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1. Introduction

Consider the following 2mth-order nonlinear p-Laplacian difference equation containing both ad-
vance and retardation

(−1)m∆m(rn−mϕp(∆mun−m)) + ωnun = f (n, un+1, un, un−1), n ∈ Z. (1.1)

Here p > 1 is a real number, ϕp(s) = |s|p−2s for all s ∈ R, ∆ is the forward difference operator defined
by ∆uk = uk+1 − uk, ∆ juk = ∆(∆ j−1uk) for j ≥ 2, {rn} and {ωn} are real positive T -periodic sequences for
a positive integer T , f ∈ C(Z × R3,R) with f being T -periodic in the first variable.

Special cases of (1.1) are produced, for example, when we look for standing waves of the discrete
nonlinear Schrödinger (DNLS) equation,

iψ̇n = −∆
2ψn−1 + vnψn − fn(ψn), n ∈ Z.

Assume that the nonlinearity is gauge invariant, i.e.,

fn(eiθu) = eiθ fn(u), θ ∈ R.
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Since solitons are spatially localized time-periodic solutions and decay to zero at infinity, ψn has the
form

ψn = une−iωt and lim
|n|→∞

ψn = 0,

where {un} is a real valued sequence and ω ∈ R is the temporal frequency. Then we arrive at the
nonlinear equation

− ∆2un + vnun − ωun = fn(un), n ∈ Z. (1.2)

Clearly, (1.2) is a special form of (1.1) with m = 1 and p = 2 but without advance or retardation.
We assume that f (n, 0, 0, 0) = 0 for each n ∈ Z, then {un} = {0} is a solution of (1.1), which is

called the trivial solution. As usual, we say that a solution u = {un} of (1.1) is homoclinic (to 0) if
lim|n|→∞ un = 0. In addition, if {un} , {0}, then u is called a nontrivial homoclinic solution.

Critical point theory was introduced into discrete systems by Guo-Yu [1] in 2003 to study the
existence of periodic and subharmonic solutions. It has been proved to be a powerful tool for studying
the existence of homoclinic solutions for discrete nonlinear systems [2]. Among them, the theory of
difference equations has been widely used to examine discrete models appearing in many fields [3, 4].
In recent years, the existence of homoclinic and heteroclinic solutions and boundary value problems for
various difference equations have been investigated by many researchers [5–14]. For example, some
researchers have studied the following nonlinear difference equation with a coercive weight function

− ∆(akϕp(∆uk−1)) + bkϕp(uk) = λ f (k, uk), k ∈ Z, (1.3)

where λ is a positive real parameter, a, b : Z→ (0,+∞). By means of critical point theory, Iannizzotto
and Tersian [6] have proved the existence of at least two nontrivial homoclinic solutions when λ is big
enough of (1.3). Moreover, infinitely many homoclinic solutions were obtained in [12] by employing
Nehari manifold methods, and in [11] by applying the fountain theorem.

In particular, difference equations containing both advance and retardation have important back-
ground and applications in the field of cybernetics and biological mathematics [15, 16]. Thus they
have received considerably attention. For some recent works, we refer readers to [7, 10, 17, 18] and
references therein. For instances, by using the mountain pass theorem and periodic approximations,
Shi et al. [10] studied the existence of a nontrivial homoclinic orbit of

∆
(
ϕp(∆un−1)

)
− qnϕp(un) + f (n, un+M, un, un−M) = 0, n ∈ Z,

where M is a given nonnegative integer. Kong [7] employed the critical point theory to study the
existence of at least three homoclinic solutions for the following p-Laplacian difference equation with
both advance and retardation

(−1)n∆n
(
a(k − n)ϕp (∆nu(k − n))

)
+ b(k)ϕp(u(k)) = λ f (k, u(k + 1), u(k), u(k − 1)),

k ∈ Z, where λ is a positive real parameter, a, b : Z→ (0,+∞). Unlike the problem we studied, in this
article, the author requires that b(k) is unbounded.

Inspired by the above interesting research, we shall attempt to establish the new sufficient conditions
on the existence of nontrivial homoclinic solutions for more general nonlinear terms of (1.1), see
remarks 1 and 2 for details. To wit, we have

Theorem 1.1 Assume that there exists a function F ∈ C1(Z × R2,R) having the following properties
with p > 2.

Electronic Research Archive Volume 30, Issue 6, 2205–2219.



2207

(T1) For n ∈ Z, v1, v2, v3 ∈ R, F(n + T, v1, v2) = F(n, v1, v2) and

∂2F(n − 1, v2, v3) + ∂3F(n, v1, v2) = f (n, v1, v2, v3)

where we denote by

∂2F(n, v2, v3) =
∂F(n, v2, v3)

∂v2
and ∂3F(n, v1, v2) =

∂F(n, v1, v2)
∂v2

;

(T2)

lim sup
|v1 |+|v2 |→0

F(n, v1, v2)
v2

1 + v2
2

= 0;

(T3) ∂iF(n, v1, v2) = o(|(v1, v2)|) as (v1, v2)→ (0, 0) for all n ∈ Z, i = 2, 3;

(T4) There exists a real sequence {an} such that

lim inf
|v1 |+|v2 |→∞

F(n, v1, v2)
|v1|

p + |v2|
p = an ≤ ∞;

(T5) ∂2F(n, v1, v2)v1 + ∂3F(n, v1, v2)v2 − pF(n, v1, v2) > 0 for all (n, v1, v2) ∈ Z × R2 \ {(0, 0)}.

If pan > r̄2mp for each n ∈ Z, then (1.1) has at least a nontrivial solution u in l2, where r̄ = maxn∈Z{rn}.

Theorem 1.2 Assume that there exists F ∈ C1(Z × R2,R) satisfying (T1), (T2), (T3) and the following
properties with 1 < p ≤ 2.

(T6) There exists a real sequence {bn} such that

lim inf
|v1 |+|v2 |→∞

F(n, v1, v2)
v2

1 + v2
2

= bn ≤ ∞;

(T7) ∂2F(n, v1, v2)v1 + ∂3F(n, v1, v2)v2 − 2F(n, v1, v2) > 0 for all (n, v1, v2) ∈ Z × R2 \ {(0, 0)};

(T8) ∂2F(n, v1, v2)v1 + ∂3F(n, v1, v2)v2 − 2F(n, v1, v2)→ +∞ as |v1| + |v2| → ∞.

If 2bn > ωn for each n ∈ Z, then (1.1) has at least a nontrivial solution u in l2.

Remark 1. If a solution {un} of (1.1) is in l2, then lim|n|→∞ un = 0 and {un} is a homoclinic solution. The
condition (T4) implies that the nonlinearity F can be mixed super p-linear with asymptotically p-linear
at∞ and (T6) implies that the nonlinear term F can be mixed superquadratic linear with asymptotically
quadratic linear at ∞. In some references, the nonlinear f is assumed to be either only superlinear or
only asymptotically linear at∞, which plays an important role in establishing the existence of nontrivial
homoclinic solutions.

Remark 2. If m = 1, rn ≡ 1, and f (n, un+1, un, un−1) = g(n, un), then Theorem 1.1 reduces to Theo-
rem 2.2 in [9] when ϕ-Laplacian is p-Laplacian. Moreover, our sufficient conditions are based on the
limit superior and limit inferior, which are more applicable.

This rest of the paper is organized as follows. In Section 2, we establish the variational framework
associated with (1.1) and cite the Mountain Pass Lemma. Section 3 and Section 4 are devoted to
the proofs of Theorem 1.1 and Theorem 1.2, respectively. The paper concludes with an example to
illustrate the applicability of the main results.
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2. The variational structure

We first establish the corresponding variational framework for (1.1).
Let S be the set of all two-sided sequences, that is,

S = {u = {un}|un ∈ R, n ∈ Z}.

Then S is a vector space with au+ bv = {aun + bvn} for u, v ∈ S , a, b ∈ R. For any fixed positive integer
k, we define the subspace Ek of S as

Ek = {u = {un} ∈ S |un+2kT = un, n ∈ Z}.

Obviously, Ek is isomorphic to R2kT and we identify u = (u1, u2, · · · , u2kT )∗ ∈ Ek, where * denotes
the transpose of a vector. Ek can be equipped with the inner product (·, ·)k and norm ∥ · ∥k defined
respectively by

(u, v)k =

kT−1∑
n=−kT

unvn, u, v ∈ Ek

and

∥u∥k =

 kT−1∑
n=−kT

u2
n


1
2

, u ∈ Ek.

In Ek, we also define the equivalent norms ∥ · ∥k∞ by

∥u∥k∞ = max {|un| : −kT ≤ n ≤ kT − 1} , u ∈ Ek

and ∥ · ∥kp by

∥u∥kp =

 kT−1∑
n=−kT

up
n


1
p

, u ∈ Ek.

By Hölder inequality and Jensen inequality, we have

∥u∥kp ≤ ck(p)∥u∥k, u ∈ Ek, (2.1)

where

ck(p) =

(2kT )
2−p
2p , 1 < p < 2,

1, 2 ≤ p.

For p ≥ 1, let

lp =

 u = {un} ∈ S
∣∣∣∣∣ ∥u∥lp =

∑
n∈Z

|un|
p


1
p

< ∞

 .
For simplicity, the inner product and norm in l2 are denoted by (·, ·) and ∥ · ∥, respectively.

Consider the functional Jk in Ek defined by

Jk(u) =
kT−1∑

n=−kT

[
1
p

rn|∆
mun|

p +
1
2
ωnu2

n − F(n, un+1, un)
]
, (2.2)
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whose Fréchet derivative is given by

⟨J′k(u), v⟩ =
kT−1∑

n=−kT

[
rnϕp(∆mun)∆mvn + ωnunvn − f (n, un+1, un, un−1)vn

]
=

kT−1∑
n=−kT

[
−∆

(
rn−1ϕp(∆mun−1)

)
∆m−1vn + ωnunvn − f (n, un+1, un, un−1)vn

]
· · ·

=

kT−1∑
n=−kT

[
(−1)m∆m

(
rn−mϕp(∆mun−m)

)
vn + ωnunvn − f (n, un+1, un, un−1)vn

]
,

(2.3)

for u, v ∈ Ek.
Equation (2.3) implies that (1.1) is the corresponding Euler-Lagrange equation for Jk. It is easy to

see that the critical points of Jk in Ek are exactly 2kT -periodic solutions of the difference equation (1.1).
Let P be the 2kT × 2kT matrix corresponding to the quadratic form

∑2kT
k=1(∆uk)2 with u2kT+1 = u1 for

k ∈ Z, that is,

P =



2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 2 −1
−1 0 0 · · · −1 2


.

By matrix theory, the eigenvalues of P are

λ j = 4 sin2 jπ
2kT

, j = 0, 1, 2, · · · , 2kT − 1.

It follows that λ0 = 0, λ1 > 0, λ2 > 0, · · · , λ2kT−1 > 0. Moreover, λmax = max{λ1, λ2, · · · , λ2kT−1} = 4.
For the readers’ convenience, we now cite the Mountain Pass Lemma. Let H be a Hilbert space and

C1(H,R) denote the set of functionals that are Fréchet differentiable and their Fréchet derivatives are
continuous on H, Br be the open ball in H with radius r and center 0, and ∂Br denote its boundary.

Definition 2.1 Let J ∈ C1(H,R). A sequence {x j} ⊂ H is called a Cerami sequence ((C) sequence for
short) for J if J(x j)→ c for some c ∈ R and (1 + ∥x j∥)J′(x j)→ 0 as j→ ∞. We say J satisfies the Ce-
rami condition ((C) condition for short) if any (C) sequence for J possesses a convergent subsequence.

Lemma 2.1 (Mountain Pass Lemma [19]) If J ∈ C1(H,R) and satisfies the following conditions: there
exist e ∈ H\{0} and r ∈ (0, ∥e∥) such that max{J(0), J(e)} < infu∈∂Br J(u). Then there exists a (C)
sequence {un} for the mountain pass level c which is defined by

c = inf
h∈Γ

max
s∈[0,1]

J(h(s)),

where
Γ = {h ∈ C([0, 1],H)

∣∣∣ h(0) = 0, h(1) = e}.

Electronic Research Archive Volume 30, Issue 6, 2205–2219.
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Finally, by similar arguments as those in [18], we can obtain the following result.

Lemma 2.2 For u ∈ Ek, we have

( kT−1∑
n=−kT

(∆mun)2
) p

2
≤ λ

mp
2

max∥u∥
p
k = 2mp∥u∥pk , n ∈ Z.

By Lemma 2.2 and (2.1), for u ∈ Ek,

1
p

kT−1∑
n=−kT

rn |∆
mun|

p
≤

r̄
p

( kT−1∑
n=−kT

|∆mun|
p
) 1

p

p

≤
r̄
p

ck(p)
( kT−1∑

n=−kT

(∆mun)2
) 1

2

p

≤
r̄
p

cp
k (p)2mp∥u∥pk .

3. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need some preparation. Denote ω∗ = minn∈Z{ωn}.

Lemma 3.1 Under the assumptions of Theorem 1.1, the functional Jk satisfies the (C) condition.

Proof. Let {u( j)} ⊂ Ek be a (C) sequence for Jk. We need to show that {u( j)} has a convergent
subsequence. Since Ek is finite dimensional, it suffices to show that ∥u( j)∥k is bounded. By as-
sumption, Jk(u( j)) → c for some c ∈ R and (1 + ∥u( j)∥k)J′k(u

( j)) → 0 as j → ∞. Then there
exists M > 0 such that |Jk(u( j))| ≤ M and ∥(1 + ∥u( j)∥k)J′k(u

( j))∥ ≤ M for j ∈ N. So we have
∥u( j)∥k∥J′k(u

( j))∥ ≤ ∥(1 + ∥u( j)∥k)J′k(u
( j))∥ ≤ M for j ∈ N. Then by (2.2), (2.3) and (T5), we have

kT−1∑
n=−kT

(( p
2
− 1

)
ω∗|u( j)

n |
2
)
≤

kT−1∑
n=−kT

(( p
2
− 1

)
ωn|u( j)

n |
2
)

≤ pJk(u( j)) − ⟨J′(u( j)), u( j)⟩

≤ p|Jk(u( j))| + ∥u( j)∥k∥J′k(u
( j))∥

≤ (p + 1)M.

(3.1)

Choose δ > 0 such that ( p
2
− 1

)
ω∗u2 > (p + 1)M for |u| > δ.

This and (3.1) imply that |u( j)
n | ≤ δ for n ∈ Z, that is,

∥u( j)∥k∞ ≤ δ. (3.2)

Since Ek is finite dimensional, ∥ · ∥k and ∥ · ∥k∞ are equivalent. Then (3.2) implies that {∥u( j)∥k} is
bounded. The proof is completed.

Lemma 3.2 Under the assumptions of Theorem 1.1, there exists n0 ∈ N such that Jk has at least a
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nonzero critical point u(k) in Ek for each k ≥ n0.

Proof. We first show that Jk satisfies conditions of Lemma 2.1. From (T2), there exists r > 0 such that

F(n, u1, u2) ≤
1
8
ω∗(u2

1 + u2
2) for |u1| + |u2| ≤ r.

Then, for u ∈ Ek with ∥u∥k ≤ r,

Jk(u) ≥
1
2

kT−1∑
n=−kT

ωnu2
n −

kT−1∑
n=−kT

F(n, un+1, un)

≥
1
2

kT−1∑
n=−kT

ωnu2
n −

kT−1∑
n=−kT

1
8
ω∗(u2

n+1 + u2
n)

≥
1
4
ω∗∥u∥2k .

Taking a = 1
4ω∗r

2 gives Jk|∂Br ≥ a > 0.
Since an >

r̄
p2mp for each n ∈ Z, there exists ε ∈ (0, 1) such that

2(an − ε)(1 − ε) >
r̄
p

2mp.

For a given e = {en} ∈ l2 with
∑∞

n=−∞ |en|
p = 1. Let n0 be large enough such that

n0T−1∑
n=−n0T

|en|
p ≥ 1 − ε.

For k ≥ n0, define e(k) ∈ Ek by

e(k)
n =

{
en, −n0T ≤ n ≤ n0T − 1;
0, −kT ≤ n ≤ −n0T − 1 or n0T ≤ n ≤ kT − 1.

By (T4), there exists µ0 > r, such that

F(n, µen+1, µen) ≥ (an − ε)µp(|en+1|
p + |en|

p) for − n0T ≤ n ≤ n0T − 1 and µ ≥ µ0.

Then, for µ ≥ µ0,

Jk(µe(k)) =
kT−1∑

n=−kT

(
1
p

rn|µ∆
me(k)

n |
p +

ωn

2
|µe(k)

n |
2 − F(n, µe(k)

n+1, µe(k)
n )

)

≤
r̄
p

2mpµp +

kT−1∑
n=−kT

(
ωn

2
|µe(k)

n |
2 + (ε − an)µp(|e(k)

n+1|
p + |e(k)

n |
p)
)

≤
r̄
p

2mpµp +

n0T−1∑
n=−n0T

ωn

2
µ2e2

n + 2(ε − an)(1 − ε)µp

≤

(
r̄
p

2mp + 2(ε − an)(1 − ε)
)
µp +

n0T−1∑
n=−n0T

ωn

2
µ2e2

n.
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Noticing that p > 2 and r̄
p2mp + 2(ε − an)(1 − ε) < 0, there exists µ′ > µ0 such that

Jk(µ′e(k)) < 0.

It can easily be seen that Jk(0) = 0. Then we have r ∈ (0, ∥µ′e(k)∥k) and

max{Jk(0), Jk(µ′e(k))} = 0 < a ≤ inf
u∈∂Br

Jk(u).

Now that we have verified all assumptions of Lemma 2.1, we know Jk possesses a (C) sequence
{u(k)

j } for the mountain pass level ck ≥ a with

ck = inf
h∈Γk

max
s∈[0,1]

Jk(h(s)),

where
Γk =

{
h ∈ C([0, 1], Ek)

∣∣∣ h(0) = 0, h(1) = µ′e(k)
}
.

According to Lemma 3.1, {u(k)
j } has a convergent subsequence {u(k)

jm
} such that u(k)

jm
→ u(k) as jm → ∞

for some u(k) ∈ Ek. Since Jk ∈ C1(Ek,R), we have

Jk(u
(k)
jm

)→ Jk(u(k)) and (1 + ∥u(k)
jm
∥k)J′(u(k)

jm
)→ (1 + ∥u(k)∥k)J′(u(k))

as jm → ∞. By the uniqueness of the limit, we obtain that u(k) is a critical point of Jk corresponding to
ck. Moreover, u(k) is nonzero as ck ≥ a > 0.

Lemma 3.3 There exist constants α, β,N > 0 such that

α ≤ ∥u(k)∥k∞ ≤ β and ∥u(k)∥k ≤ N

hold for every critical point u(k) of Jk in Ek with k ≥ n0 obtained in Lemma 3.2.

Proof. For k ≥ n0, we define hk ∈ Γk as hk(s) = sµ0e(k) for s ∈ [0, 1]. Similarly to the derivation of [18],
we can find

Jk(u(k)) ≤ max
s∈[0,1]

{
Jk(sµ0e(k))

}
≤ max

s∈[0,1]

 n0T−1∑
n=−n0T

(
r̄
p
|∆m(sµ0en)|p +

ωn

2
(sµ0en)2 − F(n, sµ0en+1, sµ0en)

)
≤ max

s∈[0,1]

{
r̄
p

2mp

 n0T−1∑
n=−n0T

(sµ0en)2


p
2

+

n0T−1∑
n=−n0T

(
ωn

2
(sµ0en)2 − F(n, sµ0en+1, sµ0en)

)}
≜M0.

(3.3)

Obviously, M0 > 0 is independent of k.
Since u(k) is a critical point of Jk, by (2.2), (2.3) and (3.3), we have
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pJk(u(k)) = pJk(u(k)) − ⟨J′(u(k)), u(k)⟩

=

kT−1∑
n=−kT

(
f (n, u(k)

n+1, u
(k)
n , u

(k)
n−1)u(k)

n − pF(n, u(k)
n+1, u

(k)
n )

)
+

kT−1∑
n=−kT

(( p
2
− 1

)
ωn|u(k)

n |
2
)

≤ pM0.

(3.4)

Choose β > 0 such that ( p
2
− 1

)
ωnu2 > pM0 for n ∈ Z and |u| > β.

This combined with (3.4) implies that |u(k)
n | ≤ β for each n ∈ Z, that is,

∥u(k)∥k∞ ≤ β.

From (2.3), we have

kT−1∑
n=−kT

ωn(u(k)
n )2 ≤

kT−1∑
n=−kT

f (n, u(k)
n+1, u

(k)
n , u

(k)
n−1)u(k)

n . (3.5)

By (T3), there exists α > 0 such that

∂iF(n, v1, v2) ≤
1
8
ω∗

√
v2

1 + v2
2 for |v1| + |v2| < 2α, i = 2, 3,

which together with (3.5) produces

kT−1∑
n=−kT

ωn(u(k)
n )2 ≤

kT−1∑
n=−kT

(
∂2F(n, u(k)

n+1, u
(k)
n )u(k)

n+1 + ∂3F(n, u(k)
n+1, u

(k)
n )u(k)

n

)
≤

1
4
ω∗

kT−1∑
n=−kT

(
(u(k)

n+1)2 + (u(k)
n )2

)
=

1
2
ω∗∥u(k)∥2k .

(3.6)

Arguing by a contradiction, we have
∥u(k)∥k∞ ≥ α.

In view of (T5) and (3.4), we have

ω∗

( p
2
− 1

)
∥u(k)∥2k ≤

kT−1∑
n=−kT

(( p
2
− 1

)
ωn|u(k)

n |
2
)
≤ pM0.

Let N =
√

pM0

ω∗( p
2−1) . Then we have

∥u(k)∥k ≤ N.
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The proof is complete.
Now, we are ready to prove Theorem 1.1.
According to Lemma 3.2, there exists n0 ∈ N such that for every k > n0, Jk has a critical point

u(k) = {u(k)
n } ∈ Ek. Moreover, there exists nk ∈ Z such that

α ≤
∣∣∣u(k)

nk

∣∣∣ ≤ β. (3.7)

Note that

(−1)m∆m(rn−mϕp(∆mu(k)
n−m)) + ωnu(k)

n = f (n, u(k)
n+1, u

(k)
n , u

(k)
n−1), n ∈ Z. (3.8)

By the periodicity of {ωn} and f (n, un+1, un, un−1), we see that {u(k)
n+T } is also a solution of (3.8). Without

loss of generality, we may assume that 0 ≤ nk ≤ T − 1 in (3.7). Moreover, passing to a subsequence of
{u(k)} if necessary, we can also assume that nk = n∗ for k ≥ n0 and some integer n∗ between 0 and T −1.
It follows from (3.7) that we can choose a subsequence, still denoted by {u(k)}, such that

u(k)
n → un as k → ∞, n ∈ Z.

Then u = {un} is a nonzero sequence as (3.7) implies |un∗ | ≥ α. It remains to show that u = {un} ∈ l2

and it is a solution of (1.1).
Let

Ak = {n ∈ Z
∣∣∣ |u(k)

n+1| < α and |u(k)
n | < α,−kT ≤ n ≤ kT − 1},

Bk = {n ∈ Z
∣∣∣ |u(k)

n+1| ≥ α or |u(k)
n | ≥ α,−kT ≤ n ≤ kT − 1}.

Since F(n, u1, u2) is continuously differentiable in the second and third variables and T -periodic in n,
for n ∈ Z, α ≤ |u1| + |u2| ≤ 2β, let

d1 = max {∂2F(n, u1, u2)u1 + ∂3F(n, u1, u2)u2} ,

d2 = min
{

1
p

(∂2F(n, u1, u2)u1 + ∂3F(n, u1, u2)u2) − F(n, u1, u2)
}
.

It is clear that d1, d2 > 0. Thus, for n ∈ Bk,

∂2F(n, u(k)
n+1, u

(k)
n )u(k)

n+1 + ∂3F(n, u(k)
n+1, u

(k)
n )u(k)

n

≤
d1

d2

(
1
p

(
∂2F(n, u(k)

n+1, u
(k)
n )u(k)

n+1 + ∂3F(n, u(k)
n+1, u

(k)
n )u(k)

n

)
− F(n, u(k)

n+1, u
(k)
n )

)
.

This combined with (3.4), (3.5) and (3.6) gives us

kT−1∑
n=−kT

ωn(u(k)
n )2 ≤

kT−1∑
n=−kT

(
∂2F(n, u(k)

n+1, u
(k)
n )u(k)

n+1 + ∂3F(n, u(k)
n+1, u

(k)
n )u(k)

n

)
≤

1
2
ω∗∥u(k)∥2k +

∑
n∈Bk

(
∂2F(n, u(k)

n+1, u
(k)
n )u(k)

n+1 + ∂3F(n, u(k)
n+1, u

(k)
n )u(k)

n

)
≤

1
2
ω∗∥u(k)∥2k +

d1M0

d2
.
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It follows that

∥u(k)∥2k ≤
2d1M0

d2ω∗
. (3.9)

Given ϱ ∈ N, for k > max{ϱ, n0}, it follows from (3.9) that

ϱ∑
n=−ϱ

(u(k)
n )2 ≤ ∥u(k)∥2k ≤

2d1M0

d2ω∗
.

It is clear that
∑ϱ

n=−ϱ u2
n ≤

2d1 M0
d2ω∗

as k → ∞ and hence u = {un} ∈ l2 by the arbitrariness of ϱ.
Now, for each n ∈ Z, letting k → ∞ in (3.8) gives us

(−1)m∆m(rn−mϕp(∆mun−m)) + ωnun = f (n, un+1, un, un−1), n ∈ Z,

that is, u = {un} satisfies (1.1).
Consequently, we infer that u = {un} is a nontrivial solution of (1.1). This completes the proof of

Theorem 1.1.

4. Proof of Theorem 1.2

The proof of Theorem 1.2 is quite similar to that of Theorem 1.1. But some of the arguments are
different. As a result, we provide some details below.

Lemma 4.1 Under the assumptions of Theorem 1.2, the functional Jk satisfies the (C) condition.

Proof. Let {u( j)} ⊂ Ek be a (C) sequence for Jk. As in the proof of Lemma 3.1, there exists M > 0 such
that |Jk(u( j))| ≤ M and ∥u( j)∥k∥J′k(u

( j))∥ ≤ M for j ∈ N. Then by (2.2), (2.3) and 1 < p ≤ 2, we have

kT−1∑
n=−kT

(
∂2F(n, u( j)

n+1, u
( j)
n )u( j)

n+1 + ∂3F(n, u( j)
n+1, u

( j)
n )u( j)

n − 2F(n, u( j)
n+1, u

( j)
n )

)
≤2Jk(u( j)) − ⟨J′k(u

( j)), u( j)⟩

≤2|Jk(u( j))| + ∥u( j)∥k∥J′k(u
( j))∥

≤3M.

(4.1)

From (T8), there exists δ > 0 such that

∂2F(n, u1, u2)u1 + ∂3F(n, u1, u2)u2 − 2F(n, u1, u2) > 3M for n ∈ Z, |u1| + |u2| > δ.

Then (4.1) and (T7) imply that |u( j)
n | ≤ δ for n ∈ Z, that is,

∥u( j)∥k∞ ≤ δ. (4.2)

Since Ek is finite dimensional, ∥·∥k and ∥·∥k∞ are equivalent. Then (4.2) tells us that {∥u( j)∥k} is bounded
and hence {u( j)} has a convergent subsequence. This completes the proof.

Lemma 4.2 Under the assumptions of Theorem 1.2, there exists n0 ∈ N such that Jk has at least a
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nonzero critical point u(k) in Ek for each k ≥ n0.

Proof. Proceeding as in the proof of Lemma 3.2, there exist r > 0 and a > 0 such that Jk|∂Br ≥ a > 0.
Since 2bn > ωn, there exists d > 0 such that

bn −
ωn

2
> d for n ∈ Z.

Let ε ∈ (0, 1) satisfy (
r̄
p

2mpcp
k (p) + 1

)
ε < d.

There exists e = {en} ∈ l2 with
∑∞

n=−∞ |en|
2 = 1 such that

∑∞
n=−∞ |∆

men|
2 < ε. Let n0 be large enough

such that

n0T−1∑
n=−n0T

|∆men|
2 < ε and

1
2
≤

n0T−1∑
n=−n0T

e2
n ≤ 1.

For k ≥ n0, define e(k) ∈ Ek by

e(k)
n =

{
en, −n0T ≤ n ≤ n0T − 1;
0, −kT ≤ n ≤ −n0T − 1 or n0T ≤ n ≤ kT − 1.

By (T6), there exists µ0 > max{r, 1} such that

F(n, µen+1, µen) ≥ (bn − ε)µ2(e2
n+1 + e2

n) for − n0T ≤ n ≤ n0T − 1 and µ ≥ µ0.

Then, for µ ≥ µ0,

Jk(µe(k)) =
kT−1∑

n=−kT

(
1
p

rn|µ∆
me(k)

n |
p +

ωn

2
|µe(k)

n |
2 − F(n, µe(k)

n+1, µe(k)
n )

)

≤
r̄
p

2mpcp
k (p)εµp +

kT−1∑
n=−kT

(
ωn

2
|µe(k)

n |
2 + (ε − bn)µ2(|e(k)

n+1|
2 + |e(k)

n |
2)
)

≤
r̄
p

2mpcp
k (p)εµ2 +

ωn

2
µ2 + (ε − bn)µ2

≤

[(
r̄
p

2mpcp
k (p) + 1

)
ε − d

]
µ2.

Thus

Jk(µ0e(k)) ≤
[(

r̄
p

2mpcp
k (p) + 1

)
ε − d

]
µ2

0 < 0.

The remaining arguments are the same as those in the proof of Lemma 3.2.

Lemma 4.3 There exist α′, β′ > 0 such that

α′ ≤ ∥u(k)∥k∞ ≤ β
′
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holds for every critical point u(k) of Jk in Ek with k ≥ n0 obtained in Lemma 4.2.

Proof. we can find M1 > 0 (independent of k) such that Jk(u(k)) ≤ M1 for k ≥ n0. Since u(k) is a critical
point of Jk, by (2.2) and (2.3), we have

kT−1∑
n=−kT

(
∂2F(n, u(k)

n+1, u
(k)
n )u(k)

n+1 + ∂3F(n, u(k)
n+1, u

(k)
n )u(k)

n − 2F(n, u(k)
n+1, u

(k)
n )

)
≤ 2M1. (4.3)

From (T8), there exists β′ > 0 such that

∂2F(n, u1, u2)u1 + ∂3F(n, u1, u2)u2 − 2F(n, u1, u2) > 2M1 for n ∈ Z, |u1| + |u2| > β
′.

This and (4.3) together imply that |u(k)
n | ≤ β

′ for each n ∈ Z, that is,

∥u(k)∥k∞ ≤ β
′.

Then similar argumengts as those in the proof of Lemma 3.3 yield

∥u(k)∥k∞ ≥ α
′.

Then Theorem 1.2 can be proved in the same manner as that for Theorem 1.1 and hence we omit
the details.

5. Example

In this section, we give an example to illustrate Theorem 1.1.

Example 5.1. Consider the difference equation (1.1), where

f (n, v1, v2, v3)

=θv2

[(
2 + cos

(nπ
T

)) (
v2

1 + v2
2

) θ
2−1
+

(
2 + cos

(
(n − 1)π

T

)) (
v2

2 + v2
3

) θ
2−1

]
,

where θ > p > 2, T is a given positive integer. Take

F(n, v1, v2) =
[
2 + cos

(nπ
T

)] (
v2

1 + v2
2

) θ
2
.

Then

∂2F(n − 1, v2, v3) + ∂3F(n, v1, v2)

=θv2

[(
2 + cos

(nπ
T

)) (
v2

1 + v2
2

) θ
2−1
+

(
2 + cos

(
(n − 1)π

T

)) (
v2

2 + v2
3

) θ
2−1

]
.

It is easy to see that all the assumptions of Theorem 1.1 are satisfied. Consequently, equation (1.1) has
at least a nontrivial solution u in l2.
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