This article presents a set of generalized $ \wp $-dependent formulae for fuzzy and crisp versions of various graph indices, including the first and second Zagreb indices, harmonic index and Randic index. These formulae are applied to the identity graph of the commutative ring $ Z_{\wp} $, and the resulting indices are calculated by using MATLAB software for 20 prime numbers. The generated data were applied for machine learning by using Python and Jupyter notebook to investigate the relationship between fuzzy and crisp indices. The article also includes the relationship between fuzzy and crisp indices in the form of six-degree polynomials and an error analysis.
Citation: Muhammad Umar Mirza, Rukhshanda Anjum, Maged Z. Youssef, Turki Alsuraiheed. A comprehensive study on fuzzy and crisp graph indices: generalized formulae, proximity and accuracy analysis[J]. AIMS Mathematics, 2023, 8(12): 30922-30939. doi: 10.3934/math.20231582
This article presents a set of generalized $ \wp $-dependent formulae for fuzzy and crisp versions of various graph indices, including the first and second Zagreb indices, harmonic index and Randic index. These formulae are applied to the identity graph of the commutative ring $ Z_{\wp} $, and the resulting indices are calculated by using MATLAB software for 20 prime numbers. The generated data were applied for machine learning by using Python and Jupyter notebook to investigate the relationship between fuzzy and crisp indices. The article also includes the relationship between fuzzy and crisp indices in the form of six-degree polynomials and an error analysis.
[1] | H. Bielak, K. Broniszewska, Eccentric distance sum index for some classes of connected graphs, Ann. Uni. Mariae Curie-Sklodowska, Sec. A Math., 71 (2017), 25–32. https://doi.org/10.17951/a.2017.71.2.25 doi: 10.17951/a.2017.71.2.25 |
[2] | M. Mogharrab, Eccentric connectivity index of bridge graphs, Optoelectron. Adv. Mater. Commun., 4 (2010), 1866–1867. |
[3] | N. De, On eccentric connectivity index and polynomial of thorn graph, Sci. Res., 3 (2012), 21477. https://doi.org/10.4236/am.2012.38139 doi: 10.4236/am.2012.38139 |
[4] | R. Rasi, S. M. Sheikholeslami, A. Behmaram, An upper bound on the first Zagreb index in trees, Iran. J. Math. Chem., 8 (2017), 71–82. https://doi.org/10.22052/ijmc.2017.42995 doi: 10.22052/ijmc.2017.42995 |
[5] | X. Geng, S. Li, M. Zhang, Extremal values on the eccentric distance sum of trees, Dis. Appl. Math., 161 (2013), 2427–2439. https://doi.org/10.1016/j.dam.2013.05.023 doi: 10.1016/j.dam.2013.05.023 |
[6] | G. Yu, L. Feng, A. Ilic, On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl., 375 (2011), 99–107. https://doi.org/10.1016/j.jmaa.2010.08.054 doi: 10.1016/j.jmaa.2010.08.054 |
[7] | Y. A. S. A. R. Nacaroglu, A. D. Maden, On the eccentric connectivity index of unicyclic graphs, Iran. J. Math. Chem., 9 (2018), 47–56. https://doi.org/10.22052/ijmc.2017.59425.1231 doi: 10.22052/ijmc.2017.59425.1231 |
[8] | S. C. Li, Y. Y. Wu, L. L. Sun, On the minimum eccentric distance sum of bipartite graphs with some given parameters, J. Math. Anal. Appl., 430 (2015), 1149–1162. https://doi.org/10.1016/j.jmaa.2015.05.032 doi: 10.1016/j.jmaa.2015.05.032 |
[9] | T. Došlic, M. Saheli, Eccentric connectivity index of composite graphs, Util. Math., 95 (2014), 3–22. |
[10] | M. R. Kanna, P. Kumar, D. S. Nandappa, Computation of topological indices of windmill grahp, Int. J. Pure Appl. Math., 119 (2018), 89–98. https://doi.org/10.12732/ijpam.v119i1.7 doi: 10.12732/ijpam.v119i1.7 |
[11] | X. Zhang, H. Yang, Y. Gao, M. R. Farahani, Some degree-based topological indices of base-3 Sierpinski graphs, Sci. J. Chem., 5 (2017), 36–41. http://dx.doi.org/10.11648/j.sjc.20170503.12 doi: 10.11648/j.sjc.20170503.12 |
[12] | B. Eskender, E. Vumar, Eccentric connectivity index and eccentric distance sum of some graph operations, Trans. Comb., 2 (2013), 103–111. https://doi.org/10.22108/toc.2013.2839 doi: 10.22108/toc.2013.2839 |
[13] | J. Vahidi, A. A. Talebi, The commuting graphs on groups D2n and Qn, J. Math. Comput. Sci., 1 (2010), 123–127. https://doi.org/10.22436/jmcs.001.02.07 doi: 10.22436/jmcs.001.02.07 |
[14] | Z. Raza, S. Faizi, Non-commuting graph of finitely presented group, Sci. Int., 25 (2013), 883–885. |
[15] | Y. F. Zakariya, Inverse graphs associated with finite groups, Ph.D thesis, King Fahd University of Petroleum and Minerals, Saudi Arabia, 2015. |
[16] | W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral, Special set linear algebra and special set fuzzy linear algebra, preprint paper, 2009. https://doi.org/10.48550/arXiv.0912.5441 |
[17] | A. Erfanian, B. Tolue, Conjugate graphs of finite groups, Dis. Math. Algor. Appl., 4 (2012), 1250035. https://doi.org/10.1142/S1793830912500358 doi: 10.1142/S1793830912500358 |
[18] | D. F. Anderson, J. Fasteen, J. D. LaGrange, The subgroup graph of a group, Arab. J. Math., 1 (2012), 17–27. https://doi.org/10.1007/s40065-012-0018-1 doi: 10.1007/s40065-012-0018-1 |
[19] | M. Mirzargar, Some distance-based topological indices of a non-commuting graph ABSTRACT FULL TEXT, Hacettepe J. Math. Stat., 41 (2012), 515–526. |
[20] | N. H. Sarmin, N. I. Alimon, A. Erfanian, Topological indices of the non-commuting graph for generalised quaternion group, Bull. Malays. Math. Sci. Soc., 43 (2020), 3361–3367. https://doi.org/10.1007/s40840-019-00872-z doi: 10.1007/s40840-019-00872-z |
[21] | N. I. Alimon, N. H. Sarmin, A. Erfanian, The topological indices of non-commuting graph for quasidihedral group, Appl. Anal. Math. Model., 2018. |
[22] | N. I. Alimon, N. H. Sarmin, A. Erfanian, Topological indices of non-commuting graph of dihedral groups, Malays. J. Fund. Appl. Sci., 2018,473–476. |
[23] | M. Jahandideh, N. H. Sarmin, S. M. S. Omer, I. Ahvaz, L. Benghazi, The topological indices of non-commuting graph of a finite group, Int. J. Pure Appl. Math., 105 (2015), 27–38. http://dx.doi.org/10.12732/ijpam.v105i1.4 doi: 10.12732/ijpam.v105i1.4 |
[24] | M. Jahandideh, M. R. Darafsheh, N. Shirali, Computation of topological indices of non-commuting graphs, Ital. J. Pure Appl. Math., 34 (2015), 299–310. |
[25] | A. Abdussakir, Some topological indices of subgroup graph of gymmetric group, Math. Stat., 7 (2019), 98–105. |
[26] | A. Abdussakir, E. Susanti, N. Hidayati, N. M. Ulya, Eccentric distance sum and adjacent eccentric distance sum index of complement of subgroup graphs of dihedral group, J. Phys.: Conf. Ser., 1357 (2019), 012065. http://dx.doi.org/10.1088/1742-6596/1375/1/012065 doi: 10.1088/1742-6596/1375/1/012065 |
[27] | M. N. Jauhari, F. Ali, Survey on topological indices and graphs associated with a commutative ring, J. Phys.: Conf. Ser., 1562 (2020), 012008. http://dx.doi.org/10.1088/1742-6596/1562/1/012008 doi: 10.1088/1742-6596/1562/1/012008 |
[28] | M. Ghorbani, M. A. Hosseinzadeh, A new version of Zagreb indices, Filomat, 26 (2012), 93–100. http://dx.doi.org/10.2298/FIL1201093G doi: 10.2298/FIL1201093G |
[29] | N. Idrees, M. J. Saif, A. Rauf, S. Mustafa, First and second Zagreb eccentricity indices of thorny graphs, Symmetry, 9 (2017), 7. https://doi.org/10.3390/sym9010007 doi: 10.3390/sym9010007 |
[30] | L. Zhong, The harmonic index for graphs, Appl. Math. Lett., 25 (2012), 561–566. https://doi.org/10.1016/j.aml.2011.09.059 doi: 10.1016/j.aml.2011.09.059 |
[31] | J. Liu, On the harmonic index of triangle-free graphs, Appl. Math., 4 (2013), 1204–1206. http://dx.doi.org/10.4236/am.2013.48161 doi: 10.4236/am.2013.48161 |
[32] | L. Zhong, K. Xu, The harmonic index for bicyclic graphs, Utilitas Math., 90 (2013), 23–32. |
[33] | J. Li, W. C. Shiu, The harmonic index of a graph, Rocky Mount. J. Math., 44 (2014), 1607–1620. |
[34] | X. Li, Y. Shi, A survey on the Randic index, MATCH Commun. Math. Comput. Chem., 59 (2008), 127–156. |
[35] | S. Kalathian, S. Ramalingam, S. Raman, N. Srinivasan, Some topological indices in fuzzy graphs, J. Intell. Fuzzy Syst., 39 (2020), 6033–6046. http://dx.doi.org/10.3233/JIFS-189077 doi: 10.3233/JIFS-189077 |
[36] | Z. S. Mufti, E. Fatima, R. Anjum, F. Tchier, Q. Xin, M. Hossain, Computing first and second fuzzy Zagreb indices of linear and multiacyclic hydrocarbons, J. Funct. Spaces, 2023 (2023), 9752418. https://doi.org/10.1155/2023/9753418 doi: 10.1155/2023/9753418 |