Research article

Completeness of metric spaces and existence of best proximity points

  • Received: 24 October 2021 Revised: 24 January 2022 Accepted: 24 January 2022 Published: 10 February 2022
  • MSC : 47H04, 47H07, 47H09, 90C26

  • In this paper, we discuss the existence of best proximity points of new generalized proximal contractions of metric spaces. Moreover, we obtain a completeness characterization of underlying metric space via the best proximity points. Some new best proximity point theorems have been derived as consequences of main results in (partially ordered) metric spaces.

    Citation: Arshad Ali Khan, Basit Ali, Talat Nazir, Manuel de la Sen. Completeness of metric spaces and existence of best proximity points[J]. AIMS Mathematics, 2022, 7(5): 7318-7336. doi: 10.3934/math.2022408

    Related Papers:

  • In this paper, we discuss the existence of best proximity points of new generalized proximal contractions of metric spaces. Moreover, we obtain a completeness characterization of underlying metric space via the best proximity points. Some new best proximity point theorems have been derived as consequences of main results in (partially ordered) metric spaces.



    加载中


    [1] M. Abbas, V. Rakočević, A. Hussain, Best proximity point of Zamfirescu contractions of Perov type on regular cone metric spaces, Fixed Point Theory, 21 (2020), 3–18. https://doi.org/10.24193/fpt-ro.2020.1.01 doi: 10.24193/fpt-ro.2020.1.01
    [2] A. Abkar, M. Gabeleh, A best proximity point theorem for Suzuki type contraction nonself mappings, Fixed Point Theory, 14 (2013), 281–288.
    [3] B. Ali, M. Abbas, Existence and stability of fixed point set of Suzuki-type contractive multivalued operators in b-metric spaces with applications in delay differential equations, J. Fixed Point Theory Appl., 19 (2017), 2327–2347. https://doi.org/10.1007/s11784-017-0426-0 doi: 10.1007/s11784-017-0426-0
    [4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
    [5] T. Q. Bao, S. Cobzas, A. Soubeyran, Variational principles, completeness and the existence of traps in behavioral sciences, Ann. Oper. Res., 269 (2018), 53–79. https://doi.org/10.1007/s10479-016-2368-0 doi: 10.1007/s10479-016-2368-0
    [6] S. S. Basha, Best proximity point theorems, J. Approx. Theory, 163 (2011), 1772–1781. https://doi.org/10.1016/j.jat.2011.06.012 doi: 10.1016/j.jat.2011.06.012
    [7] S. S. Basha, Best proximity point theorems on partially ordered sets, Optim. Lett., 7 (2013), 1035–1043. https://doi.org/10.1007/s11590-012-0489-1 doi: 10.1007/s11590-012-0489-1
    [8] S. S. Basha, N. Shahzad, Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl., 2012 (2012), 42. https://doi.org/10.1186/1687-1812-2012-42 doi: 10.1186/1687-1812-2012-42
    [9] V. Berinde, Iterative approximation of fixed points, Berlin: Springer, 2007.
    [10] S. Cobzaş, Fixed points and completeness in metric and in generalized metric spaces, 2015, arXiv: 1508.05173.
    [11] E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc., 10 (1959), 974–979. https://doi.org/10.2307/2033633 doi: 10.2307/2033633
    [12] A. Fernández León, M. Gabeleh, Best proximity pair theorems for noncyclic mappings in Banach and metric spaces, Fixed Point Theory, 17 (2016), 63–84.
    [13] M. Gabeleh, Best Proximity points for weak proximal contractions, Bull. Malays. Math. Sci. Soc., 38 (2015), 143–154. https://doi.org/10.1007/s40840-014-0009-9 doi: 10.1007/s40840-014-0009-9
    [14] M. Gabeleh, Semi-normal structure and best proximity pair results in convex metric spaces, Banach J. Math. Anal., 8 (2014): 214–228. https://doi.org/10.15352/bjma/1396640065
    [15] K. Fan, Extensions of two fixed point theorems of F.E. Browder, Math. Z., 112 (1969), 234–240.
    [16] N. Hussain, M. A. Kutbi, P. Salimi, Best proximity point results for modified $(\alpha, \psi)-$proximal rational contractions, Abstr. Appl. Anal., 2013 (2013), 1–12.
    [17] N. Hussain, A. Latif, P. Salimi, Best proximity point results for modified Suzuki $(\alpha -\psi)$-proximal contractions, Fixed Point Theory Appl., 2014 (2014), 10.
    [18] M. Jleli, B. Samet, Best proximity points for $\alpha -\psi -$ proximal contractive type mappings and applications, B. Sci. Math., 137 (2013), 977–995.
    [19] M. Jleli, E. Karapinar, B. Samet, Best proximity points for generalized proximal contractive type mapping, J. Appl. Math., 2013 (2013), 534127. https://doi.org/10.1155/2013/534127 doi: 10.1155/2013/534127
    [20] E. Karapinar, F. Khojasteh, An approach to best proximity points results via simulation functions, J. Fixed Point Theory Appl., 19 (2017), 1983–1995. https://doi.org/10.1007/s11784-016-0380-2 doi: 10.1007/s11784-016-0380-2
    [21] A. Petrusel, G. Petrusel, Fixed points, coupled fixed points and best proximity points for cyclic operators, J. Nonlinear Convex Anal., 20 (2019), 1637–1646.
    [22] J. B. Prolla, Fixed point theorems for set valued mappings and existence of best approximations, Numer. Funct. Anal. Optim., 5 (1983), 449–455. https://doi.org/10.1080/01630568308816149 doi: 10.1080/01630568308816149
    [23] S. Romaguera, O. Valero, On the structure of formal balls of the balanced quasi-metric domain of words, 2016, arXiv: 1607.05298.
    [24] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for $(\alpha -\psi)-$contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165.
    [25] V. M. Sehgal, S. P. Singh, A generalization to multifunctions of Fan's best approximation theorem, Proc. Amer. Math. Soc., 102 (1988), 534–537. https://doi.org/10.1090/S0002-9939-1988-0928974-5 doi: 10.1090/S0002-9939-1988-0928974-5
    [26] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861–1869. https://doi.org/10.1090/S0002-9939-07-09055-7 doi: 10.1090/S0002-9939-07-09055-7
    [27] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313–5317. https://doi.org/10.1016/j.na.2009.04.017 doi: 10.1016/j.na.2009.04.017
    [28] K. Urai, Fixed point theorems and the existence of economic equilibria based on conditions for local directions of mappings, In: Advances in mathematical economics, 2000, 87–118. https://doi.org/10.1007/978-4-431-67909-7_5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1650) PDF downloads(141) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog