We consider a $ 2m $th-order nonlinear $ p $-Laplacian difference equation containing both advance and retardation. Using the critical point theory, we establish some new and weaker criteria on the existence of homoclinic solutions with mixed nonlinearities.
Citation: Peng Mei, Zhan Zhou, Yuming Chen. Homoclinic solutions of discrete $ p $-Laplacian equations containing both advance and retardation[J]. Electronic Research Archive, 2022, 30(6): 2205-2219. doi: 10.3934/era.2022112
We consider a $ 2m $th-order nonlinear $ p $-Laplacian difference equation containing both advance and retardation. Using the critical point theory, we establish some new and weaker criteria on the existence of homoclinic solutions with mixed nonlinearities.
[1] | Z. Guo, J. Yu, Existence of periodic and subharmonic solutions for second order superlinear difference equations, Sci. China Ser. A: Math., 46 (2003), 506–515. https://doi.org/10.1007/BF02884022 doi: 10.1007/BF02884022 |
[2] | L. Erbe, B. Jia, Q. Zhang, Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl. Anal. Comput., 9 (2019), 271–294. https://doi.org/10.11948/2019.271 doi: 10.11948/2019.271 |
[3] | S. Elaydi, An Introduction to Difference Equations, Springer New York, 2005. |
[4] | B. Zheng, J. Li, J. Yu, One discrete dynamical model on Wolbachia infection frequency in mosquito populations, Sci. China Math., 65 (2022), https://doi.org/10.1007/s11425–021–1891–7 doi: 10.1007/s11425–021–1891–7 |
[5] | Z. Balanov, C. García-Azpeitia, W. Krawcewicz, On variational and topological methods in nonlinear difference equations, Commun. Pure Appl. Anal., 17 (2018), 2813–2844. https://doi.org/10.3934/cpaa.2018133 doi: 10.3934/cpaa.2018133 |
[6] | A. Iannizzotto, S. Tersian, Multiple homoclinic solutions for the discrete $p$-Laplacian via critical point theory, J. Math. Anal. Appl., 403 (2013), 173–182. https://doi.org/10.1016/j.jmaa.2013.02.011 doi: 10.1016/j.jmaa.2013.02.011 |
[7] | L. Kong, Homoclinic solutions for a higher order difference equation, Appl. Math. Lett., 86 (2018), 186–193. https://doi.org/10.1016/j.aml.2018.06.033 doi: 10.1016/j.aml.2018.06.033 |
[8] | J. Kuang, Z. Guo, Heteroclinic solutions for a class of $p$-Laplacian difference equations with a parameter, Appl. Math. Lett., 100 (2020), 106034. https://doi.org/10.1016/j.aml.2019.106034 doi: 10.1016/j.aml.2019.106034 |
[9] | G. Lin, Z. Zhou, Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1723–1747. https://doi.org/10.3934/cpaa.2018082 doi: 10.3934/cpaa.2018082 |
[10] | H. Shi, X. Liu, Y. Zhang, Homoclinic orbits for second order $p$-Laplacian difference equations containing both advance and retardation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 110 (2016), 65–78. https://doi.org/10.1007/s13398-015-0221-y doi: 10.1007/s13398-015-0221-y |
[11] | R. Stegliński, On homoclinic solutions for a second order difference equation with $p$-Laplacian, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 487–492. https://doi.org/10.3934/dcdsb.2018033 doi: 10.3934/dcdsb.2018033 |
[12] | G. Sun, A. Mai, Infinitely many homoclinic solutions for second order nonlinear difference equations with $p$-Laplacian, Sci. World J., 2014 (2014), 276372. https://doi.org/10.1186/1687-1847-2014-161 doi: 10.1186/1687-1847-2014-161 |
[13] | Z. Zhou, J. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with $\phi_c$-Laplacian, Appl. Math. Lett., 91 (2019), 28–34. https://doi.org/10.1016/j.aml.2018.11.016 doi: 10.1016/j.aml.2018.11.016 |
[14] | Z. Zhou, D. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781–790. https://doi.org/10.1007/s11425-014-4883-2 doi: 10.1007/s11425-014-4883-2 |
[15] | L. Schulman, Some differential-difference equations containing both advance and retardation, J. Math. Phys., 15 (1974), 295–298. https://doi.org/10.1063/1.1666641 doi: 10.1063/1.1666641 |
[16] | D. Smets, M. Willem, Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149 (1997), 266–275. https://doi.org/10.1006/jfan.1996.3121 doi: 10.1006/jfan.1996.3121 |
[17] | P. Chen, X. Tang, Existence of infinitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation, Appl. Math. Comput., 217 (2011), 4408–4415. https://doi.org/10.1016/j.amc.2010.09.067 doi: 10.1016/j.amc.2010.09.067 |
[18] | P. Mei, Z. Zhou, G. Lin, Periodic and subharmonic solutions for a $2n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 2085–2095. |
[19] | C. Stuart, Locating cerami sequences in a mountain pass geometry, Commun. Appl. Anal., 15 (2011), 569–588. |