In this paper, we first investigate optimal control problem for semilinear parabolic and introduce the standard $ L^2(\Omega) $-orthogonal projection and the elliptic projection. Then we present some necessary intermediate variables and their error estimates. At last, we derive the error estimates between the finite element solutions and $ L^2 $-orthogonal projection or the elliptic projection of the exact solutions.
Citation: Chunjuan Hou, Zuliang Lu, Xuejiao Chen, Xiankui Wu, Fei Cai. Superconvergence for optimal control problems governed by semilinear parabolic equations[J]. AIMS Mathematics, 2022, 7(5): 9405-9423. doi: 10.3934/math.2022522
In this paper, we first investigate optimal control problem for semilinear parabolic and introduce the standard $ L^2(\Omega) $-orthogonal projection and the elliptic projection. Then we present some necessary intermediate variables and their error estimates. At last, we derive the error estimates between the finite element solutions and $ L^2 $-orthogonal projection or the elliptic projection of the exact solutions.
[1] | F. Gazzola, E. M. Marchini, The moon lander optimal control problem revisited, Math. Eng., 3 (2021), 1–14. https://doi.org/10.3934/mine.2021040 doi: 10.3934/mine.2021040 |
[2] | T. Burden, J. Ernstberger, K. R. Fister, Optimal control applied to immunotherapy, Discrete Cont. Dyn.-B, 4 (2004), 135–146. https://doi.org/10.3934/dcdsb.2004.4.135 doi: 10.3934/dcdsb.2004.4.135 |
[3] | E. Casas, M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints, J. Control Optim., 40 (2002), 1431–1454. https://doi.org/10.1137/S0363012900382011 doi: 10.1137/S0363012900382011 |
[4] | E. Casas, J. P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim., 45 (2006), 1586–1611. https://doi.org/10.1137/050626600 doi: 10.1137/050626600 |
[5] | Y. Chen, F. Huang, Spectral method approximation of flow optimal control problems with $H^1$-norm state constraint, Numer. Math.: Theory, Methods Appl., 10 (2017), 614–638. https://doi.org/10.4208/nmtma.2017.m1419 doi: 10.4208/nmtma.2017.m1419 |
[6] | P. Neittaanmaki, D. Tiba, Optimal control of nonlinear parabolic systems: theory, Algorithms and Applications, CRC Press, 1994. |
[7] | D. Tiba, Lectures on the optimal control of elliptic equations, University of Jyv$\ddot{a}$skyl$\ddot{a}$, Department of Mathematics, 1995. |
[8] | Y. Tang, Y. Hua, Convergence and superconvergence of variational discretization for parabolic bilinear optimization problems, J. Ineq. Appl., 1 (2019), 1–13. https://doi.org/10.1186/s13660-019-2195-3 doi: 10.1186/s13660-019-2195-3 |
[9] | F. Huang, Y. Chen, Y. Huang, A priori error estimates of a meshless method for optimal control problems of stochastic elliptic PDEs, Int. J. Comp. Math., 96 (2019), 1048–1065. https://doi.org/10.1080/00207160.2018.1483022 doi: 10.1080/00207160.2018.1483022 |
[10] | I. Lasiecka, Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions, SIAM J. Control Optim., 22 (1984), 477–500. https://doi.org/10.1137/0322029 doi: 10.1137/0322029 |
[11] | G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 20 (1982), 414–427. https://doi.org/10.1137/0320032 doi: 10.1137/0320032 |
[12] | W. Liu, N. Yan, A posteriori error estimates for optimal boundary control, SIAM J. Numer. Anal., 39 (2001), 73–99. https://doi.org/10.1137/S0036142999352187 doi: 10.1137/S0036142999352187 |
[13] | W. Liu, H. Ma, T. Tang, N. Yan, A posteriori error estimates for Discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations, SIAM J. Numer. Anal., 42 (2006), 1032–1061. https://doi.org/10.1137/S0036142902397090 doi: 10.1137/S0036142902397090 |
[14] | W. Liu, N. Yan, A posteriori error estimates for control problems gonverned by Stokes equations, SIAM J. Numer. Anal., 40 (2002), 1850–1869. https://doi.org/10.1137/S0036142901384009 doi: 10.1137/S0036142901384009 |
[15] | T. Hou, Y. Chen, Superconvergence of RT1 mixed finite element approximations for elliptic control problems, Sci. China Math., 56 (2013), 267–281. https://doi.org/10.1007/s11425-012-4461-4 doi: 10.1007/s11425-012-4461-4 |
[16] | Z. Lu, Y. Chen, A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems, Adv. Appl. Math. Mech., 1 (2009), 242–256. |
[17] | Y. Chen, W. Liu, A posteriori error estimates for mixed finite element solutions of convex optimal control problems, J. Compu. Appl. Math., 211 (2008), 76–89. https://doi.org/10.1016/j.cam.2006.11.015 doi: 10.1016/j.cam.2006.11.015 |
[18] | Z. Lu, Y. Chen, $L^{\infty}$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations, Sibirskii Zhurnal Vychislitel'noi Matematiki, 12 (2009), 91–105. |
[19] | X. Xing, Y. Chen, $L^\infty$-error estimates for general optimal control problem by mixed finite element methods, Int J Numer Anal Model, 5 (2008), 441–456. https://doi.org/10.1038/456441a doi: 10.1038/456441a |
[20] | Y. Chen, H. Leng, W. Yang, Error estimates of pseudostress-velocity MFEM for optimal control problems governed by stokes equations, Appl. Numer. Math., 135 (2019), 407–422. https://doi.org/10.1016/j.apnum.2018.09.009 doi: 10.1016/j.apnum.2018.09.009 |
[21] | T. Hou, H. Leng, Superconvergence analysis and two-grid algorithms of pseudostress-velocity MFEM for optimal control problems governed by Stokes equations, Appl. Numer. Math., 138 (2019), 78–93. https://doi.org/10.1016/j.apnum.2018.12.008 doi: 10.1016/j.apnum.2018.12.008 |
[22] | Y. Dai, Y. Chen, Superconvergence for general convex optimal control problems governed by semilinear parabolic equations, Int. Scholarly Research Notices, (2014), 364–375. https://doi.org/10.1155/2014/579047 |
[23] | C. Hou, Y. Chen, Z. Lu, Superconvergence property of finite element methods for parabolic optimal control problems, J. Indus. Manag. Optim., 7 (2011), 927–945. https://doi.org/10.3934/jimo.2011.7.927 doi: 10.3934/jimo.2011.7.927 |
[24] | W. Liu, N. Yan, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93 (2003), 497–521. https://doi.org/10.1007/s002110100380 doi: 10.1007/s002110100380 |
[25] | X. Xing, Y. Chen, Superconvergence of mixed methods for optimal control problems governed by parabolic equations, Adva. Appl. Math. Mech., 3 (2011), 401–419. https://doi.org/10.4208/aamm.10-m1006 doi: 10.4208/aamm.10-m1006 |
[26] | Y. Chen, Y. Wang, Y. Huang et al, Two-grid methods of expanded mixed finite-element solutions for nonlinear parabolic problems, Appl. Numer. Math., 144 (2019), 204–222. https://doi.org/10.1016/j.apnum.2019.04.015 doi: 10.1016/j.apnum.2019.04.015 |
[27] | Y. Chen, Y. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comp., 39 (2019), 206–221. https://doi.org/10.1007/s10915-008-9258-9 doi: 10.1007/s10915-008-9258-9 |
[28] | J. L. Lions, Optimal control of systems governed by partial differential equations, Springer Verlag, Berlin, 1971. https://doi.org/10.1007/978-3-642-65024-6 |
[29] | Y. Chen, N. Yi, W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254–2275. https://doi.org/10.1137/070679703 doi: 10.1137/070679703 |
[30] | Y. Kwon, F. A. Milner, $L^\infty$-Error Estimates for Mixed Methods for Semilinear Second-Order Elliptic Equations, J. Numer. Anal., 25 (1988), 46–53. https://doi.org/10.1137/0725005 doi: 10.1137/0725005 |
[31] | R. Li, W. Liu, N. Yan, A posteriori error estimates of recovery type for distributed convex optimal control problems, J. Sci. Comp., 33 (2007), 155–182. https://doi.org/10.1007/s10915-007-9147-7 doi: 10.1007/s10915-007-9147-7 |