Loading [MathJax]/jax/output/SVG/jax.js
Research article

Set-valued fractional programming problems with σ-arcwisely connectivity

  • Received: 31 October 2022 Revised: 12 March 2023 Accepted: 23 March 2023 Published: 03 April 2023
  • MSC : 26B25, 49N15

  • In this paper, we determine the sufficient Karush-Kuhn-Tucker (KKT) conditions of optimality of a set-valued fractional programming problem (in short, SVFP) (FP) under the suppositions of contingent epidifferentiation and σ-arcwisely connectivity. We additionally explore the results of duality of parametric (PD), Mond-Weir (MWD), Wolfe (WD), and mixed (MD) kinds for the problem (FP).

    Citation: Koushik Das, Savin Treanţă, Muhammad Bilal Khan. Set-valued fractional programming problems with σ-arcwisely connectivity[J]. AIMS Mathematics, 2023, 8(6): 13181-13204. doi: 10.3934/math.2023666

    Related Papers:

    [1] Yinwan Cheng, Chao Yang, Bing Yao, Yaqin Luo . Neighbor full sum distinguishing total coloring of Halin graphs. AIMS Mathematics, 2022, 7(4): 6959-6970. doi: 10.3934/math.2022386
    [2] Shabbar Naqvi, Muhammad Salman, Muhammad Ehtisham, Muhammad Fazil, Masood Ur Rehman . On the neighbor-distinguishing in generalized Petersen graphs. AIMS Mathematics, 2021, 6(12): 13734-13745. doi: 10.3934/math.2021797
    [3] Xiaoxue Hu, Jiangxu Kong . An improved upper bound for the dynamic list coloring of 1-planar graphs. AIMS Mathematics, 2022, 7(5): 7337-7348. doi: 10.3934/math.2022409
    [4] Baolin Ma, Chao Yang . Distinguishing colorings of graphs and their subgraphs. AIMS Mathematics, 2023, 8(11): 26561-26573. doi: 10.3934/math.20231357
    [5] Zongpeng Ding . Skewness and the crossing numbers of graphs. AIMS Mathematics, 2023, 8(10): 23989-23996. doi: 10.3934/math.20231223
    [6] Zongrong Qin, Dingjun Lou . The k-subconnectedness of planar graphs. AIMS Mathematics, 2021, 6(6): 5762-5771. doi: 10.3934/math.2021340
    [7] Xin Xu, Xu Zhang, Jiawei Shao . Planar Turán number of double star S3,4. AIMS Mathematics, 2025, 10(1): 1628-1644. doi: 10.3934/math.2025075
    [8] Yunfeng Tang, Huixin Yin, Miaomiao Han . Star edge coloring of K2,t-free planar graphs. AIMS Mathematics, 2023, 8(6): 13154-13161. doi: 10.3934/math.2023664
    [9] Ana Klobučar Barišić, Antoaneta Klobučar . Double total domination number in certain chemical graphs. AIMS Mathematics, 2022, 7(11): 19629-19640. doi: 10.3934/math.20221076
    [10] Gohar Ali, Martin Bača, Marcela Lascsáková, Andrea Semaničová-Feňovčíková, Ahmad ALoqaily, Nabil Mlaiki . Modular total vertex irregularity strength of graphs. AIMS Mathematics, 2023, 8(4): 7662-7671. doi: 10.3934/math.2023384
  • In this paper, we determine the sufficient Karush-Kuhn-Tucker (KKT) conditions of optimality of a set-valued fractional programming problem (in short, SVFP) (FP) under the suppositions of contingent epidifferentiation and σ-arcwisely connectivity. We additionally explore the results of duality of parametric (PD), Mond-Weir (MWD), Wolfe (WD), and mixed (MD) kinds for the problem (FP).



    Differential equations of arbitrary order have been shown to be useful in the study of models of many phenomena in various fields such as: Electrochemistry and material science, they are in fact described by differential equations of fractional order [9,10,15,16,25,26,27,28,29]. For more details, we refer the reader to the books of Hilfer [30], Podlubny [31], Kilbas et al. [34], Miller and Ross [2] and to the following research papers [1,2,3,4,5,6,7,8,11,12,14,16,17,19,20,24,31,35,36,37,38,39,40,41,42]. In this work, we discuss the existence and uniqueness of the solutions for multi-point boundary value problems of nonlinear fractional differential equations with two Riemann-Liouville fractionals:

    {Dαx(t)=mi=1fi(t,x(t),y(t),φ1x(t),ϕ1y(t)),α]1,2],t[0,T]Dβy(t)=mi=1gi(t,x(t),y(t),φ2x(t),ϕ2y(t)),β]1,2],t[0,T]I2αx(0)=0, Dα2x(T)=θIα1(x(η)), 0<η<T,I2βy(0)=0, Dβ2x(T)=ωIβ1(x(γ)), 0<γ<T, (1.1)

    where D(.), I(.) denote the Riemann-Liouville derivative and integral of fractional order (.), respectively, fi, gi:[0,T]×R4R, i=1,,m are continuous functions on [0,T] and

    (φ1x)(t)=t0A1(t,s)x(s)ds, (ϕ1y)(t)=t0B1(t,s)y(s)ds,
    (φ2x)(t)=t0A2(t,s)x(s)ds, (ϕ1y)(t)=t0B2(t,s)y(s)ds,

    with Ai and Bi being continuous functions on [0,1]×[0,1]. However, it is rare to find a work in nonlinear term fi depends on fractional derivative of unknown functions x(t),y(t),φ1x(t),ϕ1y(t) and solutions for multi-order fractional differential equations on the infinite interval [0,T). Motivated by [8,11,12,13,14] and the references therein, we consider the existence and unicity of solution for multi-order fractional differential equations on infinite interval [0,T).

    The rest of this paper is organized as follow. In section 2, we present some preliminaries and lemmas. Section 3 is dedicated to showing the existence of a solution for problem (1.1). Finally, section 4 illustrated the proposed results with two examples.

    Remark 1.1. This work generalizes the work of Houas and Benbachir [14] on different boundary conditions and for another type of integral.

    This section covers the basic concepts of Riemann-Liouville type fractional calculus that will be used throughout this paper.

    Definition 2.1. [31,32] The Riemann-Liouville fractional integral operator of order α0, of a function f:(0,)R is defined as

    {Jαf(t)=1Γ(α)t0(tτ)α1f(τ)dτ,J0f(t)=f(t),

    where Γ(α):=0euuα1du.

    Definition 2.2. [31,32] The Riemann-Liouville fractional derivative of order α>0, of a continuous function h:(0,)R is defined as

    Dαh(t)=1Γ(nα)(ddt)nt0(tτ)nα1h(τ)dτ=(ddt)nInαh(τ),

    where n=[α]+1.

    For α<0, we use the convention that Dαh=Jαh. Also for 0ρ<α, it is valid that DρJαh=hαρ. We note that for ε>1 and εα1,α2,...,αn, we have

    Dαtε=Γ(ε+1)Γ(εα+1)tεα,Dαtαi=0, i=1,2,...,n.

    In particular, for the constant function h(t)=1, we obtain

    Dα1=1Γ(1α)tα,αN.

    For αN, we obtain, of course, Dα1=0 because of the poles of the gamma function at the points 0,1,2,... For α>0, the general solution of the homgeneous equation Dαh(t)=0 in C(0,T)L(0,T) is

    h(t)=c0tαn+c1tαn1+......+cn2tα2+cn1tα1,

    where ci,i=1,2,....,n1, are arbitrary real constants. Further, we always have DαIαh=h, and

    DαIαh(t)=h(t)+c0tαn+c1tαn1+......+cn2tα2+cn1tα1.

    Lemma 2.1. [33] Let E be Banach space. Assume that T:EE is a completely continuous operator. If the set V={xE:x=μTx, 0<μ<1} is bounded, then T has a fixed point in E.

    To define the solution for problem (1.1). We consider the following lemma.

    Lemma 2.2. Suppose that (Hi)i=1,,mC([0,1],R), and consider the problem

    Dαh(t)mi=1Hi(t)=0, tj, 1<α<2, mN, (2.1)

    with the conditions

    I2αh(0)=0, Dα2h(T)=θIα1(h(η)), 0<η<T. (2.2)

    Then we have

    h(t)=1Γ(α)mi=1t0(tτ)α1Hi(τ)dτ+tα1ψ(mi=1T0(Tτ)Hi(τ)dτθΓ(2α)mi=1η0(ητ)2α2Hi(τ)dτ)

    with ψ=θΓ(α)Γ(2α1)η2α2Γ(α)T.

    Proof. We have

    h(t)=mi=1IαHi(t)+c0tα2+c1tα1,

    where ciR, i=0,1.

    We obtain

    I2αh(τ)=mi=1I2Hi(τ)+c0I2ατα2+c1I2ατα1=mi=1I2Hi(τ)+c0+c1τ,Iα1h(τ)=mi=1I2α1Hi(τ)+c0Iα1τα2+c1Iα1τα1=mi=1I2α1Hi(τ)+c0Γ(α1)Γ(2α2)τ2α3+c1Γ(α)Γ(2α1)τ2α2,Dα2h(τ)=mi=1I2Hi(τ)+c0Γ(α1)+c1Γ(α)τ.

    Using the given conditions: I2αh(0)=0, we find that c0=0, and since Dα2h(T)θIα1(h(η))=0, we have

    mi=1I2hi(T)+c1Γ(α)Tθ[mi=1I2α1hi(η)+c1Γ(α)Γ(2α1)η2α2]=0,

    then

    c1[Γ(α)Γ(2α1)η2α2Γ(α)T]=mi=1I2hi(T)θmi=1I2α1hi(η)

    and

    c1=1ψ(mi=1I2Hi(T)θmi=1I2α1Hi(η))=1ψ(mi=1T0(Tτ)Hi(τ)dτθΓ(2α)mi=1η0(ητ)2α2Hi(τ)dτ)

    with

    ψ=θΓ(α)Γ(2α1)η2α2Γ(α)T.

    Finally, the solution of (2.1) and (2.2) is

    h(t)=1Γ(α)mi=1t0(tτ)α1Hi(τ)dτ+tα1ψ(mi=1T0(Tτ)Hi(τ)dτθΓ(2α)mi=1η0(ητ)2α2Hi(τ)dτ).

    We denote by

    E={x,yC([0,T],R);φix,ϕiyC([0,T],R)  i=1,2},

    and the Banach space of all continuous functions from [0,T] to R endowed with a topology of uniform convergence with the norm defined by

    ||(x,y)||E=max(||x||,||y||,||φ1x||,||ϕ1y||,||φ2x||,||ϕ2y||),

    where

    ||x||=suptj|φix(t)|,||y||=suptj|y(t)|,||ϕix||=suptj|φix(t)|,||ϕiy||=suptj|ϕiy(t)|.

    In this section, we prove some existence and uniqueness results to the nonlinear fractional coupled system (1.1).

    For the sake of convenience, we impose the following hypotheses:

    (H1) For each i=1,2,,m, the functions fi and gi  :[0,T]×R4R are continuous.

    (H2) There exist nonnegative real numbers ξik,φik,k=1,2,3,4,i=1,2,,m, such that for all t[0,T] and all (x1,x2,x3,x4), (y1,y2,y3,y4)R4, we have

    |fi(t,x1,x2,x3,x4)fi(t,y1,y2,y3,y4)|4k=1 ξik|xkyk|,

    and

    |gi(t,x1,x2,x3,x4)gi(t,y1,y2,y3,y4)|4k=1 χik|xkyk|.

    (H3) There exist nonnegative constants (Li) and  (Ki) i=1,...,m, such that: For each t[0,T] and all (x1,x2,x3,x4)R4,

    |fi(t,x1,x2,x3,x4)|Li,|gi(t,x1,x2,x3,x4)|Ki,i=1,...,m.

    We also consider the following quantities:

    A1=TαΓ(α+1)mi=1(ξi1+ξi2+ξi3+ξi4),A2=TβΓ(β+1)mi=1(χi1+χi2+χi3+χi4),A3=maxt,s[0,1]||A1(t,s)||×A1,A4=maxt,s[0,1]||A2(t,s)||×A1,A5=maxt,s[0,1]||B1(t,s)||×A2,A6=maxt,s[0,1]||B2(t,s)||×A2,ν1=[TαΓ(α+1)+1ψ(Tα+12+θT3α2(2α1)2Γ(2α1))],ν2=[TβΓ(β+1)+1ψ(Tβ+12+ωT3β2(2β1)2Γ(2β1))],ν3=maxt,s[0,1]|A1(t,s)|ν1,ν4=maxt,s[0,1]|A2(t,s)|ν1,ν5=maxt,s[0,1]|B1(t,s)|ν2,ν6=maxt,s[0,1]|B2(t,s)|ν2.

    The first result is based on Banach contraction principle. We have

    Theorem 3.1. Assume that (H2) holds. If the inequality

    max(A1,A2,A3,A4,A5,A6)<1, (3.1)

    is valid, then the system (1.1) has a unique solution on [0,T].

    Proof. We define the operator T:EE by

    T(x,y)(t)=(T1(x,y)(t),T2(x,y)(t)),t[0,T],

    such that

    T1(x,y)(t)=1Γ(α)mi=1t0(tτ)α1Hi(τ)dτ+tα1ψ(mi=1T0(Tτ)Hi(τ)dτθΓ(2α)mi=1η0(ητ)2α2Hi(τ)dτ) (3.2)

    and

    T2(x,y)(t)=1Γ(β)mi=1t0(tτ)β1Gi(τ)dτ+tβ1ψ(mi=1T0(Tτ)Gi(τ)dτωΓ(2β)mi=1γ0(γτ)2β2Gi(τ)dτ) (3.3)

    where

    Hi(τ)=fi(τ,x(τ),y(τ),φ1x(τ),ϕ1y(τ))

    and

    Gi(τ)=gi(τ,x(τ),y(τ),φ2x(τ),ϕ2y(τ)).

    We obtain

    φiT1(x,y)(t)=t0Ai(t,s)T1(x,y)(s)ds, ϕiT2(x,y)(t)=t0Bi(t,s)T2(x,y)(s)ds

    where i=1,2.

    We shall now prove that T is contractive.

    Let T1(x1,y1),T2(x2,y2)E. Then, for each t[0,T], we have

    |T1(x1,y1)T1(x2,y2)|[1Γ(α)mi=1t0(tτ)α1dτ+tα1ψ(mi=1T0(Tτ)dτθΓ(2α)mi=1η0(ητ)2α2dτ)]×maxτ[0,T]mi=1|(fi(τ,x1(τ),y1(τ),φ1x1(τ),ϕ1y1(τ))fi(τ,x2(τ),y2(τ),φ1x2(τ),ϕ1y2(τ)))|TαΓ(α+1)maxτ[0,T]mi=1|(fi(τ,x1(τ),y1(τ),φ1x1(τ),ϕ1y1(τ))fi(τ,x2(τ),y2(τ),φ1x2(τ),ϕ1y2(τ)))|.

    By (H2), it follows that

    ||T1(x1,y1)T1(x2,y2)||TαΓ(α+1)mi=1(ξi1+ξi2+ξi3+ξi4)×max(||x1x2||,||y1y2||,||φ1(x1x2)||,||φ2(x1x2)||,||ϕ1(y1y2)||,||ϕ2(y1y2)||).

    Hence,

    ||T1(x1,y1)T1(x2,y2)||A1||x1x2,y1y2||E. (3.4)

    With the same arguments as before, we can show that

    ||T2(x1,y1)T2(x2,y2)||A2||x1x2,y1y2||E. (3.5)

    On the other hand, we have

    ||φ1(T1(x1,y1)T1(x2,y2))||t0||A1(t,s)||||T1(x1,y1)T1(x2,y2)||dsmaxt,s[0,1]||A1(t,s)||×A1||x1x2,y1y2||E.

    Hence,

    ||φ1(T1(x1,y1)T1(x2,y2))||A3||x1x2,y1y2||E (3.6)

    and

    ||φ2(T1(x1,y1)T1(x2,y2))||A4||x1x2,y1y2||E. (3.7)

    Also, we have

    ||ϕ1(T2(x1,y1)T2(x2,y2))||A5||x1x2,y1y2||E (3.8)

    and

    ||ϕ2(T2(x1,y1)T2(x2,y2))||A6||x1x2,y1y2||E. (3.9)

    Thanks to (3.4)–(3.9), we get

    ||T(x1,y1)T(x2,y2)||max(A1,A2,A3,A4,A5,A6)×||(x1x2,y1y2)||E. (3.10)

    Thanks to (3.10), we conclude that T is a contractive operator. Therefore, by Banach fixed point theorem, T has a unique fixed point which is the solution of the system (1.1).

    Our second main result is based on Lemma 2.1. We have

    Theorem 3.2. Assume that the hypotheses (H1) and (H3) are satisfied. Then, system (1.1) has at least a solution on [0,T].

    Proof. The operator T is continuous on E in view of the continuity of fi and gi (hypothesis (H1)).

    Now, we show that T is completely continuous:

    (i) First, we prove that T maps bounded sets of E into bounded sets of E. Taking λ>0, and (x,y)Ωλ={(x,y)E;||(x,y)||λ}, then for each t[0,T], we have:

    |T1(x,y)|[1Γ(α)t0(tτ)α1dτ+tα1ψ(T0(Tτ)dτθΓ(2α)η0(ητ)2α2dτ)]×supt[0,T]mi=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|[TαΓ(α+1)+1ψ(Tα+12+θT3α2(2α1)2Γ(2α1))]×supt[0,T]mi=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|,

    Thanks to (H3), we can write

    ||T1(x,y)||[TαΓ(α+1)+1ψ(Tα+12+θT3α2(2α1)2Γ(2α1))]mi=1Li.

    Thus,

    ||T1(x,y)||ν1mi=1Li. (3.11)

    As before, we have

    ||T2(x,y)||ν2mi=1Ki. (3.12)

    On the other hand, for all j=1,2, we get

    |ϕjT1(x,y)(t)|=|t0Aj(t,s)T1(x,y)(s)ds|maxt,s[0,1]|Aj(t,s)|ν1mi=1Li.

    This implies that

    ||ϕ1T1(x,y)(t)||ν3mi=1Li, (3.13)
    ||ϕ2T1(x,y)(t)||ν4mi=1Li. (3.14)

    Similarly, we have

    ||φ1T2(x,y)(t)||ν5mi=1Ki, (3.15)
    ||φ2T2(x,y)(t)||ν6mi=1Ki. (3.16)

    It follows from (3.11)–(3.16) that:

    ||T(x,y)||Emax(ν1mi=1Li,ν2mi=1Ki,ν3mi=1Li,ν4mi=1Li,,ν5mi=1,ν6mi=1).

    Thus,

    ||T(x,y)||E<.

    (ii) Second, we prove that T is equi-continuous:

    For any 0t1<t2T and (x,y)Ωλ, we have

    |T1(x,y)(t2)T1(x,y)(t1)|[1Γ(α)t10(t2τ)α1(t1τ)α1dτ+1Γ(α)t2t1(t2τ)α1dτ+tα12tα11ψ(T22θη2α1Γ(2α1)2Γ(2α1))]×supt[0,T]mi=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|[2Γ(α+1)(t2t1)α1+(tα12tα11)[T22ψθη2α1ψΓ(2α1)2Γ(2α1)+1Γ(α+1)]]×mi=1Li.

    Therefore,

    ||T1(x,y)(t2)T1(x,y)(t1)||E[2Γ(α+1)(t2t1)α1+(tα12tα11)[T22ψ+1Γ(α+1)]]×mi=1Li. (3.17)

    We also have

    ||T2(x,y)(t2)T2(x,y)(t1)||E[2Γ(β+1)(t2t1)β1+(tβ12tβ11)[T22ψ+1Γ(β+1)]]×mi=1Ki. (3.18)

    On the other hand,

    |ϕiT1(x,y)(t2)ϕiT1(x,y)(t1)|[maxs[0,1]|Ai(t2,s)Ai(t1,s)|+(t2t1)maxs[0,1]|Ai(t1,s)|]×sups[0,1]|T1(x,y)(s)|.

    Consequently, for all i=1,2, we obtain

    ||ϕiT1(x,y)(t2)ϕiT1(x,y)(t1)||[maxs[0,1]|Ai(t2,s)Ai(t1,s)|+(t2t1)maxs[0,1]|Ai(t1,s)|]ν1mi=1Li. (3.19)

    Similarly,

    ||φiT1(x,y)(t2)φiT1(x,y)(t1)||[maxs[0,1]|Bi(t2,s)Bi(t1,s)|+(t2t1)maxs[0,1]|Bi(t1,s)|]ν2mi=1Ki. (3.20)

    where i=1,2. Using (3.17)–(3.20), we deduce that

    ||T(x,y)(t2)T(x,y)(t1)||E0

    as t2t1.

    Combining (i) and (ii), we conclude that T is completely continuous.

    (iii) Finally, we shall prove that the set F defined by

    F={(x,y)E,(x,y)=ρT(x,y), 0<ρ<1}

    is bounded.

    Let (x,y)F, then (x,y)=ρT(x,y), for some 0<ρ<1. Thus, for each t[0,T], we have:

    x(t)=ρT1(x,y)(t), y(t)=ρT2(x,y)(t). (3.21)

    Thanks to (H3) and using (3.11) and (3.12), we deduce that

    ||x||ρν1mi=1Li, ||y||ρν2mi=1Ki. (3.22)

    Using (3.13)–(3.16), it yields that

    {||ϕ1x||ρν3mi=1Li||ϕ2x||ρν4mi=1Li||φ1y||ρν5mi=1Ki||φ2y||ρν6mi=1Ki. (3.23)

    It follows from (3.22) and (3.23) that

    ||T(x,y)||Eρmax(ν1mi=1Li,ν2mi=1Ki,ν3mi=1Li,ν4mi=1Li,,ν5mi=1,ν6mi=1).

    Consequently,

    ||(x,y)||E<.

    This shows that F is bounded. By Lemma (2.1), we deduce that T has a fixed point, which is a solution of (1.1).

    To illustrate our main results, we treat the following examples.

    Example 4.1. Consider the following system:

    {D32x(t)=cos(πt)(x+y+φ1x(t)+ϕ1y(t))10π(x+y+φ1x(t)+ϕ1y(t))+132π2e(cosx(t)+cosy(t)+φ1x(t)+ϕ1y(t)4π),D32y(t)=18π3(t+1)(x+y+φ2x(t)+ϕ2y(t)3+x+y+φ2x(t)+ϕ2y(t))+1(10π+et)e(t+1)(sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)2+sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)),I12x(0)=0, D12x(T)=I12(x(1)),I12y(0)=0, D12y(T)=I12(y(1)). (4.1)

    We have

    α=32, β=32, T=1, θ=1, ω=1, γ=1, m=2, η=1.

    Also,

    f1(t,x(t),y(t),φ1x(t),ϕ1y(t))=cos(πt)(x+y+φ1x(t)+ϕ1y(t))10π(1+x+y+φ1x(t)+ϕ1y(t)), (4.2)
    f2(t,x(t),y(t),φ1x(t),ϕ1y(t))=132π2e(cosx(t)+cosy(t)+φ1x(t)+ϕ1y(t)4π). (4.3)

    For t[0,1] and (x1,y1,φ1x1,ϕ1y1),(x2,y2,φ1x2,ϕ1y2)R4, we have

    |f1(t,x1,y1,φ1x1,ϕ1y1)f1(t,x2,y2,φ1x2,ϕ1y2)||cos(πt)|10π|x1+y1+φ1x1+ϕ1y11+x1+y1+φ1x1+ϕ1y1x2+y2+φ1x2+ϕ1y2)1+x2+y2+φ1x2+ϕ1y2)|110π(|x1x2|+|y1y2|+|φ1x1φ1x2|+|ϕ1y1ϕ1y2|) (4.4)

    and

    |f2(t,x1,y1,φ1x1,ϕ1y1)f2(t,x2,y2,φ1x2,ϕ1y2)|132πe(|x1x2|+|y1y2|+|φ1x1φ1x2|+|ϕ1y1ϕ1y2|). (4.5)

    So, we can take

    ξ11=ξ12=ξ13=ξ14=110π,
    ξ21=ξ22=ξ23=ξ24=132πe.

    We also have

    g1(t,x(t),y(t),φ2x(t),ϕ2y(t))=18π3(t+1)(x+y+φ2x(t)+ϕ2y(t)3+x+y+φ2x(t)+ϕ2y(t))

    and

    g2(t,x(t),y(t),φ2x(t),ϕ2y(t))=1(10π+et)et+1(sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)2+sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)) (4.6)

    For t[0,1] and (x1,y1,φ2x1,ϕ2y1),(x2,y2,φ2x2,ϕ2y2)R4, we can write

    |g1(t,x1,y1,φ2x1,ϕ2y1)g1(t,x2,y2,φ2x2,ϕ2y2)|18π3(|x1x2|+|y1y2|+|φ2x1φ2x2|+|ϕ2y1ϕ2y2|), (4.7)

    and

    |g2(t,x1,y1,φ2x1,ϕ2y1)g2(t,x2,y2,φ2x2,ϕ2y2)|110πe2(|x1x2|+|y1y2|+|φ2x1φ2x2|+|ϕ2y1ϕ2y2|). (4.8)

    Hence,

    χ11=χ12=χ13=χ14=18π3,
    χ21=χ22=χ23=χ24=110πe2.

    Therefore,

    A1=0.0589009676,A2=0.0250930393.

    Suppose

    Ai=Bi=1, i=1,2,

    so,

    A1=A3=A4,A2=A5=A6.

    Thus,

    max(A1,A2,A3,A4,A5,A6)<1, (4.9)

    and by Theorem 3.1, we conclude that the system (4.1) has a unique solution on [0,1].

    Example 4.2.

    {D32x(t)=π(t+1)sin(φ1x(t)+ϕ1y(t))2cos(x(t)+y(t))+et2π+cos(x(t)+φ1x(t))+sin(sin(y(t)+ϕ1y(t)), t[0,1],D43y(t)=e2sin(x(t)+y(t))2π+cos(φ2x(t)+ϕ2y(t))+3t2cosy(t)et3+1cos(x(t)+y(t)φ2x(t)ϕ2y(t)), t[0,1],I12x(0)=0, D12x(T)=I12(x(1)),I23y(0)=0, D23y(T)=I13(y(1)). (4.10)

    We have

    α=32, β=43, T=1, θ=1, ω=1, γ=1, m=2, η=1.

    Since

    |f1(t,x(t),y(t),φ1x(t),ϕ1y(t))|=|π(t+1)sin(φ1x(t)+ϕ1y(t))2cos(x(t)+y(t))|2π,|f2(t,x(t),y(t),φ1x(t),ϕ1y(t))|=|et2π+cos(x(t)+φ1x(t))+sin(sin(y(t)+ϕ1y(t))|e2π+2,|g1(t,x(t),y(t),φ2x(t),ϕ2y(t))|=|e2sin(x(t)+y(t))2π+cos(φ2x(t)+ϕ2y(t))|e22π+1,|g2(t,x(t),y(t),φ2x(t),ϕ2y(t))|=|3t2cosy(t)et3+1cos(x(t)+y(t)φ2x(t)ϕ2y(t))|3e1.

    The functions f1, f2, g1 and g2 are continuous and bounded on [0,1]×R4. So, by Theorem 3.2, the system (4.10) has at least one solution on [0,1].

    We have proved the existence of solutions for fractional differential equations with integral and multi-point boundary conditions. The problem is solved by applying some fixed point theorems. We also provide examples to make our results clear.

    The authors declare that they have no conflicts of interest in this paper.



    [1] D. Agarwal, P. Singh, M. A. El Sayed, The Karush-Kuhn-Tucker (KKT) optimality conditions for fuzzy-valued fractional optimization problems, Math. Comput. Simulat., 205 (2023), 861–877. https://doi.org/10.1016/j.matcom.2022.10.024 doi: 10.1016/j.matcom.2022.10.024
    [2] J. P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, In: Mathematical Analysis and Applications, Part A, New York: Academic Press, 1981,160–229.
    [3] J. P. Aubin, H. Frankowska, Set-valued analysis, Boston: Birhäuser, 1990.
    [4] M. Avriel, Nonlinear programming: Theory and method, Englewood Cliffs, New Jersey: Prentice-Hall, 1976.
    [5] D. Bhatia, P. K. Garg, Duality for non smooth non linear fractional multiobjective programs via (F, ρ)-convexity, Optimization, 43 (1998), 185–197. https://doi.org/10.1080/02331939808844382 doi: 10.1080/02331939808844382
    [6] D. Bhatia, A. Mehra, Lagrangian duality for preinvex set-valued functions, J. Math. Anal. Appl., 214 (1997), 599–612. https://doi.org/10.1006/jmaa.1997.5599 doi: 10.1006/jmaa.1997.5599
    [7] D. Bhatia, A. Mehra, Fractional programming involving set-valued functions, Indian J. Pure Appl. Math., 29 (1998), 525–540.
    [8] J. Borwein, Multivalued convexity and optimization: A unified approach to inequality and equality constraints, Math. Program., 13 (1977), 183–199. https://doi.org/10.1007/BF01584336 doi: 10.1007/BF01584336
    [9] K. Das, On constrained set-valued optimization problems with ρ-cone arcwise connectedness, SeMA J., 2022, 1–16. https://doi.org/10.1007/s40324-022-00295-0
    [10] K. Das, C. Nahak, Sufficient optimality conditions and duality theorems for set-valued optimization problem under generalized cone convexity, Rend. Circ. Mat. Palerm., 63 (2014), 329–345. https://doi.org/10.1007/s12215-014-0163-9 doi: 10.1007/s12215-014-0163-9
    [11] K. Das, C. Nahak, Optimality conditions for approximate quasi efficiency in set-valued equilibrium problems, SeMA J., 73 (2016), 183–199. https://doi.org/10.1007/s40324-016-0063-3 doi: 10.1007/s40324-016-0063-3
    [12] K. Das, C. Nahak, Set-valued fractional programming problems under generalized cone convexity, Opsearch, 53 (2016), 157–177. https://doi.org/10.1007/s12597-015-0222-9 doi: 10.1007/s12597-015-0222-9
    [13] K. Das, C. Nahak, Approximate quasi efficiency of set-valued optimization problems via weak subdifferential, SeMA J., 74 (2017), 523–542. https://doi.org/10.1007/s40324-016-0099-4 doi: 10.1007/s40324-016-0099-4
    [14] K. Das, C. Nahak, Optimality conditions for set-valued minimax fractional programming problems, SeMA J., 77 (2020), 161–179. https://doi.org/10.1007/s40324-019-00209-7 doi: 10.1007/s40324-019-00209-7
    [15] K. Das, C. Nahak, Set-valued optimization problems via second-order contingent epiderivative, Yugosl. J. Oper. Res., 31 (2021), 75–94. https://doi.org/10.2298/YJOR191215041D doi: 10.2298/YJOR191215041D
    [16] K. Das, S. Treanţă, On constrained set-valued semi-infinite programming problems with ρ-cone arcwise connectedness, Axioms, 10 (2021), 302. https://doi.org/10.3390/axioms10040302 doi: 10.3390/axioms10040302
    [17] K. Das, S. Treanţă, Constrained controlled optimization problems involving second-order derivatives, Quaest. Math., 2022, 1–11. https://doi.org/10.2989/16073606.2022.2055506
    [18] K. Das, S. Treanţă, T. Saeed, Mond-weir and wolfe duality of set-valued fractional minimax problems in terms of contingent epi-derivative of second-order, Mathematics, 10 (2022), 938. https://doi.org/10.3390/math10060938 doi: 10.3390/math10060938
    [19] M. A. Elsisy, M. A. El Sayed, Y. A.-Elnaga, A novel algorithm for generating Pareto frontier of bi-level multi-objective rough nonlinear programming problem, Ain Shams Eng. J., 12 (2021), 2125–2133. https://doi.org/10.1016/j.asej.2020.11.006 doi: 10.1016/j.asej.2020.11.006
    [20] M. A. Elsisy, A. S. Elsaadany, M. A. El Sayed, Using interval operations in the hungarian method to solve the fuzzy assignment problem and its application in the rehabilitation problem of valuable buildings in Egypt, Complexity, 2020, 1–11. https://doi.org/10.1155/2020/6623049
    [21] J. Y. Fu, Y. H. Wang, Arcwise connected cone-convex functions and mathematical programming, J. Optim. Theory Appl., 118 (2003), 339–352. https://doi.org/10.1023/A:1025451422581 doi: 10.1023/A:1025451422581
    [22] N. Gadhi, A. Jawhar, Necessary optimality conditions for a set-valued fractional extremal programming problem under inclusion constraints, J. Global Optim., 56 (2013), 489–501. https://doi.org/10.1007/s10898-012-9849-8 doi: 10.1007/s10898-012-9849-8
    [23] J. Jahn, R Rauh, Contingent epiderivatives and set-valued optimization, Math. Method. Oper. Res., 46 (1997), 193–211. https://doi.org/10.1007/BF03354124 doi: 10.1007/BF03354124
    [24] H. Jiao, Y. Shang, R. Chen, A potential practical algorithm for minimizing the sum of affine fractional functions, Optimization, 2022, 1–31. https://doi.org/10.1080/02331934.2022.2032051
    [25] H. Jiao, W. Wang, Y. Shang, Outer space branch-reduction-bound algorithm for solving generalized affine multiplicative problem, J. Comput. Appl. Math., 419 (2023), 114784. https://doi.org/10.1016/j.cam.2022.114784 doi: 10.1016/j.cam.2022.114784
    [26] R. N. Kaul, V. Lyall, A note on nonlinear fractional vector maximization, Opsearch, 26 (1989), 108–121. https://doi.org/10.1515/pm-1989-260303 doi: 10.1515/pm-1989-260303
    [27] M. B. Khan, G. Santos-García, S. Treanţă, M. A. Noor, M. S. Soliman, Perturbed mixed variational-like inequalities and auxiliary principle pertaining to a fuzzy environment, Symmetry, 14 (2022), 2503.
    [28] M. B. Khan, G. Santos-García, H. Budak, S. Treanţă, M. S. Soliman, Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p, F)-convex fuzzy-interval-valued functions, AIMS Math., 8 (2023), 7437–7470.
    [29] M. B. Khan, H. A. Othman, G. Santos-García, T. Saeed, M. S. Soliman, On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings, Chaos Soliton. Fract., 169 (2023), 113274.
    [30] M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities, Chaos Soliton. Fract., 164 (2022), 112692.
    [31] C. S. Lalitha, J. Dutta, M. G. Govil, Optimality criteria in set-valued optimization, J. Aust. Math. Soc., 75 (2003), 221–232. https://doi.org/10.1017/S1446788700003736 doi: 10.1017/S1446788700003736
    [32] J. C. Lee, S. C. Ho, Optimality and duality for multiobjective fractional problems with r-invexity, Taiwanese J. Math., 12 (2008), 719–740. https://doi.org/10.11650/twjm/1500574161 doi: 10.11650/twjm/1500574161
    [33] J. Ma, H. Jiao, J. Yin, Y. Shang, Outer space branching search method for solving generalized affine fractional optimization problem, AIMS Math., 8 (2023), 1959–1974. https://doi.org/10.3934/math.2023101 doi: 10.3934/math.2023101
    [34] Z. Peng, Y. Xu, Second-order optimality conditions for cone-subarcwise connected set-valued optimization problems, Acta Math. Appl. Sin.-E., 34 (2018), 183–196. https://doi.org/10.1007/s10255-018-0738-x doi: 10.1007/s10255-018-0738-x
    [35] Q. S. Qiu, X. M. Yang, Connectedness of henig weakly efficient solution set for set-valued optimization problems, J. Optim. Theory Appl., 152 (2012), 439–449. https://doi.org/10.1007/s10957-011-9906-3 doi: 10.1007/s10957-011-9906-3
    [36] L. Rodríguez-Marín, M. Sama, About contingent epiderivatives, J. Math. Anal. Appl., 327 (2007), 745–762. https://doi.org/10.1016/j.jmaa.2006.04.060 doi: 10.1016/j.jmaa.2006.04.060
    [37] M. A. El Sayed, M. A. Abo-Sinna, A novel approach for fully intuitionistic fuzzy multi-objective fractional transportation problem, Alex. Eng. J., 60 (2021), 1447–1463. https://doi.org/10.1016/j.aej.2020.10.063 doi: 10.1016/j.aej.2020.10.063
    [38] M. A. El Sayed, I. A. Baky, P. Singh, A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision making problem, Opsearch, 57 (2020), 1374–1403. https://doi.org/10.1007/s12597-020-00461-w doi: 10.1007/s12597-020-00461-w
    [39] M. A. El Sayed, F. A. Farahat, M. A. Elsisy, A novel interactive approach for solving uncertain bi-level multi-objective supply chain model, Comput. Ind. Eng., 169 (2022), 108225. https://doi.org/10.1016/j.cie.2022.108225 doi: 10.1016/j.cie.2022.108225
    [40] I. M. Stancu-Minasian, A eighth bibliography of fractional programming, Optimization, 66 (2017), 439–470. https://doi.org/10.1080/02331934.2016.1276179 doi: 10.1080/02331934.2016.1276179
    [41] I. M. Stancu-Minasian, A ninth bibliography of fractional programming, Optimization, 68 (2019), 2125–2169. https://doi.org/10.1080/02331934.2019.1632250 doi: 10.1080/02331934.2019.1632250
    [42] T. V. Su, D. D. Hang, Second-order optimality conditions in locally Lipschitz multiobjective fractional programming problem with inequality constraints, Optimization, 2021, 1–28. https://doi.org/10.1080/02331934.2021.2002328
    [43] S. K. Suneja, S. Gupta, Duality in multiple objective fractional programming problems involving nonconvex functions, Opsearch, 27 (1990), 239–253. https://doi.org/10.1515/tsd-1990-270418 doi: 10.1515/tsd-1990-270418
    [44] S. K. Suneja, C. S. Lalitha, Multiobjective fractional programming involving ρ-invex and related functions, Opsearch, 30 (1993), 1–14.
    [45] N. T. T. Thuy, T. V. Su, Robust optimality conditions and duality for nonsmooth multiobjective fractional semi-infinite programming problems with uncertain data, Optimization, 2022, 1–31. https://doi.org/10.1080/02331934.2022.2038154
    [46] S. Treanţă, K. Das, On robust saddle-point criterion in optimization problems with curvilinear integral functionals, Mathematics, 9 (2021), 1790. https://doi.org/10.3390/math9151790 doi: 10.3390/math9151790
    [47] T. V. Su, D. D. Hang, Optimality and duality in nonsmooth multiobjective fractional programming problem with constraints, 4OR-Q. J. Oper. Res., 20 (2022), 105–137. https://doi.org/10.1007/s10288-020-00470-x doi: 10.1007/s10288-020-00470-x
    [48] X. U. Yihong, L. I. Min, Optimality conditions for weakly efficient elements of set-valued optimization with α-order near cone-arcwise connectedness, J. Syst. Sci. Math. Sci., 36 (2016), 1721–1729. https://doi.org/10.12341/jssms12925 doi: 10.12341/jssms12925
    [49] G. Yu, Optimality of global proper efficiency for cone-arcwise connected set-valued optimization using contingent epiderivative, Asia Pac. J. Oper. Res., 30 (2013), 1340004. https://doi.org/10.1142/S0217595913400046 doi: 10.1142/S0217595913400046
    [50] G. Yu, Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps, Numer. Algebr. Control, 6 (2016), 35–44. https://doi.org/10.3934/naco.2016.6.35 doi: 10.3934/naco.2016.6.35
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1205) PDF downloads(62) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog