto, S. Tersian, Multiple homoclinic solutions for the discrete $p$-Laplacian via critical point theory, J. Math. Anal. Appl., 403 (2013), 173–182. https://doi.org/10.1016/j.jmaa.2013.02.011 doi: 10.1016/j.jmaa.2013.02.011
    [7] L. Kong, Homoclinic solutions for a higher order difference equation, Appl. Math. Lett., 86 (2018), 186–193. https://doi.org/10.1016/j.aml.2018.06.033 doi: 10.1016/j.aml.2018.06.033
    [8] J. Kuang, Z. Guo, Heteroclinic solutions for a class of $p$-Laplacian difference equations with a parameter, Appl. Math. Lett., 100 (2020), 106034. https://doi.org/10.1016/j.aml.2019.106034 doi: 10.1016/j.aml.2019.106034
    [9] G. Lin, Z. Zhou, Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1723–1747. https://doi.org/10.3934/cpaa.2018082 doi: 10.3934/cpaa.2018082
    [10] H. Shi, X. Liu, Y. Zhang, Homoclinic orbits for second order $p$-Laplacian difference equations containing both advance and retardation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 110 (2016), 65–78. https://doi.org/10.1007/s13398-015-0221-y doi: 10.1007/s13398-015-0221-y
    [11] R. Stegliński, On homoclinic solutions for a second order difference equation with $p$-Laplacian, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 487–492. https://doi.org/10.3934/dcdsb.2018033 doi: 10.3934/dcdsb.2018033
    [12] G. Sun, A. Mai, Infinitely many homoclinic solutions for second order nonlinear difference equations with $p$-Laplacian, Sci. World J., 2014 (2014), 276372. https://doi.org/10.1186/1687-1847-2014-161 doi: 10.1186/1687-1847-2014-161
    [13] Z. Zhou, J. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with $\phi_c$-Laplacian, Appl. Math. Lett., 91 (2019), 28–34. https://doi.org/10.1016/j.aml.2018.11.016 doi: 10.1016/j.aml.2018.11.016
    [14] Z. Zhou, D. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781–790. https://doi.org/10.1007/s11425-014-4883-2 doi: 10.1007/s11425-014-4883-2
    [15] L. Schulman, Some differential-difference equations containing both advance and retardation, J. Math. Phys., 15 (1974), 295–298. https://doi.org/10.1063/1.1666641 doi: 10.1063/1.1666641
    [16] D. Smets, M. Willem, Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149 (1997), 266–275. https://doi.org/10.1006/jfan.1996.3121 doi: 10.1006/jfan.1996.3121
    [17] P. Chen, X. Tang, Existence of infinitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation, Appl. Math. Comput., 217 (2011), 4408–4415. https://doi.org/10.1016/j.amc.2010.09.067 doi: 10.1016/j.amc.2010.09.067
    [18] P. Mei, Z. Zhou, G. Lin, Periodic and subharmonic solutions for a $2n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 2085–2095.
    [19] C. Stuart, Locating cerami sequences in a mountain pass geometry, Commun. Appl. Anal., 15 (2011), 569–588.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1400) PDF downloads(69) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog