This paper discusses new error bounds for the tensor complementarity problem using a $ P $-tensor. A new lower error bound and a global error bound are presented for such a problem. It is proved that the norm of the exact solution of the tensor complementarity problem with a $ P $-tensor has a lower bound and an upper bound. When the order of a tensor is $ 2 $, all the results for the tensor complementarity problem obtained reduce to those for the linear complementarity problem.
Citation: Xin Liu, Guang-Xin Huang. New error bounds for the tensor complementarity problem[J]. Electronic Research Archive, 2022, 30(6): 2196-2204. doi: 10.3934/era.2022111
This paper discusses new error bounds for the tensor complementarity problem using a $ P $-tensor. A new lower error bound and a global error bound are presented for such a problem. It is proved that the norm of the exact solution of the tensor complementarity problem with a $ P $-tensor has a lower bound and an upper bound. When the order of a tensor is $ 2 $, all the results for the tensor complementarity problem obtained reduce to those for the linear complementarity problem.
[1] | Y. S. Song, L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854–873. https://doi.org/10.1007/s10957-014-0616-5 doi: 10.1007/s10957-014-0616-5 |
[2] | R. W. Cottle, J. S. Pang, R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, MA, 1992. |
[3] | R. Mathias, J. S. Pang, Error bounds for the linear complementarity problem with a $P$-matrix, Linear Algebra Appl., 132 (1990), 123–136. https://doi.org/10.1016/0024-3795(90)90058-K doi: 10.1016/0024-3795(90)90058-K |
[4] | X. Chen, S. Xiang, Perturbation bounds of $P$-matrix linear complementarity problems, SIAM J. Optim., 18 (2008), 1250–1265. https://doi.org/10.1137/060653019 doi: 10.1137/060653019 |
[5] | X. Chen, S. Xiang, Computation of error bounds for $P$-matrix linear complementarity problems, Math. Program., 106 (2006), 513–525. https://doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9 |
[6] | Z. Q. Luo, O. L. Mangasarian, J. Ren, M. V. Solodov, New error bounds for the linear complementarity problem, Math. Oper. Res., 19 (1994), 880–892. https://doi.org/10.1287/moor.19.4.880 doi: 10.1287/moor.19.4.880 |
[7] | X. M. Fang, Z. J. Qiao, Improved error bounds based on $\alpha{(M)}$ for the linear complementarity problem, Linear Algebra Appl., 589 (2020), 186–200. https://doi.org/10.1016/j.laa.2019.12.009 doi: 10.1016/j.laa.2019.12.009 |
[8] | S. Q. Du, L. Y. Cui, Y. Y. Chen, Y. M. Wei, Stochastic tensor complementarity problem with discrete distribution, J. Optim. Theory Appl., 192 (2022), 912–929. https://doi.org/10.1007/s10957-021-01997-7 doi: 10.1007/s10957-021-01997-7 |
[9] | L. Qi, Z. Y. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, PA, 2017. Available from: https://epubs.siam.org/doi/pdf/10.1137/1.9781611974751.bm. |
[10] | M. L. Che, L. Q. Qi, Y. M. Wei, Positive definite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 168 (2016), 475–487. https://doi.org/10.1007/s10957-015-0773-1 doi: 10.1007/s10957-015-0773-1 |
[11] | Z. H. Huang, L. Q. Qi, Tensor complementarity problems–part Ⅰ: Basic theory, J. Optim. Theory Appl., 183 (2019), 1–23. https://doi.org/10.1007/s10957-019-01566-z doi: 10.1007/s10957-019-01566-z |
[12] | L. B. Cui, Y. D. Fan, Y. S. Song, S. L. Wu, The existence and uniqueness of solution for tensor complementarity problem and related systems, J. Optim. Theory Appl., 192 (2022), 312–334. https://doi.org/10.1007/s10957-021-01972-2 doi: 10.1007/s10957-021-01972-2 |
[13] | Z. H. Huang, Y. Y. Suo, J. Wang, On $Q$-tensors, preprint, arXiv: 1509.03088. |
[14] | W. Yu, C. Ling, H. He, On the properties of tensor complementarity problems, preprient, arXiv: 1608.01735. |
[15] | M. M. Zheng, Y. Zhang, Z. H. Huang, Global error bounds for the tensor complementarity problem with a $P$-tensor, J. Ind. Manage. Optim., 15 (2019), 933–946. https://doi.org/10.3934/jimo.2018078 doi: 10.3934/jimo.2018078 |
[16] | Z. H. Huang, L. Q. Qi, Tensor complementarity problems–part Ⅲ: Applications, J. Optim. Theory Appl., 183 (2019), 771–791. https://doi.org/10.1007/s10957-019-01573-0 doi: 10.1007/s10957-019-01573-0 |
[17] | X. L. Bai, Z. H. Huang, Y. Wang, Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 170 (2016), 72–84. https://doi.org/10.1007/s10957-016-0903-4 doi: 10.1007/s10957-016-0903-4 |
[18] | P. Z. Yuan, L. H. You, Some remarks on $P$, $P_0$, $B$ and $B_0$ tensors, Linear Algebra Appl., 459 (2014), 511–521. https://doi.org/10.1016/j.laa.2014.07.043 doi: 10.1016/j.laa.2014.07.043 |
[19] | L. Q. Qi, Z. H. Huang, Tensor complementarity problems–part Ⅱ: Solution methods, J. Optim. Theory Appl., 183 (2019), 365–385. https://doi.org/10.1007/s10957-019-01568-x doi: 10.1007/s10957-019-01568-x |