Research article Special Issues

A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: Application to KdV and Fornberg-Witham equations

  • Received: 08 December 2021 Revised: 21 February 2022 Accepted: 06 March 2022 Published: 11 March 2022
  • MSC : 35R11

  • It is important to deal with the exact solution of nonlinear PDEs of non-integer orders. Integral transforms play a vital role in solving differential equations of integer and fractional orders. To obtain analytical solutions to integer and fractional-order DEs, a few transforms, such as Laplace transforms, Sumudu transforms, and Elzaki transforms, have been widely used by researchers. We propose the Yang transform homotopy perturbation (YTHP) technique in this paper. We present the relation of Yang transform (YT) with the Laplace transform. We find a formula for the YT of fractional derivative in Caputo sense. We deduce a procedure for computing the solution of fractional-order nonlinear PDEs involving the power-law kernel. We show the convergence and error estimate of the suggested method. We give some examples to illustrate the novel method. We provide a comparison between the approximate solution and exact solution through tables and graphs.

    Citation: Shabir Ahmad, Aman Ullah, Ali Akgül, Fahd Jarad. A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: Application to KdV and Fornberg-Witham equations[J]. AIMS Mathematics, 2022, 7(5): 9389-9404. doi: 10.3934/math.2022521

    Related Papers:

  • It is important to deal with the exact solution of nonlinear PDEs of non-integer orders. Integral transforms play a vital role in solving differential equations of integer and fractional orders. To obtain analytical solutions to integer and fractional-order DEs, a few transforms, such as Laplace transforms, Sumudu transforms, and Elzaki transforms, have been widely used by researchers. We propose the Yang transform homotopy perturbation (YTHP) technique in this paper. We present the relation of Yang transform (YT) with the Laplace transform. We find a formula for the YT of fractional derivative in Caputo sense. We deduce a procedure for computing the solution of fractional-order nonlinear PDEs involving the power-law kernel. We show the convergence and error estimate of the suggested method. We give some examples to illustrate the novel method. We provide a comparison between the approximate solution and exact solution through tables and graphs.



    加载中


    [1] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and numerical methods, World Scientific, 2012.
    [2] R. T. Alqahtani, S. Ahmad, A. Akgül, Dynamical analysis of Bio-Ethanol production model under generalized nonlocal operator in Caputo Sense, Mathematics, 9 (2021), 2370. https://doi.org/10.3390/math9192370 doi: 10.3390/math9192370
    [3] R. Ozarslan, E. Bas, D. Baleanu, B. Acay, Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel, AIMS Mathematics, 5 (2020), 467–481. https://doi.org/10.3934/math.2020031 doi: 10.3934/math.2020031
    [4] S. Ahmad, A. Ullah, A. Akgül, M. De la Sen, A study of fractional order Ambartsumian equation involving exponential decay kernel, AIMS Mathematics, 6 (2021), 9981–9997. https://doi.org/10.3934/math.2021580 doi: 10.3934/math.2021580
    [5] B. Acay, E. Bas, T. Abdeljawad, Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos Soliton. Fract., 130 (2020), 109438. https://doi.org/10.1016/j.chaos.2019.109438 doi: 10.1016/j.chaos.2019.109438
    [6] S. Ahmad, A. Ullah, K. Shah, A. Akgül, Computational analysis of the third order dispersive fractional PDE under exponential-decay and Mittag-Leffler type kernels, Numer. Meth. Part. Differ. Equ., 2020. https://doi.org/10.1002/num.22627
    [7] S. Ahmad, A. Ullah, A. Akgül, D. Baleanu, Analysis of the fractional tumour-immune-vitamins model with Mittag–Leffler kernel, Res. Phys., 19 (2020), 103559. https://doi.org/10.1016/j.rinp.2020.103559 doi: 10.1016/j.rinp.2020.103559
    [8] Gulalai, S. Ahmad, F. A. Rihan, A. Ullah, Q. M. Al-Mdallal, A. Akgül, Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative, AIMS Mathematics, 7 (2022), 7847–7865. https://doi.org/10.3934/math.2022439 doi: 10.3934/math.2022439
    [9] S. Saifullah, A. Ali, M. Irfan, K. Shah, Time-fractional Klein–Gordon equation with solitary/shock waves solutions, Math. Probl. Eng., 2021 (2021), 6858592. https://doi.org/10.1155/2021/6858592 doi: 10.1155/2021/6858592
    [10] F. Rahman, A. Ali, S. Saifullah, Analysis of time-fractional $\varPhi^{4}$ equation with singular and non-singular Kernels, Int. J. Appl. Comput. Math., 7 (2021), 192. https://doi.org/10.1007/s40819-021-01128-w doi: 10.1007/s40819-021-01128-w
    [11] S. Saifullah, A. Ali, Z. A. Khan, Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel, AIMS Mathematics, 7 (2022), 5275–5290. https://doi.org/10.3934/math.2022293 doi: 10.3934/math.2022293
    [12] G. K. Watugala, Sumudu transform-a new integral transform to solve differential equations and control engineering problems, Math. Eng. Ind., 6 (1998), 319–329.
    [13] T. M. Elzaki, S. M. Elzaki, Application of new integral transform Elzaki transform to partial differential equations, Glob. J. Pure Appl. Math., 7 (2011), 65–70.
    [14] K. S. Aboodh, Application of new integral transform "Aboodh Transform" to partial differential equations, Glob. J. Pure Appl. Math., 10 (2014), 249–254.
    [15] J. L. Schiff, Laplace transform: Theory and applications, New York: Springer, 1999. https://doi.org/10.1007/978-0-387-22757-3
    [16] J. H. He, Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng., 178 (1999), 257–262.
    [17] J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos Soliton. Fract., 26 (2005), 695–700. https://doi.org/10.1016/j.chaos.2005.03.006 doi: 10.1016/j.chaos.2005.03.006
    [18] S. Das, P. K. Gupta, An approximate analytical solution of the fractional diusion equation with absorbent term and external force by homotopy perturbation method, Zeitschrift für Naturforschung A, 65 (2014), 182–190. https://doi.org/10.1515/zna-2010-0305 doi: 10.1515/zna-2010-0305
    [19] S. Ahmad, A. Ullah, A. Akgül, M. De la Sen, A novel homotopy perturbation method with applications to nonlinear fractional order KdV and Burger equation with exponential-decay kernel, J. Funct. Spaces, 2021 (2021), 8770488. https://doi.org/10.1155/2021/8770488 doi: 10.1155/2021/8770488
    [20] X. J. Yang, A new integral transform method for solving steady heat-transfer problem, Therm. Sci., 20 (2016), S639–S642.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1800) PDF downloads(77) Cited by(21)

Article outline

Figures and Tables

Figures(6)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog