The skewness of a graph $ G $, $ sk(G) $, is the smallest number of edges that need to be removed from $ G $ to make it planar. The crossing number of a graph $ G $, $ cr(G) $, is the minimum number of crossings over all possible drawings of $ G $. There is minimal work concerning the relationship between skewness and crossing numbers. In this work, we first introduce an inequality relation for these two parameters, and then we construct infinitely many near-planar graphs such that the inequality is equal. In addition, we give a necessary and sufficient condition for a graph to have its skewness equal to the crossing number and characterize some special graphs with $ sk(G) = cr(G) $.
Citation: Zongpeng Ding. Skewness and the crossing numbers of graphs[J]. AIMS Mathematics, 2023, 8(10): 23989-23996. doi: 10.3934/math.20231223
The skewness of a graph $ G $, $ sk(G) $, is the smallest number of edges that need to be removed from $ G $ to make it planar. The crossing number of a graph $ G $, $ cr(G) $, is the minimum number of crossings over all possible drawings of $ G $. There is minimal work concerning the relationship between skewness and crossing numbers. In this work, we first introduce an inequality relation for these two parameters, and then we construct infinitely many near-planar graphs such that the inequality is equal. In addition, we give a necessary and sufficient condition for a graph to have its skewness equal to the crossing number and characterize some special graphs with $ sk(G) = cr(G) $.
[1] | M. O. Albertson, Chromatic number, independence ratio, and crossing number, ARS Math. Contemp., 1 (2008), 1–6. https://doi.org/10.26493/1855-3974.10.2d0 doi: 10.26493/1855-3974.10.2d0 |
[2] | C. Bachmaier, F. J. Brandenburg, K. Hanauer, D. Neuwirth, J. Reislhuber, NIC-planar graphs, Discrete Appl. Math., 232 (2017), 23–40. https://doi.org/10.1016/j.dam.2017.08.015 doi: 10.1016/j.dam.2017.08.015 |
[3] | J. A. Bondy, U. S. R. Murty, Graph theory, GTM 244, Springer, 2008. |
[4] | J. Barát, G. Tóth, Improvements on the density of maximal 1-planar graphs, J. Graph Theory, 88 (2018), 101–109. https://doi.org/10.1002/jgt.22187 doi: 10.1002/jgt.22187 |
[5] | S. N. Bhatt, F. T. Leighton, A framework for solving VLSI graph layout problems, J. Comput. Syst. Sci., 28 (1984), 300–343. https://doi.org/10.1016/0022-0000(84)90071-0 doi: 10.1016/0022-0000(84)90071-0 |
[6] | G. L. Chia, K. A. Sim, On the skewness of the join of graphs, Discrete Appl. Math., 161 (2013), 2405–2409. https://doi.org/10.1016/j.dam.2013.03.023 doi: 10.1016/j.dam.2013.03.023 |
[7] | M. Chimani, C. Gutwenger, Non-planar core reduction of graphs, Discrete Math., 309 (2009), 1838–1855. https://doi.org/10.1016/j.disc.2007.12.078 doi: 10.1016/j.disc.2007.12.078 |
[8] | R. J. Cimikowski, Graph planarization and skewness, Congr. Numer., 88 (1992), 21–32. |
[9] | S. Cabello, B. Mohar, Adding one edge to planar graphs makes crossing number and 1-planarity hard, SIAM J. Comput., 42 (2013), 1803–1829. https://doi.org/10.1137/120872310 doi: 10.1137/120872310 |
[10] | Z. Ding, Z. Ouyang, Y. Huang, F. M. Dong, New upper bounds for the crossing numbers of crossing-critical graphs, Discrete Math., 345 (2022), 113090. https://doi.org/10.1016/j.disc.2022.113090 doi: 10.1016/j.disc.2022.113090 |
[11] | M. R. Garey, D. S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods, 4 (1983), 312–316. https://doi.org/10.1137/0604033 doi: 10.1137/0604033 |
[12] | A. Liebers, Planarizing graphs–A survey and annotated bibliography, J. Graph Algorithms Appl., 5 (2001), 1–74. |
[13] | P. C. Liu, R. C. Geldmacher, On the deletion of nonplanar edges of a graph, Congressus Numerantium, 24 (1979), 727–738. |
[14] | D. McQuillan, S. Pan, R. B. Richter, On the crossing number of $K_13$, J. Combin. Theory, Ser. B, 115 (2015), 224–235. https://doi.org/10.1016/j.jctb.2015.06.002 doi: 10.1016/j.jctb.2015.06.002 |
[15] | M. Schaefer, Crossing numbers of graphs, CRC Press, Florida, 2017. |
[16] | X. Zhang, G. Liu, The structure of plane graphs with independent crossings and its application to coloring problems, Centr. Eur. J. Math., 11 (2013), 308–321. https://doi.org/10.2478/s11533-012-0094-7 doi: 10.2478/s11533-012-0094-7 |