Research article

An improved upper bound for the dynamic list coloring of 1-planar graphs

  • Received: 15 September 2021 Revised: 22 January 2022 Accepted: 27 January 2022 Published: 10 February 2022
  • MSC : 05C10, 05C15

  • A graph is $ 1 $-planar if it can be drawn in the plane such that each of its edges is crossed at most once. A dynamic coloring of a graph $ G $ is a proper vertex coloring such that for each vertex of degree at least 2, its neighbors receive at least two different colors. The list dynamic chromatic number $ ch_{d}(G) $ of $ G $ is the least number $ k $ such that for any assignment of $ k $-element lists to the vertices of $ G $, there is a dynamic coloring of $ G $ where the color on each vertex is chosen from its list. In this paper, we show that if $ G $ is a 1-planar graph, then $ ch_{d}(G)\leq 10 $. This improves a result by Zhang and Li [16], which says that every 1-planar graph $ G $ has $ ch_{d}(G)\leq 11 $.

    Citation: Xiaoxue Hu, Jiangxu Kong. An improved upper bound for the dynamic list coloring of 1-planar graphs[J]. AIMS Mathematics, 2022, 7(5): 7337-7348. doi: 10.3934/math.2022409

    Related Papers:

  • A graph is $ 1 $-planar if it can be drawn in the plane such that each of its edges is crossed at most once. A dynamic coloring of a graph $ G $ is a proper vertex coloring such that for each vertex of degree at least 2, its neighbors receive at least two different colors. The list dynamic chromatic number $ ch_{d}(G) $ of $ G $ is the least number $ k $ such that for any assignment of $ k $-element lists to the vertices of $ G $, there is a dynamic coloring of $ G $ where the color on each vertex is chosen from its list. In this paper, we show that if $ G $ is a 1-planar graph, then $ ch_{d}(G)\leq 10 $. This improves a result by Zhang and Li [16], which says that every 1-planar graph $ G $ has $ ch_{d}(G)\leq 11 $.



    加载中


    [1] A. Ahadi, S. Akbari, A. Dehghan, M. Ghanbari, On the difference between chromatic number and dynamic chromatic number of graphs, Discrete Math., 312 (2012), 2579–2583. https://doi.org/10.1016/j.disc.2011.09.006 doi: 10.1016/j.disc.2011.09.006
    [2] M. Alishahi, On the dynamic coloring of graphs, Discrete Appl. Math., 159 (2011), 152–156. https://doi.org/10.1016/j.dam.2010.10.012 doi: 10.1016/j.dam.2010.10.012
    [3] P. Borowiecki, E. Sidorowicz, Dynamic coloring of graphs, Fund. Inform., 114 (2012), 105–128. https://doi.org/10.3233/FI-2012-620 doi: 10.3233/FI-2012-620
    [4] N. Bowler, J. Erde, F. Lehner, M. Merker, M. Pitz, K. Stavropoulos, A counterexample to montgomery's conjecture on dynamic colourings of regular graphs, Discrete Appl. Math., 229 (2017), 151–153. https://doi.org/10.1016/j.dam.2017.05.004 doi: 10.1016/j.dam.2017.05.004
    [5] Y. Chen, S. Fan, H. J. Lai, H. Song, L. Sun, On dynamic coloring for planar graphs and graphs of higher genus, Discrete Appl. Math., 160 (2012), 1064–1071. https://doi.org/10.1016/j.dam.2012.01.012 doi: 10.1016/j.dam.2012.01.012
    [6] L. Esperet, Dynamic list coloring of bipartite graphs, Discrete Appl. Math., 158 (2010), 1963–1965. https://doi.org/10.1016/j.dam.2010.08.007 doi: 10.1016/j.dam.2010.08.007
    [7] D. Karpov, Dynamic proper colorings of a graph, J. Math. Sci., 179 (2011), 601–615. https://doi.org/10.1007/s10958-011-0612-3 doi: 10.1007/s10958-011-0612-3
    [8] Y. Kim, S. Lee, S. Oum, Dynamic coloring of graphs having no $K_5$ minor, Discrete Appl. Math., 206 (2016), 81–89. https://doi.org/10.1016/j.dam.2016.01.022 doi: 10.1016/j.dam.2016.01.022
    [9] S. J. Kim, S. Lee, W. J. Park, Dynamic coloring and list dynamic coloring of planar graphs, Discrete Appl. Math., 161 (2013), 2207–2212. https://doi.org/10.1016/j.dam.2013.03.005 doi: 10.1016/j.dam.2013.03.005
    [10] H. J. Lai, J. Lin, B. Montgomery, T. Shuib, S. Fan, Conditional colorings of graphs, Discrete Math., 306 (2006), 1997–2004. https://doi.org/10.1016/j.disc.2006.03.052 doi: 10.1016/j.disc.2006.03.052
    [11] S. Loeb, T. Mahoney, B. Reiniger, J. Wise, Dynamic coloring parameters for graphs with given genus, Discrete Appl. Math., 235 (2018), 129–141. https://doi.org/10.1016/j.dam.2017.09.013 doi: 10.1016/j.dam.2017.09.013
    [12] B. Montgomery, Dynamic coloring of graphs, West Virginia University, 2001.
    [13] S. Saqaeeyan, E. Mollaahamdi, Dynamic chromatic number of bipartite graphs, Sci. Ann. Comput. Sci., 26 (2016), 249–261. https://doi.org/10.7561/SACS.2016.2.249 doi: 10.7561/SACS.2016.2.249
    [14] N. Vlasova, D. Karpov, Bounds on the dynamic chromatic number of a graph in terms of its chromatic number, J. Math. Sci., 232 (2018), 21–24. https://doi.org/10.1007/s10958-018-3855-4 doi: 10.1007/s10958-018-3855-4
    [15] X. Zhang, J. Wu, On edge coloring of 1-planar graphs, Inform. Process. Lett., 111 (2011), 124–128. https://doi.org/10.1016/j.ipl.2010.11.001 doi: 10.1016/j.ipl.2010.11.001
    [16] X. Zhang, Y. Li, Dynamic list coloring of 1-planar graphs, Discrete Math., 344 (2021), 112333. https://doi.org/10.1016/j.disc.2021.112333 doi: 10.1016/j.disc.2021.112333
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1445) PDF downloads(87) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog