Research article Special Issues

New error bounds for the tensor complementarity problem


  • Received: 31 December 2021 Revised: 02 April 2022 Accepted: 04 April 2022 Published: 20 April 2022
  • This paper discusses new error bounds for the tensor complementarity problem using a $ P $-tensor. A new lower error bound and a global error bound are presented for such a problem. It is proved that the norm of the exact solution of the tensor complementarity problem with a $ P $-tensor has a lower bound and an upper bound. When the order of a tensor is $ 2 $, all the results for the tensor complementarity problem obtained reduce to those for the linear complementarity problem.

    Citation: Xin Liu, Guang-Xin Huang. New error bounds for the tensor complementarity problem[J]. Electronic Research Archive, 2022, 30(6): 2196-2204. doi: 10.3934/era.2022111

    Related Papers:

  • This paper discusses new error bounds for the tensor complementarity problem using a $ P $-tensor. A new lower error bound and a global error bound are presented for such a problem. It is proved that the norm of the exact solution of the tensor complementarity problem with a $ P $-tensor has a lower bound and an upper bound. When the order of a tensor is $ 2 $, all the results for the tensor complementarity problem obtained reduce to those for the linear complementarity problem.



    加载中


    [1] Y. S. Song, L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854–873. https://doi.org/10.1007/s10957-014-0616-5 doi: 10.1007/s10957-014-0616-5
    [2] R. W. Cottle, J. S. Pang, R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, MA, 1992.
    [3] R. Mathias, J. S. Pang, Error bounds for the linear complementarity problem with a $P$-matrix, Linear Algebra Appl., 132 (1990), 123–136. https://doi.org/10.1016/0024-3795(90)90058-K doi: 10.1016/0024-3795(90)90058-K
    [4] X. Chen, S. Xiang, Perturbation bounds of $P$-matrix linear complementarity problems, SIAM J. Optim., 18 (2008), 1250–1265. https://doi.org/10.1137/060653019 doi: 10.1137/060653019
    [5] X. Chen, S. Xiang, Computation of error bounds for $P$-matrix linear complementarity problems, Math. Program., 106 (2006), 513–525. https://doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9
    [6] Z. Q. Luo, O. L. Mangasarian, J. Ren, M. V. Solodov, New error bounds for the linear complementarity problem, Math. Oper. Res., 19 (1994), 880–892. https://doi.org/10.1287/moor.19.4.880 doi: 10.1287/moor.19.4.880
    [7] X. M. Fang, Z. J. Qiao, Improved error bounds based on $\alpha{(M)}$ for the linear complementarity problem, Linear Algebra Appl., 589 (2020), 186–200. https://doi.org/10.1016/j.laa.2019.12.009 doi: 10.1016/j.laa.2019.12.009
    [8] S. Q. Du, L. Y. Cui, Y. Y. Chen, Y. M. Wei, Stochastic tensor complementarity problem with discrete distribution, J. Optim. Theory Appl., 192 (2022), 912–929. https://doi.org/10.1007/s10957-021-01997-7 doi: 10.1007/s10957-021-01997-7
    [9] L. Qi, Z. Y. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, PA, 2017. Available from: https://epubs.siam.org/doi/pdf/10.1137/1.9781611974751.bm.
    [10] M. L. Che, L. Q. Qi, Y. M. Wei, Positive definite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 168 (2016), 475–487. https://doi.org/10.1007/s10957-015-0773-1 doi: 10.1007/s10957-015-0773-1
    [11] Z. H. Huang, L. Q. Qi, Tensor complementarity problems–part Ⅰ: Basic theory, J. Optim. Theory Appl., 183 (2019), 1–23. https://doi.org/10.1007/s10957-019-01566-z doi: 10.1007/s10957-019-01566-z
    [12] L. B. Cui, Y. D. Fan, Y. S. Song, S. L. Wu, The existence and uniqueness of solution for tensor complementarity problem and related systems, J. Optim. Theory Appl., 192 (2022), 312–334. https://doi.org/10.1007/s10957-021-01972-2 doi: 10.1007/s10957-021-01972-2
    [13] Z. H. Huang, Y. Y. Suo, J. Wang, On $Q$-tensors, preprint, arXiv: 1509.03088.
    [14] W. Yu, C. Ling, H. He, On the properties of tensor complementarity problems, preprient, arXiv: 1608.01735.
    [15] M. M. Zheng, Y. Zhang, Z. H. Huang, Global error bounds for the tensor complementarity problem with a $P$-tensor, J. Ind. Manage. Optim., 15 (2019), 933–946. https://doi.org/10.3934/jimo.2018078 doi: 10.3934/jimo.2018078
    [16] Z. H. Huang, L. Q. Qi, Tensor complementarity problems–part Ⅲ: Applications, J. Optim. Theory Appl., 183 (2019), 771–791. https://doi.org/10.1007/s10957-019-01573-0 doi: 10.1007/s10957-019-01573-0
    [17] X. L. Bai, Z. H. Huang, Y. Wang, Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 170 (2016), 72–84. https://doi.org/10.1007/s10957-016-0903-4 doi: 10.1007/s10957-016-0903-4
    [18] P. Z. Yuan, L. H. You, Some remarks on $P$, $P_0$, $B$ and $B_0$ tensors, Linear Algebra Appl., 459 (2014), 511–521. https://doi.org/10.1016/j.laa.2014.07.043 doi: 10.1016/j.laa.2014.07.043
    [19] L. Q. Qi, Z. H. Huang, Tensor complementarity problems–part Ⅱ: Solution methods, J. Optim. Theory Appl., 183 (2019), 365–385. https://doi.org/10.1007/s10957-019-01568-x doi: 10.1007/s10957-019-01568-x
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1307) PDF downloads(58) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog