This paper deals with unsteady flow of fractional Casson fluid in the existence of bioconvection. The governing equations are modeled with fractional derivative which is transformed into dimensionless form by using dimensionless variables. The analytical solution is attained by applying Laplace transform technique. Some graphs are made for involved parameters. As a result, it is found that temperature, bioconvection are maximum away from the plate for large time and vice versa and showing dual behavior in their boundary layers respectively. Further recent literature is recovered from the present results and obtained good agreement.
Citation: Muhammad Imran Asjad, Muhammad Haris Butt, Muhammad Armaghan Sadiq, Muhammad Danish Ikram, Fahd Jarad. Unsteady Casson fluid flow over a vertical surface with fractional bioconvection[J]. AIMS Mathematics, 2022, 7(5): 8112-8126. doi: 10.3934/math.2022451
This paper deals with unsteady flow of fractional Casson fluid in the existence of bioconvection. The governing equations are modeled with fractional derivative which is transformed into dimensionless form by using dimensionless variables. The analytical solution is attained by applying Laplace transform technique. Some graphs are made for involved parameters. As a result, it is found that temperature, bioconvection are maximum away from the plate for large time and vice versa and showing dual behavior in their boundary layers respectively. Further recent literature is recovered from the present results and obtained good agreement.
[1] | D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics, 7 (2019), 830. https://doi.org/10.3390/math7090830 doi: 10.3390/math7090830 |
[2] | M. D. Ikram, M. I. Asjad, A. Akg$\ddot{u}$l, D. Baleanu, Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates, Alex. Eng. J., 60 (2021), 3593–3604, https://doi.org/10.1016/j.aej.2021.01.054 doi: 10.1016/j.aej.2021.01.054 |
[3] | J. J. Trujillo, E. Scalas, K. Diethelm, D. Baleanu, Fractional calculus: Models and numerical methods, World Scientific, 2016. |
[4] | Y. M. Chu, M. D. Ikram, M. I. Asjad, A. Ahmadian, F. Ghaemi, Influence of hybrid nanofluids and heat generation on coupled heat and mass transfer flow of a viscous fluid with novel fractional derivative, J. Therm. Anal. Calorim., 144 (2021), 2057–2077. https://doi.org/10.1007/s10973-021-10692-8 doi: 10.1007/s10973-021-10692-8 |
[5] | A. Atangana, J. F. Botha, A generalized groundwater flow equation using the concept of variable-order derivative, Bound. Value Probl., 2013 (2013), 53. https://doi.org/10.1186/1687-2770-2013-53 doi: 10.1186/1687-2770-2013-53 |
[6] | A. Atangana, A. Secer, A note on fractional order derivatives and table of fractional derivatives of some special functions, Abstr. Appl. Anal., 2013 (2013), 279681. https://doi.org/10.1155/2013/279681 doi: 10.1155/2013/279681 |
[7] | A. R. Butt, M. Abdullah, N. Raza, M. A. Imran, Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffery fluid over an oscillating vertical plate via Caputo-Fabrizio time fractional derivatives, Eur. Phys. J. Plus, 132 (2017), 414. https://doi.org/10.1140/epjp/i2017-11713-4 doi: 10.1140/epjp/i2017-11713-4 |
[8] | S. Aman, I. Khan, Z. Ismail, M. Z. Salleh, Applications of fractional derivatives to nanofluids: Exact and numerical solutions, Math. Model. Nat. Phenom., 13 (2018), 1–12. https://doi.org/10.1051/mmnp/2018013 doi: 10.1051/mmnp/2018013 |
[9] | F. Ali, S. Murtaza, I. Khan, N. A. Sheikh, K. S. Nisar, Atangana-Baleanu fractional model for the flow of Jeffrey nanofluid with diffusion-thermo effects: Applications in engine oil, Adv. Differ. Equ., 2019 (2019), 346. https://doi.org/10.1186/s13662-019-2222-1 doi: 10.1186/s13662-019-2222-1 |
[10] | Q. Al-Mdallal, K. A. Abro, I. Khan, Analytical solutions of fractional Walter's B fluid with applications, Complexity, 2018 (2018), 8131329. https://doi.org/10.1155/2018/8131329 doi: 10.1155/2018/8131329 |
[11] | M. A. Imran, I. Khan, M. Ahmad, N. A. Shah, M. Nazar, Heat and mass transport of differential type fluid with non-integer order time-fractional Caputo derivatives, J. Mol. Liq., 229 (2017), 67–75. https://doi.org/10.1016/j.molliq.2016.11.095 doi: 10.1016/j.molliq.2016.11.095 |
[12] | M. A. Imran, N. A. Shah, I. Khan, M. Aleem, Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating, Neural. Comput. Appl., 30 (2018), 1589–1599. https://doi.org/10.1007/s00521-016-2741-6 doi: 10.1007/s00521-016-2741-6 |
[13] | K. M. Saad, Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system, Eur. Phys. J. Plus, 133 (2018), 94. https://doi.org/10.1140/epjp/i2018-11947-6 doi: 10.1140/epjp/i2018-11947-6 |
[14] | N. A. Sheikh, F. Ali, M. Saqib, I. Khan, S. A. A. Jan, A. S. Alshomrani, et al., Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results Phys., 7 (2017), 789–800. https://doi.org/10.1016/j.rinp.2017.01.025 doi: 10.1016/j.rinp.2017.01.025 |
[15] | F. Ali, S. Murtaza, N. A. Sheikh, I. Khan, Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana-Baleanu and Caputo-Fabrizio fractional models, Chaos Solitons Fract., 129 (2019), 1–15. https://doi.org/10.1016/j.chaos.2019.08.013 doi: 10.1016/j.chaos.2019.08.013 |
[16] | M. Ahmad, M. A. Imran, M. Aleem, I. Khan, A comparative study and analysis of natural convection flow of MHD non-Newtonian fluid in the presence of heat source and first-order chemical reaction, J. Therm. Anal. Calorim., 137 (2019), 1783–1796. https://doi.org/10.1007/s10973-019-08065-3 doi: 10.1007/s10973-019-08065-3 |
[17] | N. Shahid, A study of heat and mass transfer in a fractional MHD flow over an infinite oscillating plate, SpringerPlus, 4 (2015), 640. https://doi.org/10.1186/s40064-015-1426-4 doi: 10.1186/s40064-015-1426-4 |
[18] | M. B. Riaz, N. Iftikhar, A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators, Chaos Solitons Fract., 132 (2020), 109556. https://doi.org/10.1016/j.chaos.2019.109556 doi: 10.1016/j.chaos.2019.109556 |
[19] | M. Tahir, M. A. Imran, N. Raza, M. Abdullah, M. Aleem, Wall slip and non-integer order derivative effects on the heat transfer flow of Maxwell fluid over an oscillating vertical plate with new definition of fractional Caputo-Fabrizio derivatives, Results Phys., 7 (2017), 1887–1898. https://doi.org/10.1016/j.rinp.2017.06.001 doi: 10.1016/j.rinp.2017.06.001 |
[20] | M. Saqib, F. Ali, I. Khan, N. A. Sheikh, S. A. A. Jan, Samiulhaq, Exact solutions for free convection flow of generalized Jeffrey fluid: A Caputo-Fabrizio fractional model, Alex. Eng. J., 57 (2018), 1849–1858. https://doi.org/10.1016/j.aej.2017.03.017 doi: 10.1016/j.aej.2017.03.017 |
[21] | M. A. Imran, F. Miraj, I. Khan, I. Tlili, MHD fractional Jeffrey's fluid flow in the presence of thermo diffusion, thermal radiation effects with first order chemical reaction and uniform heat flux, Results Phys., 10 (2018), 10–17. https://doi.org/10.1016/j.rinp.2018.04.008 doi: 10.1016/j.rinp.2018.04.008 |
[22] | F. Ali, F. Ali, N. A. Sheikh, I. Khan, K. S. Nisar, Caputo-Fabrizio fractional derivatives modeling of transient MHD Brinkman nanoliquid: Applications in food technology, Chaos Solitons Fract., 131 (2020), 109489. https://doi.org/10.1016/j.chaos.2019.109489 doi: 10.1016/j.chaos.2019.109489 |
[23] | A. Babakhani, D. Baleanu, Employing of some basic theory for class of fractional differential equations, Adv. Differ. Equ., 2011 (2011), 296353. https://doi.org/10.1155/2011/296353 doi: 10.1155/2011/296353 |
[24] | M. Herzallah, D. Baleanu, Fractional-order variational calculus with generalized boundary conditions, Adv Differ Equ., 2011 (2011), 357580. https://doi.org/10.1155/2011/357580 doi: 10.1155/2011/357580 |
[25] | A. Akg$\ddot{u}$l, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fract., 114 (2018), 478–482. https://doi.org/10.1016/j.chaos.2018.07.032 doi: 10.1016/j.chaos.2018.07.032 |
[26] | F. Jarad, T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., 1 (2018), 88-98, |
[27] | F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006 |
[28] | A. Akg$\ddot{u}$l, A. Cordero, J. R. Torregrosa, Solutions of fractional gas dynamics equation by a new technique, Math. Methods Appl. Sci., 43 (2020), 1349–1358. https://doi.org/10.1002/mma.5950 doi: 10.1002/mma.5950 |
[29] | M. D. Ikram, M. A. Imran, A. Ahmadian, M. Ferrara, A new fractional mathematical model of extraction nanofluids using clay nanoparticles for different based fluids, Math. Methods Appl. Sci., 2020. https://doi.org/10.1002/mma.6568 doi: 10.1002/mma.6568 |
[30] | D. Baleanu, A. Fernandez, A. Akg$\ddot{u}$l, On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 360. https://doi.org/10.3390/math8030360 doi: 10.3390/math8030360 |
[31] | A. V. Kuznetsov, The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms, Int. Commun. Heat Mass Tran., 37 (2010), 1421–1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015 doi: 10.1016/j.icheatmasstransfer.2010.08.015 |
[32] | A. V. Kuznetsov, Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: Oscillatory instability, Nanoscale Res. Lett., 6 (2011), 100. https://doi.org/10.1186/1556-276X-6-100 doi: 10.1186/1556-276X-6-100 |
[33] | B. Mallikarjuna, A. M. Rashad, A. Chamkha, M. M. M. Abdou, Mixed bioconvection flow of a nanofluid containing gyrotactic microorganisms past a vertical slender cylinder, Front. Heat Mass Tran., 2018. |
[34] | M. J. Uddin, Y. Alginahi, O. A. Bég, M. N. Kabir, Numerical solutions for gyrotactic bioconvection in nanofluid-saturated porous media with Stefan blowing and multiple slip effects, Comput. Math. Appl., 72 (2016), 2562–2581. http://dx.doi.org/10.1016/j.camwa.2016.09.018 doi: 10.1016/j.camwa.2016.09.018 |
[35] | N. A. Amirsom, M. J. Uddin, A. I. M. Ismail, MHD boundary layer bionanoconvective non-Newtonian flow past a needle with Stefan blowing, Heat Transfer, 48 (2019), 727–743. https://doi.org/10.1002/htj.21403 doi: 10.1002/htj.21403 |
[36] | W. A. Khan, A. M. Rashad, M. M. M. Abdou, I. Tlili, Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone, Eur. J. Mech., 75 (2019), 133–142. https://doi.org/10.1016/j.euromechflu.2019.01.002 doi: 10.1016/j.euromechflu.2019.01.002 |
[37] | F. T. Zohra, M. J. Uddin, M. F. Basir, A. I. M. Ismail, Magnetohydrodynamic bio-nano-convective slip flow with Stefan blowing effects over a rotating disc, Proc. Inst. Mech. Eng., Part N, 234 (2020), 83–97. https://doi.org/10.1177/2397791419881580 doi: 10.1177/2397791419881580 |
[38] | A. M. Alwatban, S. U. Khan, H. Waqas, I. Tlili, Interaction of Wu's slip features in bioconvection of Eyring Powell nanoparticles with activation energy, Processes, 7 (2019), 859. https://doi.org/10.3390/pr7110859 doi: 10.3390/pr7110859 |
[39] | A. Kumar, V. Sugunamma, N. Sandeep, J. V. R. Reddy, Impact of Brownian motion and thermophoresis on bioconvective flow of nanoliquids past a variable thickness surface with slip effects, Multidiscip. Model. Mater. Struct., 15 (2019), 103–132. https://doi.org/10.1108/MMMS-02-2018-0023 doi: 10.1108/MMMS-02-2018-0023 |
[40] | M. A. Imran, S. U. Rehman, A. Ahmadian, S. Salahshour, M. Salimi, First solution of fractional bioconvection with power law kernel for a vertical surfacem, Mathematics, 9 (2021), 1366. https://doi.org/10.3390/math9121366 doi: 10.3390/math9121366 |
[41] | A. Raees, H. Xu, S. J. Liao, Unsteady mixed nano-bioconvection flow in a horizontal channel with its upper plate expanding or contracting, Int. J. Heat Mass Tran., 86 (2015), 174–182. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.03.003 doi: 10.1016/j.ijheatmasstransfer.2015.03.003 |
[42] | Q. Zhao, H. Xu, L. Tao, Unsteady bioconvection squeezing flow in a horizontal channel with chemical reaction and magnetic field effects, Math. Probl. Eng., 2017 (2017), 2541413. https://doi.org/10.1155/2017/2541413 doi: 10.1155/2017/2541413 |
[43] | N. A. A. Latiff, M. J. Uddin, O. A. Bég, A. I. Ismail, Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet, Proc. Inst. Mech. Eng., Part N, 230 (2016), 177–187. https://doi.org/10.1177/1740349915613817 doi: 10.1177/1740349915613817 |
[44] | L. Ali, X. Liu, B. Ali, S. Mujeed, S. Abdal, Finite element simulation of multi-slip effects on unsteady mhd bioconvective micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions, Coatings, 9 (2019), 842. https://doi.org/10.3390/coatings9120842 doi: 10.3390/coatings9120842 |