Citation: Gheorghe Craciun, Stefan Muller, Casian Pantea, Polly Y. Yu. A generalization of Birchs theorem and vertex-balanced steady states for generalized mass-action systems[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 8243-8267. doi: 10.3934/mbe.2019417
[1] | M. Feinberg, Complex balancing in general kinetic systems, Arch. Ration. Mech. Anal., 49 (1972), 187-194. |
[2] | F. Horn and R. Jackson, General mass action kinetics, Arch. Ration. Mech. Anal., 47 (1972), 81-116. |
[3] | F. Horn, Necessary and Sufficient Conditions for Complex Balancing in Chemical-Kinetics, Arch. Ration. Mech. Anal., 49 (1972), 172-186. |
[4] | M. A. Savageau, Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions, J. Theor. Biol., 25 (1969), 365-369. |
[5] | E. O. Voit, Biochemical systems theory: a review, ISRN Biomath., 2013 (2013), Article ID 897658. |
[6] | S. Müller and G. Regensburger, Generalized mass-action systems and positive solutions of polynomial equations with real and symbolic exponents, (2014), Lecture notes in computer science, 8660 LNCS, Springer, 302-323. |
[7] | S. Müller and G. Regensburger, Generalized mass action systems: Complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces, SIAM J. Appl. Math., 72 (2012), 1-23. |
[8] | M. D. Johnston, Translated Chemical Reaction Networks, Bull. Math. Biol., 76 (2014), 1081-1116. |
[9] | L. Brenig, Complete factorization and analytic solutions of generalized Lotka-Volterra equations, Physics Letters, 133 (1989), 378-382. |
[10] | L. Brenig and A. Goriely, Universal canonical forms for time-continuous dynamical systems, Phys. Rev. A, 40 (1989), 4119-4122. |
[11] | M. Feinberg, Lectures on chemical reaction networks, 1979. Available from: https://crnt.osu.edu/LecturesOnReactionNetworks. |
[12] | J. Gunawardena, Chemical reaction network theory for in-silico biologists, 2003. Available from: http://vcp.med.harvard.edu/papers/crnt.pdf. |
[13] | G. Craciun, A. Dickenstein, A. Shiu, et al., Toric dynamical systems, J. Symbolic Comput., 44 (2009), 1551-1565. |
[14] | B. Boros, S. Müller and G. Regensburger, Complex-balanced equilibria of generalized mass-action systems: Necessary conditions for linear stability, ArXiv e-prints, arXiv:1906.12214 [math.DS]. |
[15] | L. Pachter and B. Sturmfels, Algebraic Statistics for Computational Biology, Cambridge University Press, 8 (2005). |
[16] | G. Craciun, L. D. Gracía-Puente and F. Sottile, Some geometrical aspects of control points for toric patches, Mathematical methods for curves and surfaces, Springer, 111-135. |
[17] | J. D. Brunner and G. Craciun, Robust persistence and permanence of polynomial and power law dynamical systems, SIAM J. Appl. Math., 78 (2018), 801-825. |
[18] | G. Craciun, Polynomial dynamical systems as reaction networks and toric differential inclusions, SIAM J. Appl. Algebra Geom., 3 (2019), 87-106. |
[19] | P. Y. Yu and G. Craciun, Mathematical analysis of chemical reaction systems, Isr. J. Chem, 58 (2018), 733-741. |
[20] | M. D. Johnston, A computational approach to steady state correspondence of regular and generalized mass action systems, Bull. Math. Biol., 77 (2015), 1065-1100. |
[21] | C. Conradi, J. Saez-Rodriguez, E. D. Gilles, et al., Using chemical reaction network theory to discard a kinetic mechanism hypothesis, IEE Proc.-Syst. Biol., 152 (2005), 243-248. |
[22] | N. I. Markevich, J. B. Hoek and B. N. Kholodenko, Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades, J. Cell. Biol., 164 (2004), 353-359. |
[23] | D. F. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71 (2011), 1487-1508. |
[24] | M. Gopalkrshnan, E. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2013), 758-797. |
[25] | G. Craciun, F. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305-329. |
[26] | C. Pantea, On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44 (2012), 1636-1673. |
[27] | G. Craciun, Toric Differential Inclusions and a Proof of the Global Attractor Conjecture, ArXiv e-prints, 1-41. arXiv:1501.02860. Available from: http://arxiv.org/abs/1501.02860. |
[28] | S. Müller, J. Hofbauer and G. Regensburger, On the bijectivity of families of exponential/generalized polynomial maps, SIAM J. Appl. Algebra Geom., 3 (2019), 412-438. |
[29] | V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, 1974. |
[30] | A. R. Shastri, Elements of Differential Topology, CRC Press, 2011. |
[31] | B. Boros, J. Hofbauer and S. Müller, On global stability of the Lotka reactions with generalized mass-action kinetics, Acta Appl. Math., 151 (2017), 53-80. |
[32] | B. Boros, J. Hofbauer, S. Müller, et al., The center problem for the Lotka reactions with generalized mass-action kinetics, Qual. Theo. Dyn. Syst., 17 (2018), 403-410. |
[33] | B. Boros, J. Hofbauer, S. Müller, et al., Planar S-systems: Global stability and the center problem, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 707-727. doi: 10.3934/dcds.2019029 |