Citation: Elisenda Feliu. Sign-sensitivities for reaction networks: an algebraic approach[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 8195-8213. doi: 10.3934/mbe.2019414
[1] | T. S. Gardner, D. di Bernardo, D. Lorenz, et al., Inferring genetic networks and identifying compound mode of action via expression profiling, Science, 301 (2003), 102–105. |
[2] | A. F. Villaverde and J. R. Banga, Reverse engineering and identification in systems biology: strategies, perspectives and challenges, J. R. Soc. Interface, 11 (2014), 20130505. |
[3] | S. Prabakaran, J. Gunawardena and E. Sontag, Paradoxical results in perturbation-based signaling network reconstruction, Biophys. J., 106 (2014), 2720–2728. |
[4] | B. N. Kholodenko, A. Kiyatkin, F. J. Bruggeman, et al., Untangling the wires: a strategy to trace functional interactions in signaling and gene networks, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 12841–12846. |
[5] | E. D. Sontag, A technique for determining the signs of sensitivities of steady states in chemical reaction networks, IET Syst. Biol., 8 (2014), 251–267. |
[6] | A. Gupta and M. Khammash, An efficient and unbiased method for sensitivity analysis of stochastic reaction networks, J. R. S. Interface, 11 (2014), 20140979. |
[7] | P. Vera-Licona, A. Jarrah, L. D. Garcia-Puente, et al., An algebra-based method for inferring gene regulatory networks, BMC Syst. Biol., 8 (2014), 37. |
[8] | E. Feliu, M. Knudsen, L. N. Andersen, et al., An algebraic approach to signaling cascades with N layers, Bull. Math. Biol., 74 (2012), 45–72. |
[9] | R. Fritsche-Guenther, F. Witzel, A. Sieber, et al., Strong negative feedback from Erk to Raf confers robustness to MAPK signalling, Mol. Syst. Biol., 7 (2011), 489. |
[10] | T. Okada and A. Mochizuki, Sensitivity and network topology in chemical reaction systems, Phys. Rev. E., 96 (2017), 022322. |
[11] | T. Okada and A. Mochizuki, Law of Localization in Chemical Reaction Networks, Phys. Rev. Lett., 117 (2016), 048101. |
[12] | B. Brehm and B. Fiedler, Sensitivity of chemical reaction networks: A structural approach. 3. Regular multimolecular systems, Math. Methods Appl. Sciences, 41 (2018), 1344–1376. |
[13] | G. Shinar, U. Alon and M. Feinberg, Sensitivity and robustness in chemical reaction networks, SIAM J. Appl. Math., 69 (2009), 977–998. |
[14] | G. Shinar, A. Mayo, H. Ji, et al., Constraints on reciprocal flux sensitivities in biochemical reaction networks, Biophys. J., 100 (2011), 1383–1391. |
[15] | C. Conradi, E. Feliu, M. Mincheva, et al., Identifying parameter regions for multistationarity, PLoS Comput. Biol., 13 (2017), e1005751. |
[16] | S. Müller, E. Feliu, G. Regensburger, et al., Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry, Found. Comput. Math., 16 (2016), 69–97. |
[17] | J. Gunawardena, Chemical reaction network theory for in-silico biologists, 2003. Available from: http://vcp.med.harvard.edu/papers/crnt.pdf. |
[18] | M. Feinberg, Lectures on chemical reaction networks, 1980. Available from: http://www.crnt.osu.edu/LecturesOnReactionNetworks. |
[19] | E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, Institute of Electrical and Electronics Engineers. Transactions on Automatic Control, 46 (2001), 1028–1047. |
[20] | C. Wiuf and E. Feliu, Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12 (2013), 1685–1721. |
[21] | A. Dickenstein, M. P. Millán, A. Shiu, et al., Multistationarity in Structured Reaction Networks, Bull. Math. Biol., 81 (2019), 1527–1581. |
[22] | N. Obatake, A. Shiu, X. Tang, et al., Oscillations and bistability in a model of ERK regulation, J. Math. Biol., (2019), 1–35. |
[23] | C. Conradi, M. Mincheva and A. Shiu, Emergence of oscillations in a mixed-mechanism phosphorylation system, Bull. Math. Biol., 81 (2019), 1829–1852. |
[24] | D. A. Fell, Metabolic control analysis: a survey of its theoretical and experimental development, Biochem. J., 286 (1992), 313–330. |
[25] | J. Gunawardena, Notes on Metabolic Control Analysis, 2002. Available from: vcp.med. harvard.edu/papers/mca.pdf. |
[26] | M. P. Millán and A. Dickenstein, The structure of MESSI biological systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 1650–1682. |
[27] | V. B. Kothamachu, E. Feliu, L. Cardelli, et al., Unlimited multistability and Boolean logic in microbial signalling, J. R. Soc. Interface, 12 (2015), 20150234. |
[28] | A. Torres and E. Feliu, Symbolic proof of bistability in reaction networks, Submitted. |
[29] | A. Baudier, F. Fages and S. Soliman, Graphical requirements for multistationarity in reaction networks and their verification in BioModels, J. Theor. Biol., 459 (2018), 79–89. |
[30] | E. Feliu and C. Wiuf, A computational method to preclude multistationarity in networks of interacting species, Bioinformatics, 29 (2013), 2327–2334. |
[31] | C. Conradi and M. Mincheva, Catalytic constants enable the emergence of bistability in dual phosphorylation, J. R. Soc. Interface, 11 (2014), 20140158. |
[32] | L. Wang and E. D. Sontag, On the number of steady states in a multiple futile cycle, J. Math. Biol., 57 (2008), 29–52. |