Research article

Analysis of local fractional coupled Helmholtz and coupled Burgers' equations in fractal media

  • Received: 02 November 2021 Revised: 11 January 2022 Accepted: 20 January 2022 Published: 24 February 2022
  • MSC : 26A27, 26A30, 26A33, 28A80, 35R11

  • In this paper, we present a computational algorithm, namely, local fractional natural homotopy analysis method (LFNHAM) to explore the solutions of local fractional coupled Helmholtz and local fractional coupled Burgers' equations (LFCHEs and LFCBEs). This work also investigates the uniqueness and convergence of the solution of a general local fractional partial differential equation (LFPDE) obtained by the suggested method in view of theory of fixed point and Banach spaces. Furthermore, the error analysis of the LFNHAM solution is also discussed. Moreover, the numerical simulations are presented for each of the local fractional coupled equations on the Cantor set. The computational procedure clearly illustrates the validity and reliability of the proposed method for achieving the solutions of local fractional coupled Helmholtz and coupled Burgers' equations. The proposed method also minimizes the computational work unlike other conventional methods while still giving extremely precise results. The implemented combination supplies a more general solution as compared to other methods and assimilates their consequences as a special case. In addition, the acquired solutions are also in excellent match with previously determined solutions.

    Citation: Ved Prakash Dubey, Jagdev Singh, Ahmed M. Alshehri, Sarvesh Dubey, Devendra Kumar. Analysis of local fractional coupled Helmholtz and coupled Burgers' equations in fractal media[J]. AIMS Mathematics, 2022, 7(5): 8080-8111. doi: 10.3934/math.2022450

    Related Papers:

  • In this paper, we present a computational algorithm, namely, local fractional natural homotopy analysis method (LFNHAM) to explore the solutions of local fractional coupled Helmholtz and local fractional coupled Burgers' equations (LFCHEs and LFCBEs). This work also investigates the uniqueness and convergence of the solution of a general local fractional partial differential equation (LFPDE) obtained by the suggested method in view of theory of fixed point and Banach spaces. Furthermore, the error analysis of the LFNHAM solution is also discussed. Moreover, the numerical simulations are presented for each of the local fractional coupled equations on the Cantor set. The computational procedure clearly illustrates the validity and reliability of the proposed method for achieving the solutions of local fractional coupled Helmholtz and coupled Burgers' equations. The proposed method also minimizes the computational work unlike other conventional methods while still giving extremely precise results. The implemented combination supplies a more general solution as compared to other methods and assimilates their consequences as a special case. In addition, the acquired solutions are also in excellent match with previously determined solutions.



    加载中


    [1] J. Y. Liu, S. H. Tsai, C. C. Wang, C. R. Chu, Acoustic wave reflection from a rough seabed with a continuously varying sediment layer overlying an elastic basement, J. Sound Vib., 275 (2004), 739-755. https://doi.org/10.1016/j.jsv.2003.06.012 doi: 10.1016/j.jsv.2003.06.012
    [2] M. S. Samuel, A. Thomas, On fractional Helmholtz equations, Frac. Calc. Appl. Anal., 13 (2010), 295-308.
    [3] A. Prakash, M. Goyal, S. Gupta, Numerical simulation of space-fractional Helmholtz equation arising in seismic wave propagation, imaging and inversion, Pramana-J. Phys., 93 (2019), 28. https://doi.org/10.1007/s12043-019-1773-8 doi: 10.1007/s12043-019-1773-8
    [4] N. A. Shah, E. R. El-Zahar, M. D. Aljoufi, J. D. Chung, An efficient approach for solution of fractional-order Helmholtz equations, Adv. Differ. Equ., 2021 (2021), 14. https://doi.org/10.1186/s13662-020-03167-x doi: 10.1186/s13662-020-03167-x
    [5] J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1 (1948), 171-199. https://doi.org/10.1016/S0065-2156(08)70100-5 doi: 10.1016/S0065-2156(08)70100-5
    [6] J. M. Burgers, The nonlinear diffusion equation, Dordrecht: Springer, 1974. https://doi.org/10.1007/978-94-010-1745-9
    [7] G. B. Whitham, Linear and nonlinear waves, New York: John Wiley & Sons, 2011. https://doi.org/10.1002/9781118032954
    [8] R. A. Oderinua, The reduced differential transform method for the exact solutions of advection, Burgers and coupled Burgers equations, Theory and Applications of Mathematics & Computer Science, 2 (2012), 10-14.
    [9] J. D. Cole, On a quasilinear parabolic equations occurring in aerodynamics, Q. Appl. Math., 9 (1951), 225-236.
    [10] S. E. Esipov, Coupled Burgers equations: a model of polydispersive sedimentation, Phys. Rev. E, 52 (1995), 3711-3718. https://doi.org/10.1103/physreve.52.3711 doi: 10.1103/physreve.52.3711
    [11] J. Nee, J. Duan, Limit set of trajectories of the coupled viscous Burger's equations, Appl. Math. Lett., 11 (1998), 57-61. https://doi.org/10.1016/S0893-9659(97)00133-X doi: 10.1016/S0893-9659(97)00133-X
    [12] N. Sugimoto, Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves, J. Fluid Mech., 225 (1991), 631-653. https://doi.org/10.1017/S0022112091002203 doi: 10.1017/S0022112091002203
    [13] T. Funaki, W. A. Woyczynski, Fractal Burgers equations, J. Differ. Equ., 148 (1998), 9-46. https://doi.org/10.1006/jdeq.1998.3458 doi: 10.1006/jdeq.1998.3458
    [14] S. Momani, Non-perturbative analytical solutions of the space-and time-fractional Burgers equations, Chaos Soliton. Fract., 28 (2006), 930-937. https://doi.org/10.1016/j.chaos.2005.09.002 doi: 10.1016/j.chaos.2005.09.002
    [15] C. H. Chan, M. Czubak, L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation, Discrete Contin. Dyn. Syst., 27 (2010), 847-861. https://doi.org/10.3934/dcds.2010.27.847 doi: 10.3934/dcds.2010.27.847
    [16] G. Karch, C. Miao, X. Xu, On convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal., 39 (2008), 1536-1549. https://doi.org/10.1137/070681776 doi: 10.1137/070681776
    [17] A. Yildirim, S. T. Mohyud-Din, Analytical approach to space-and time-fractional Burgers equations, Chin. Phys. Letts., 27 (2010), 090501. https://doi.org/10.1088/0256-307X/27/9/090501 doi: 10.1088/0256-307X/27/9/090501
    [18] N. Alibaud, C. Imbert, G. Karch, Asymptotic properties of entropy solutions to fractal Burgers equation, SIAM J. Math. Anal., 42 (2010), 354-376. https://doi.org/10.1137/090753449 doi: 10.1137/090753449
    [19] A. Yildirim, A. Kelleci, Homotopy perturbation method for numerical solutions of coupled Burgers equations with time- and space-fractional derivatives, Int. J. Numer. Methods Heat Fluid Flow, 20 (2010), 897-909. https://doi.org/10.1108/09615531011081423 doi: 10.1108/09615531011081423
    [20] J. Liu, G. Hou, Numerical solutions of the space- and time fractional coupled Burgers equations by generalized differential transform method, Appl. Math. Comput., 217 (2011), 7001-7008. https://doi.org/10.1016/j.amc.2011.01.111 doi: 10.1016/j.amc.2011.01.111
    [21] Y. Xu, O. P. Agrawal, Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation, Fract. Calc. Appl. Anal., 16 (2013), 709-736. https://doi.org/10.2478/s13540-013-0045-4 doi: 10.2478/s13540-013-0045-4
    [22] A. Prakash, M. Kumar, K. K. Sharma, Numerical method for solving fractional coupled Burgers equations, Appl. Math. Comput., 260 (2015), 314-320. https://doi.org/10.1016/j.amc.2015.03.037 doi: 10.1016/j.amc.2015.03.037
    [23] J. Singh, D. Kumar, R. Swroop, Numerical solution of time- and space-fractional coupled Burgers' equations via homotopy algorithm, Alex. Eng. J., 55 (2016), 1753-1763. https://doi.org/10.1016/j.aej.2016.03.028 doi: 10.1016/j.aej.2016.03.028
    [24] X. J. Yang, Local fractional functional analysis and its applications, Hong Kong: Asian Academic Publisher, 2011.
    [25] X. J. Yang, Advanced local fractional calculus and its applications, New York: World Science Publisher, 2012.
    [26] X. J. Yang, H. M. Srivastava, C. Cattani, Local fractional homotopy perturbation method for solving fractional partial differential equations arising in mathematical physics, Rom. Rep. Phys., 67 (2015), 752-761.
    [27] Y. Zhang, C. Cattani, X. J. Yang, Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains, Entropy, 17 (2015), 6753-6764. https://doi.org/10.3390/e17106753 doi: 10.3390/e17106753
    [28] J. Singh, D. Kumar, J. J. Nieto, A reliable algorithm for a local fractional Tricomi equation arising in fractal transonic flow, Entropy, 18 (2016), 206. https://doi.org/10.3390/e18060206 doi: 10.3390/e18060206
    [29] D. Kumar, J. Singh, D. Baleanu, A hybrid computational approach for Klein-Gordon equations on Cantor Sets, Nonlinear Dyn., 87 (2017), 511-517. https://doi.org/10.1007/s11071-016-3057-x doi: 10.1007/s11071-016-3057-x
    [30] D. Zhao, J. Singh, D. Kumar, S. Rathore, X. J. Yang, An efficient computational technique for local fractional heat conduction equations in fractal media, J. Nonlinear Sci. Appl., 10 (2017), 1478-1486. http://dx.doi.org/10.22436/jnsa.010.04.17
    [31] J. Singh, D. Kumar, D. Baleanu, S. Rathore, On the local fractional wave equation in fractal strings, Math. Method. Appl. Sci., 42 (2019), 1588-1595. https://doi.org/10.1002/mma.5458 doi: 10.1002/mma.5458
    [32] V. P. Dubey, J. Singh, A. M. Alshehri, S. Dubey, D. Kumar, A comparative analysis of two computational schemes for solving local fractional Laplace equations, Math. Method. Appl. Sci., 44 (2021), 13540-13559. https://doi.org/10.1002/mma.7642 doi: 10.1002/mma.7642
    [33] H. Jafari, H. K. Jassim, A new approach for solving system of local fractional partial differential equations, Appl. Appl. Math., 11 (2016), 9.
    [34] D. Kumar, F. Tchier, J. Singh, D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259. https://doi.org/10.3390/e20040259 doi: 10.3390/e20040259
    [35] Y. J. Hao, H. M. Srivastava, H. Jafari, X. J. Yang, Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates, Adv. Math. Phys., 2013 (2013), 754248. https://doi.org/10.1155/2013/754248 doi: 10.1155/2013/754248
    [36] X. J. Wang, Y. Zhao, C. Cattani, X. J. Yang, Local fractional variational iteration method for inhomogeneous Helmholtz equation within local fractional derivative operator, Math. Probl. Eng., 2014 (2014), 913202. https://doi.org/10.1155/2014/913202 doi: 10.1155/2014/913202
    [37] A. M. Yang, Z. S. Chen, H. M. Srivastava, X. J. Yang, Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving local fractional derivative operators, Abstr. Appl. Anal., 2013 (2013), 259125. https://doi.org/10.1155/2013/259125 doi: 10.1155/2013/259125
    [38] H. K. Jassim, The approximate solutions of Helmholtz and coupled Helmholtz equations on cantor sets within local fractional operator, J. Zankoy Sulaimani Part A, 17 (2015), 19-25. https://doi.org/10.17656/jzs.10421 doi: 10.17656/jzs.10421
    [39] D. Baleanu, H. K. Jassim, A modification fractional homotopy perturbation method for solving Helmholtz and coupled Helmholtz equations on cantor sets, Fractal Fract., 3 (2019), 30. https://doi.org/10.3390/fractalfract3020030 doi: 10.3390/fractalfract3020030
    [40] D. Baleanu, H. K. Jassim, M. Al Qurashi, Solving Helmholtz equation with local fractional derivative operators, Fractal Fract., 3 (2019), 43. https://doi.org/10.3390/fractalfract3030043 doi: 10.3390/fractalfract3030043
    [41] M. Chen, Y. Xia, Approximate solution for Burger's equation with local fractional derivative by Yang-Laplace decomposition method, Therm. Sci., 21 (2017), 209-216. https://doi.org/10.2298/TSCI17S1209C doi: 10.2298/TSCI17S1209C
    [42] X. J. Yang, J. A. T. Machado, J. Hristov, Nonlinear dynamics for local fractional Burger's equations arising in fractal flow, Nonlinear Dyn., 84 (2016), 3-7. https://doi.org/10.1007/s11071-015-2085-2 doi: 10.1007/s11071-015-2085-2
    [43] D. Ziane, A. Bokhari, R. Belgacem, Local fractional homotopy analysis method for solving coupled nonlinear systems of Burger's equations, Int. J. Open Problems Comput. Math., 12 (2019), 47-57.
    [44] S. O. Edeki, G. O. Akinlabi, Local fractional operator for a one-dimensional coupled Burger equation of non-integer time order parameter, J. Math. Fund. Sci., 50 (2018), 28-39. https://doi.org/10.5614/j.math.fund.sci.2018.50.1.3 doi: 10.5614/j.math.fund.sci.2018.50.1.3
    [45] X. J. Yang, F. Gao, H. M. Srivastava, Exact travelling wave solutions for the local fractional two-dimensional Burgers' type equations, Comput. Math. Appl., 73 (2017), 203-210. https://doi.org/10.1016/j.camwa.2016.11.012 doi: 10.1016/j.camwa.2016.11.012
    [46] S. Maitama, W. Zhao, Local fractional homotopy analysis method for solving nondifferentiable problems on Cantor sets, Adv. Differ. Equ., 2019 (2019), 127. https://doi.org/10.1186/s13662-019-2068-6 doi: 10.1186/s13662-019-2068-6
    [47] S. Maitama, Local fractional natural homotopy perturbation method for solving partial differential equations with local fractional derivative, Prog. Fract. Differ. Appl., 4 (2018), 219-228. http://dx.doi.org/10.18576/pfda/040306
    [48] Z. H. Khan, W. A. Khan, N-transform properties and applications, NUST Journal of Engineering Sciences, 1 (2008), 127-133.
    [49] F. B. M. Belgacem, R. Silambarasan, Theory of natural transform, Mathematics in Engineering, Science and Aerospace, 3 (2012), 105-135.
    [50] F. B. M. Belgacem, R. Silambarasan, Advances in the natural transform, AIP Conference Proceedings, 1493 (2012), 106-110. https://doi.org/10.1063/1.4765477 doi: 10.1063/1.4765477
    [51] R. Silambarasan, F. B. M. Belgacem, Application of the natural transform to Maxwell's equations, In: Progress in Electromagnetics Research Symposium Proceedings (PIERS '11), Suzhou, China, 2011,899-902.
    [52] S. J. Liao, Beyond perturbation: introduction to Homotopy analysis method, Boca Raton: Chapman and Hall/CRC Press, 2003. https://doi.org/10.1201/9780203491164
    [53] S. J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147 (2004), 499-513. https://doi.org/10.1016/S0096-3003(02)00790-7 doi: 10.1016/S0096-3003(02)00790-7
    [54] S. J. Liao, Proposed homotopy analysis techniques for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, 1992.
    [55] Z. Odibat, S. A. Bataineh, An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: construction of homotopy polynomials, Math. Method. Appl. Sci., 38 (2014), 991-1000. https://doi.org/10.1002/mma.3136 doi: 10.1002/mma.3136
    [56] X. J. Yang, A short note on local fractional calculus of function of one variable, J. Appl. Libr. Inf. Sci., 1 (2012), 1-13.
    [57] G. S. Chen, Mean value theorems for local fractional integrals on fractal space, Adv. Mech. Eng. Appl., 1 (2012), 5-8.
    [58] I. K. Argyros, Convergence and applications of Newton-type iterations, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-72743-1
    [59] A. A. Magrenan, A new tool to study real dynamics: the convergence plane, Appl. Math. Comput., 248 (2014), 215-224. https://doi.org/10.1016/j.amc.2014.09.061 doi: 10.1016/j.amc.2014.09.061
    [60] Y. J. Yang, L. Q. Hua, Variational iteration transform method for fractional differential equations with local fractional derivative, Abstr. Appl. Anal., 2014 (2014), 760957. https://doi.org/10.1155/2014/760957 doi: 10.1155/2014/760957
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1761) PDF downloads(88) Cited by(13)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog