Research article

Set-valued fractional programming problems with $ \sigma $-arcwisely connectivity

  • Received: 31 October 2022 Revised: 12 March 2023 Accepted: 23 March 2023 Published: 03 April 2023
  • MSC : 26B25, 49N15

  • In this paper, we determine the sufficient Karush-Kuhn-Tucker (KKT) conditions of optimality of a set-valued fractional programming problem (in short, SVFP) $\rm (FP)$ under the suppositions of contingent epidifferentiation and $ \sigma $-arcwisely connectivity. We additionally explore the results of duality of parametric $\rm (PD)$, Mond-Weir $\rm (MWD)$, Wolfe $\rm (WD)$, and mixed $\rm (MD)$ kinds for the problem $\rm (FP)$.

    Citation: Koushik Das, Savin Treanţă, Muhammad Bilal Khan. Set-valued fractional programming problems with $ \sigma $-arcwisely connectivity[J]. AIMS Mathematics, 2023, 8(6): 13181-13204. doi: 10.3934/math.2023666

    Related Papers:

  • In this paper, we determine the sufficient Karush-Kuhn-Tucker (KKT) conditions of optimality of a set-valued fractional programming problem (in short, SVFP) $\rm (FP)$ under the suppositions of contingent epidifferentiation and $ \sigma $-arcwisely connectivity. We additionally explore the results of duality of parametric $\rm (PD)$, Mond-Weir $\rm (MWD)$, Wolfe $\rm (WD)$, and mixed $\rm (MD)$ kinds for the problem $\rm (FP)$.



    加载中


    [1] D. Agarwal, P. Singh, M. A. El Sayed, The Karush-Kuhn-Tucker (KKT) optimality conditions for fuzzy-valued fractional optimization problems, Math. Comput. Simulat., 205 (2023), 861–877. https://doi.org/10.1016/j.matcom.2022.10.024 doi: 10.1016/j.matcom.2022.10.024
    [2] J. P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, In: Mathematical Analysis and Applications, Part A, New York: Academic Press, 1981,160–229.
    [3] J. P. Aubin, H. Frankowska, Set-valued analysis, Boston: Birhäuser, 1990.
    [4] M. Avriel, Nonlinear programming: Theory and method, Englewood Cliffs, New Jersey: Prentice-Hall, 1976.
    [5] D. Bhatia, P. K. Garg, Duality for non smooth non linear fractional multiobjective programs via ($\mathrm{F}$, $\rho$)-convexity, Optimization, 43 (1998), 185–197. https://doi.org/10.1080/02331939808844382 doi: 10.1080/02331939808844382
    [6] D. Bhatia, A. Mehra, Lagrangian duality for preinvex set-valued functions, J. Math. Anal. Appl., 214 (1997), 599–612. https://doi.org/10.1006/jmaa.1997.5599 doi: 10.1006/jmaa.1997.5599
    [7] D. Bhatia, A. Mehra, Fractional programming involving set-valued functions, Indian J. Pure Appl. Math., 29 (1998), 525–540.
    [8] J. Borwein, Multivalued convexity and optimization: A unified approach to inequality and equality constraints, Math. Program., 13 (1977), 183–199. https://doi.org/10.1007/BF01584336 doi: 10.1007/BF01584336
    [9] K. Das, On constrained set-valued optimization problems with $\rho$-cone arcwise connectedness, SeMA J., 2022, 1–16. https://doi.org/10.1007/s40324-022-00295-0
    [10] K. Das, C. Nahak, Sufficient optimality conditions and duality theorems for set-valued optimization problem under generalized cone convexity, Rend. Circ. Mat. Palerm., 63 (2014), 329–345. https://doi.org/10.1007/s12215-014-0163-9 doi: 10.1007/s12215-014-0163-9
    [11] K. Das, C. Nahak, Optimality conditions for approximate quasi efficiency in set-valued equilibrium problems, SeMA J., 73 (2016), 183–199. https://doi.org/10.1007/s40324-016-0063-3 doi: 10.1007/s40324-016-0063-3
    [12] K. Das, C. Nahak, Set-valued fractional programming problems under generalized cone convexity, Opsearch, 53 (2016), 157–177. https://doi.org/10.1007/s12597-015-0222-9 doi: 10.1007/s12597-015-0222-9
    [13] K. Das, C. Nahak, Approximate quasi efficiency of set-valued optimization problems via weak subdifferential, SeMA J., 74 (2017), 523–542. https://doi.org/10.1007/s40324-016-0099-4 doi: 10.1007/s40324-016-0099-4
    [14] K. Das, C. Nahak, Optimality conditions for set-valued minimax fractional programming problems, SeMA J., 77 (2020), 161–179. https://doi.org/10.1007/s40324-019-00209-7 doi: 10.1007/s40324-019-00209-7
    [15] K. Das, C. Nahak, Set-valued optimization problems via second-order contingent epiderivative, Yugosl. J. Oper. Res., 31 (2021), 75–94. https://doi.org/10.2298/YJOR191215041D doi: 10.2298/YJOR191215041D
    [16] K. Das, S. Treanţă, On constrained set-valued semi-infinite programming problems with $\rho$-cone arcwise connectedness, Axioms, 10 (2021), 302. https://doi.org/10.3390/axioms10040302 doi: 10.3390/axioms10040302
    [17] K. Das, S. Treanţă, Constrained controlled optimization problems involving second-order derivatives, Quaest. Math., 2022, 1–11. https://doi.org/10.2989/16073606.2022.2055506
    [18] K. Das, S. Treanţă, T. Saeed, Mond-weir and wolfe duality of set-valued fractional minimax problems in terms of contingent epi-derivative of second-order, Mathematics, 10 (2022), 938. https://doi.org/10.3390/math10060938 doi: 10.3390/math10060938
    [19] M. A. Elsisy, M. A. El Sayed, Y. A.-Elnaga, A novel algorithm for generating Pareto frontier of bi-level multi-objective rough nonlinear programming problem, Ain Shams Eng. J., 12 (2021), 2125–2133. https://doi.org/10.1016/j.asej.2020.11.006 doi: 10.1016/j.asej.2020.11.006
    [20] M. A. Elsisy, A. S. Elsaadany, M. A. El Sayed, Using interval operations in the hungarian method to solve the fuzzy assignment problem and its application in the rehabilitation problem of valuable buildings in Egypt, Complexity, 2020, 1–11. https://doi.org/10.1155/2020/6623049
    [21] J. Y. Fu, Y. H. Wang, Arcwise connected cone-convex functions and mathematical programming, J. Optim. Theory Appl., 118 (2003), 339–352. https://doi.org/10.1023/A:1025451422581 doi: 10.1023/A:1025451422581
    [22] N. Gadhi, A. Jawhar, Necessary optimality conditions for a set-valued fractional extremal programming problem under inclusion constraints, J. Global Optim., 56 (2013), 489–501. https://doi.org/10.1007/s10898-012-9849-8 doi: 10.1007/s10898-012-9849-8
    [23] J. Jahn, R Rauh, Contingent epiderivatives and set-valued optimization, Math. Method. Oper. Res., 46 (1997), 193–211. https://doi.org/10.1007/BF03354124 doi: 10.1007/BF03354124
    [24] H. Jiao, Y. Shang, R. Chen, A potential practical algorithm for minimizing the sum of affine fractional functions, Optimization, 2022, 1–31. https://doi.org/10.1080/02331934.2022.2032051
    [25] H. Jiao, W. Wang, Y. Shang, Outer space branch-reduction-bound algorithm for solving generalized affine multiplicative problem, J. Comput. Appl. Math., 419 (2023), 114784. https://doi.org/10.1016/j.cam.2022.114784 doi: 10.1016/j.cam.2022.114784
    [26] R. N. Kaul, V. Lyall, A note on nonlinear fractional vector maximization, Opsearch, 26 (1989), 108–121. https://doi.org/10.1515/pm-1989-260303 doi: 10.1515/pm-1989-260303
    [27] M. B. Khan, G. Santos-García, S. Treanţă, M. A. Noor, M. S. Soliman, Perturbed mixed variational-like inequalities and auxiliary principle pertaining to a fuzzy environment, Symmetry, 14 (2022), 2503.
    [28] M. B. Khan, G. Santos-García, H. Budak, S. Treanţă, M. S. Soliman, Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p, F)-convex fuzzy-interval-valued functions, AIMS Math., 8 (2023), 7437–7470.
    [29] M. B. Khan, H. A. Othman, G. Santos-García, T. Saeed, M. S. Soliman, On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings, Chaos Soliton. Fract., 169 (2023), 113274.
    [30] M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities, Chaos Soliton. Fract., 164 (2022), 112692.
    [31] C. S. Lalitha, J. Dutta, M. G. Govil, Optimality criteria in set-valued optimization, J. Aust. Math. Soc., 75 (2003), 221–232. https://doi.org/10.1017/S1446788700003736 doi: 10.1017/S1446788700003736
    [32] J. C. Lee, S. C. Ho, Optimality and duality for multiobjective fractional problems with r-invexity, Taiwanese J. Math., 12 (2008), 719–740. https://doi.org/10.11650/twjm/1500574161 doi: 10.11650/twjm/1500574161
    [33] J. Ma, H. Jiao, J. Yin, Y. Shang, Outer space branching search method for solving generalized affine fractional optimization problem, AIMS Math., 8 (2023), 1959–1974. https://doi.org/10.3934/math.2023101 doi: 10.3934/math.2023101
    [34] Z. Peng, Y. Xu, Second-order optimality conditions for cone-subarcwise connected set-valued optimization problems, Acta Math. Appl. Sin.-E., 34 (2018), 183–196. https://doi.org/10.1007/s10255-018-0738-x doi: 10.1007/s10255-018-0738-x
    [35] Q. S. Qiu, X. M. Yang, Connectedness of henig weakly efficient solution set for set-valued optimization problems, J. Optim. Theory Appl., 152 (2012), 439–449. https://doi.org/10.1007/s10957-011-9906-3 doi: 10.1007/s10957-011-9906-3
    [36] L. Rodríguez-Marín, M. Sama, About contingent epiderivatives, J. Math. Anal. Appl., 327 (2007), 745–762. https://doi.org/10.1016/j.jmaa.2006.04.060 doi: 10.1016/j.jmaa.2006.04.060
    [37] M. A. El Sayed, M. A. Abo-Sinna, A novel approach for fully intuitionistic fuzzy multi-objective fractional transportation problem, Alex. Eng. J., 60 (2021), 1447–1463. https://doi.org/10.1016/j.aej.2020.10.063 doi: 10.1016/j.aej.2020.10.063
    [38] M. A. El Sayed, I. A. Baky, P. Singh, A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision making problem, Opsearch, 57 (2020), 1374–1403. https://doi.org/10.1007/s12597-020-00461-w doi: 10.1007/s12597-020-00461-w
    [39] M. A. El Sayed, F. A. Farahat, M. A. Elsisy, A novel interactive approach for solving uncertain bi-level multi-objective supply chain model, Comput. Ind. Eng., 169 (2022), 108225. https://doi.org/10.1016/j.cie.2022.108225 doi: 10.1016/j.cie.2022.108225
    [40] I. M. Stancu-Minasian, A eighth bibliography of fractional programming, Optimization, 66 (2017), 439–470. https://doi.org/10.1080/02331934.2016.1276179 doi: 10.1080/02331934.2016.1276179
    [41] I. M. Stancu-Minasian, A ninth bibliography of fractional programming, Optimization, 68 (2019), 2125–2169. https://doi.org/10.1080/02331934.2019.1632250 doi: 10.1080/02331934.2019.1632250
    [42] T. V. Su, D. D. Hang, Second-order optimality conditions in locally Lipschitz multiobjective fractional programming problem with inequality constraints, Optimization, 2021, 1–28. https://doi.org/10.1080/02331934.2021.2002328
    [43] S. K. Suneja, S. Gupta, Duality in multiple objective fractional programming problems involving nonconvex functions, Opsearch, 27 (1990), 239–253. https://doi.org/10.1515/tsd-1990-270418 doi: 10.1515/tsd-1990-270418
    [44] S. K. Suneja, C. S. Lalitha, Multiobjective fractional programming involving $\rho$-invex and related functions, Opsearch, 30 (1993), 1–14.
    [45] N. T. T. Thuy, T. V. Su, Robust optimality conditions and duality for nonsmooth multiobjective fractional semi-infinite programming problems with uncertain data, Optimization, 2022, 1–31. https://doi.org/10.1080/02331934.2022.2038154
    [46] S. Treanţă, K. Das, On robust saddle-point criterion in optimization problems with curvilinear integral functionals, Mathematics, 9 (2021), 1790. https://doi.org/10.3390/math9151790 doi: 10.3390/math9151790
    [47] T. V. Su, D. D. Hang, Optimality and duality in nonsmooth multiobjective fractional programming problem with constraints, 4OR-Q. J. Oper. Res., 20 (2022), 105–137. https://doi.org/10.1007/s10288-020-00470-x doi: 10.1007/s10288-020-00470-x
    [48] X. U. Yihong, L. I. Min, Optimality conditions for weakly efficient elements of set-valued optimization with $\alpha$-order near cone-arcwise connectedness, J. Syst. Sci. Math. Sci., 36 (2016), 1721–1729. https://doi.org/10.12341/jssms12925 doi: 10.12341/jssms12925
    [49] G. Yu, Optimality of global proper efficiency for cone-arcwise connected set-valued optimization using contingent epiderivative, Asia Pac. J. Oper. Res., 30 (2013), 1340004. https://doi.org/10.1142/S0217595913400046 doi: 10.1142/S0217595913400046
    [50] G. Yu, Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps, Numer. Algebr. Control, 6 (2016), 35–44. https://doi.org/10.3934/naco.2016.6.35 doi: 10.3934/naco.2016.6.35
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(849) PDF downloads(56) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog