In this paper, we investigate the exact solutions of several fractional-order Helmholtz equations using the homotopy perturbation transform method. We specify sufficient requirements for its convergence and provide error estimations. The homotopy perturbation transform method yields a quickly converging succession of solutions. Solutions for various fractional space derivatives are compared to present approaches and explained using figures. Appropriate parameter selection produces approximations identical to the exact answer. Test examples are provided to demonstrate the proposed approach's precision and competence. The results demonstrate that our system is appealing, user-friendly, dependable, and highly effective.
Citation: Naveed Iqbal, Muhammad Tajammal Chughtai, Nehad Ali Shah. Numerical simulation of fractional-order two-dimensional Helmholtz equations[J]. AIMS Mathematics, 2023, 8(6): 13205-13218. doi: 10.3934/math.2023667
In this paper, we investigate the exact solutions of several fractional-order Helmholtz equations using the homotopy perturbation transform method. We specify sufficient requirements for its convergence and provide error estimations. The homotopy perturbation transform method yields a quickly converging succession of solutions. Solutions for various fractional space derivatives are compared to present approaches and explained using figures. Appropriate parameter selection produces approximations identical to the exact answer. Test examples are provided to demonstrate the proposed approach's precision and competence. The results demonstrate that our system is appealing, user-friendly, dependable, and highly effective.
[1] | J. Li, X. N. Su, K. Y. Zhao, Barycentric interpolation collocation algorithm to solve fractional differential equations, Math. Comput. Simulat., 205 (2023), 340–367. https://doi.org/10.1016/j.matcom.2022.10.005 doi: 10.1016/j.matcom.2022.10.005 |
[2] | M. M. Al-Sawalha, R. P. Agarwal, R. Shah, O. Y. Ababneh, W. Weera, A reliable way to deal with fractional-order equations that describe the unsteady flow of a polytropic gas, Mathematics, 10 (2022), 2293. https://doi.org/10.3390/math10132293 doi: 10.3390/math10132293 |
[3] | L. A. Said, A. H. Madian, A. G. Radwan, A. M. Soliman, Fractional order oscillator with independent control of phase and frequency, In 2014 2nd International Conference on Electronic Design (ICED), 2014,224–229. https://doi.org/10.1109/ICED.2014.7015803 |
[4] | J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027 |
[5] | J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado, Advances in Fractional Calculus, Dordrecht: Springer, 2007. |
[6] | D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, 2012. https://doi.org/10.1142/10044 |
[7] | L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 1–30. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486 |
[8] | M. M. Al-Sawalha, A. S. Alshehry, K. Nonlaopon, R. Shah, O. Y. Ababneh, Fractional view analysis of delay differential equations via numerical method, AIMS Mathematics, 7 (2022), 20510–20523. https://doi.org/10.3934/math.20221123 doi: 10.3934/math.20221123 |
[9] | S. Mukhtar, R. Shah, S. Noor, The numerical investigation of a fractional-order multi-dimensional model of Navier-Stokes equation via novel techniques, Symmetry, 14 (2022), 1102. https://doi.org/10.3390/sym14061102 doi: 10.3390/sym14061102 |
[10] | M. M. Al-Sawalha, A. S. Alshehry, K. Nonlaopon, R. Shah, O. Y. Ababneh, Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm, AIMS Mathematics, 7 (2022), 19739–19757. https://doi.org/10.3934/math.20221082 doi: 10.3934/math.20221082 |
[11] | M. M. Al-Sawalha, R. Shah, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Mathematics, 7 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010 |
[12] | Y. Kai, S. Q. Chen, K. Zhang, Z. X. Yin, Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation, Wave. Random Complex, 2022. https://doi.org/10.1080/17455030.2022.2044541 doi: 10.1080/17455030.2022.2044541 |
[13] | F. Ihlenburg, I. Babuska, Finite element solution of the Helmholtz equation with high wave number part Ⅱ: The h-p version of the FEM, SIAM J. Numer. Anal., 34 (1997), 315–358. https://doi.org/10.1137/S0036142994272337 doi: 10.1137/S0036142994272337 |
[14] | S. M. El-Sayed, D. Kaya, Comparing numerical methods for Helmholtz equation model problem, Appl. Math. Comput., 150 (2004), 763–773. https://doi.org/10.1016/S0096-3003(03)00305-9 doi: 10.1016/S0096-3003(03)00305-9 |
[15] | Y. K. Cheung, W. G. Jin, O. C. Zienkiewicz, Solution of Helmholtz equation by Trefftz method, Int. J. Numer. Meth. Eng., 32 (1991), 63–78. https://doi.org/10.1002/nme.1620320105 doi: 10.1002/nme.1620320105 |
[16] | A. Prakash, M. Goyal, S. Gupta, Numerical simulation of space-fractional Helmholtz equation arising in seismic wave propagation, imaging and inversion, Pramana, 93 (2019), 28. http://doi.org/10.1007/s12043-019-1773-8 doi: 10.1007/s12043-019-1773-8 |
[17] | S. Nguyen, C. Delcarte, A spectral collocation method to solve Helmholtz problems with boundary conditions involving mixed tangential and normal derivatives, J. Comput. Phys., 200 (2004), 34–49. https://doi.org/10.1016/j.jcp.2004.03.004 doi: 10.1016/j.jcp.2004.03.004 |
[18] | X. Li, Z. Q. Dong, L. P. Wang, X. D. Niu, H. Yamaguchi, D. C. Li, et al., A magnetic field coupling fractional step lattice Boltzmann model for the complex interfacial behavior in magnetic multiphase flows, Appl. Math. Model., 117 (2023), 219–250. https://doi.org/10.1016/j.apm.2022.12.025 doi: 10.1016/j.apm.2022.12.025 |
[19] | X. L. Xie, T. F. Wang, W. Zhang, Existence of solutions for the (p, q)-Laplacian equation with nonlocal Choquard reaction, Appl. Math. Lett., 135 (2023), 108418. https://doi.org/10.1016/j.aml.2022.108418 doi: 10.1016/j.aml.2022.108418 |
[20] | L. Wang, H. Zhao, X. Liu, Z. L. Zhang, X. H. Xia, S. Evans, Optimal remanufacturing service resource allocation for generalized growth of retired mechanical products: Maximizing matching efficiency, IEEE Access, 9 (2021), 89655–89674. https://doi.org/10.1109/ACCESS.2021.3089896 doi: 10.1109/ACCESS.2021.3089896 |
[21] | S. Abuasad, K. Moaddy, I. Hashim, Analytical treatment of two-dimensional fractional Helmholtz equations, J. King Saud Univ. Sci., 31 (2019), 659–666. https://doi.org/10.1016/j.jksus.2018.02.002 doi: 10.1016/j.jksus.2018.02.002 |
[22] | X. Wang, X. J. Lyu, Experimental study on vertical water entry of twin spheres side-by-side, Ocean Eng., 221 (2021), 108508. https://doi.org/10.1016/j.oceaneng.2020.108508 doi: 10.1016/j.oceaneng.2020.108508 |
[23] | Y. Hu, J. X. Qing, Z. H. Liu, Z. J. Conrad, J. N. Cao, X. P. Zhang, Hovering efficiency optimization of the ducted propeller with weight penalty taken into account, Aerosp. Sci. Technol., 117 (2021), 106937. https://doi.org/10.1016/j.ast.2021.106937 doi: 10.1016/j.ast.2021.106937 |
[24] | H. Y. Jin, Z. A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst., 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027 doi: 10.3934/dcds.2020027 |
[25] | H. Y. Jin, Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differ. Equ., 260 (2016), 162–196. https://doi.org/10.1016/j.jde.2015.08.040 doi: 10.1016/j.jde.2015.08.040 |
[26] | H. Y. Jin, Z. A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Meth. Appl. Sci., 38 (2015), 444–457. https://doi.org/10.1002/mma.3080 doi: 10.1002/mma.3080 |
[27] | L. Liu, S. Zhang, L. Ch. Zhang, G. Pan, J. Z. Yu, Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network, IEEE Trans. Cybernetics, 2022, 1–14. https://doi.org/10.1109/TCYB.2022.3225106 doi: 10.1109/TCYB.2022.3225106 |
[28] | N. Iqbal, M. T. Chughtai, R. Ullah, Fractional study of the non-linear Burgers' equations via a semi-analytical technique, Fractal Fract., 7 (2023), 103. https://doi.org/10.3390/fractalfract7020103 doi: 10.3390/fractalfract7020103 |
[29] | P. Liu, J. P. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597–2625. https://doi.org/10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597 |
[30] | M. Alesemi, N. Iqbal, N. Wyal, Novel evaluation of fuzzy fractional Helmholtz equations, J. Funct. Spaces, 2022 (2022), 8165019. https://doi.org/10.1155/2022/8165019 doi: 10.1155/2022/8165019 |
[31] | P. K. Gupta, A. Yildirim, K. N. Rai, Application of He's homotopy perturbation method for multi-dimensional fractional Helmholtz equation, Internat. J. Numer. Methods Heat Fluid Flow, 22 (2012), 424–435. https://doi.org/10.1108/09615531211215738 doi: 10.1108/09615531211215738 |