In this paper, we show that the spectral problem associated to stretching modes in a thin folded plate can be derived from the three-dimensional eigenvalue problem of linear elasticity through a rigourous convergence analysis as the thickness of the plate goes to zero. We show, using a nonstandard asymptotic analysis technique, that each stretching frequency of an elastic thin folded plate is the limit of a family of high frequencies of the three-dimensional linearized elasticity system in the folded plate, as the thickness approaches zero.
Citation: Nabil Kerdid. Asymptotic analysis of stretching modes for a folded plate[J]. AIMS Mathematics, 2023, 8(10): 23974-23988. doi: 10.3934/math.20231222
In this paper, we show that the spectral problem associated to stretching modes in a thin folded plate can be derived from the three-dimensional eigenvalue problem of linear elasticity through a rigourous convergence analysis as the thickness of the plate goes to zero. We show, using a nonstandard asymptotic analysis technique, that each stretching frequency of an elastic thin folded plate is the limit of a family of high frequencies of the three-dimensional linearized elasticity system in the folded plate, as the thickness approaches zero.
[1] | H. Irago, N. Kerdid, J. M. Viaño, Asymptotic analysis of high frequency modes in thin rods, C. R. Acad. Sci. Ser. I Math., 326 (1998), 1255–1260. https://doi.org/10.1016/S0764-4442(98)80238-3 doi: 10.1016/S0764-4442(98)80238-3 |
[2] | H. Irago, N. Kerdid, J. M. Viaño, Asymptotic analysis of torsional and stretching modes of thin rods, Quart. Appl. Math., 58 (2000), 495–510. http://doi.org/10.1090/QAM/1770651 doi: 10.1090/QAM/1770651 |
[3] | P. G. Ciarlet, S. Kesavan, Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory, Comput. Methods Appl. Mech. Eng., 26 (1981), 145–172. http://doi.org/10.1016/0045-7825(81)90091-8 doi: 10.1016/0045-7825(81)90091-8 |
[4] | H. Le Dret, Vibrations of a folded plate, ESAIM: Math. Modell. Numer. Anal., 24 (1990), 501–521. https://doi.org/10.1051/m2an/1990240405011 doi: 10.1051/m2an/1990240405011 |
[5] | F. Bourquin, P. G. Ciarlet, Modeling and justification of eigenvalue problems for junctions between elastic structures, J. Funct. Anal., 87 (1989), 392–427. https://doi.org/10.1016/0022-1236(89)90017-7 doi: 10.1016/0022-1236(89)90017-7 |
[6] | V. Lods, Modeling and justification of an eigenvalue problem for a plate inserted in a three-dimensional support, ESAIM: Math. Modell. Numer. Anal., 30 (1996), 413–444. http://doi.org/10.1051/m2an/1996300404131 doi: 10.1051/m2an/1996300404131 |
[7] | N. Kerdid, Asymptotic behavior of the eigenvalue problem in a thin linearly elastic clamped rod when its thickness tends to zero, C. R. Acad. Sci. Ser. I Math., 316 (1993), 755–758. |
[8] | N. Kerdid, Modeling the vibrations of a multi-rod structure, ESAIM: Math. Modell. Numer. Anal., 31 (1997), 891–925. https://doi.org/10.1051/m2an/1997310708911 doi: 10.1051/m2an/1997310708911 |
[9] | S. Jimbo, A. R. Mulet, Asymptotic behavior of eigenfrequencies of a thin elastic rod with non-uniform cross-section, J. Math. Soc. Jpn, 72 (2020), 119–154. https://doi.org/10.2969/jmsj/81198119 doi: 10.2969/jmsj/81198119 |
[10] | S. Jimbo, E. Ushikoshi, H. Yoshihara, Asymptotic behavior of the eigenfrequencies of a thin elastic rod with non-uniform cross-section of extremely oblate shape, Calculus Var. Partial Differ. Equations, 62 (2023), 11. https://doi.org/10.1007/s00526-022-02325-1 doi: 10.1007/s00526-022-02325-1 |
[11] | M. Serpilli, S. Lenci, Asymptotic modelling of the linear dynamics of laminated beams, Int. J. Solids Struct., 49 (2012), 1147–1157. http://doi.org/10.1016/j.ijsolstr.2012.01.012 doi: 10.1016/j.ijsolstr.2012.01.012 |
[12] | J. Tamba${{\rm{\tilde c}}}$a, One-dimensional approximations of the eigenvalue problem of curved rods, Math. Methods Appl. Sci., 24 (2001), 927–948. https://doi.org/10.1002/mma.249 doi: 10.1002/mma.249 |
[13] | A. Gaudiello, D. Gómez, M. E. Pérez-Martínez, Asymptotic analysis of the high frequencies for the Laplace operator in a thin T-like shaped structure, J. Math. Pures Appl., 134 (2020), 299–327. http://doi.org/10.1016/j.matpur.2019.06.005 doi: 10.1016/j.matpur.2019.06.005 |