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1. Introduction

The study of graph theory and its applications in various fields has gained a significant amount of
attention in recent years. Graph indices, which are numerical measures associated with graphs, have
been widely used to capture the structural characteristics of graphs and analyze their properties.
Among various types of graph indices, the Zagreb index, harmonic index and Randic index are
important measures that provide insights into the structural features of graphs. A lot of literature is
being published on topological indices these days; yet, this area has the potential to accommodate
new researchers. New topological indices are being defined every day, so research in this field is
never-ending. Topological indices were originally developed in the field of chemistry to understand
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the representations of different chemical structures, but now they are not limited to just chemical
graph theory. For example, in [1], the lower bounds of the eccentric distance sum index of connected
graphs and cacti are presented; in [2], the same index is calculated for the bridge graph; in [3], the
same index is calculated to transform the thorn graph into polynomial form. Studies on the
topological indices of tree graphs are also available. In [4], a study is conducted on the first Zagreb
index of the tree graph and the upper bounds of the first Zagreb index of the tree graph. In [5], the
eccentric distance sum of a tree is calculated. The eccentric distance sum index and eccentric
connectivity index of unicyclic graphs are calculated in [6, 7]. In [8–11], topological indices of the
bipartite graph, composite graph, windmill graph and Sierpinski graphs are presented. Topological
indices of some graph operations can also be calculated, and a study was done on this in [12]. In
recent years, fuzzy graph theory has emerged as a powerful tool to model and analyze uncertain
information in graphs. Fuzzy graph theory extends classical graph theory by allowing edges and
nodes to have degrees of membership in the range of [0, 1], which reflects the degree of uncertainty or
fuzziness in real-world graphs. Fuzzy graph indices, which are extensions of classical graph indices to
fuzzy graphs, have been developed to capture the uncertainty in graphs and provide a more
comprehensive characterization of their structural properties. The history of algebra goes back to
antiquity. The oldest surviving example is an Egyptian papyrus from around 1500 BCE, which
describes how to calculate volumes using chords and arc length. The first recorded use of the word
algebra dates to around 1000 BC. The term “algebra” comes from the title of the book written by Abu
Ja’far Muhammad Ibn Musa al-Khwarizmi, called “Kitab al-jabr wa’l muqabala”, which is a Persian
version of his Arabic book given a Latin translation in several European languages. It was later
translated into other European languages with different titles, such as Liber abaci by Thabit ibn Qurra
in 1111, Algebra by Umar Khayyam in 1150 and Algebra by Fibonacci in 1202. Ring theory is a
branch of mathematics that deals with the study of rings. The first known published reference to ring
theory occurred in 1391, when the Italian mathematician Gerolamo Cardano proposed a method of
reducing fractions. Despite this interesting development in mathematics, ring theory as an
independent topic had not been given much attention until around 2000 AD. A commutative ring is a
type of ring that has an addition defined. The first use of this definition was by Euler in 1766;
however, he did not use his definition to define a ring, but, rather, the inverse image and semidirect
sum of a ring. The first way to define a commutative ring was given by Freiberger in 1964, who used
it as an equivalent to a direct sum. Today, we define a commutative ring as a ring in which
multiplication is commutative, or as is an integral domain if it has no zero divisors. In this article, we
work on the commutative ring Z℘. We construct the identity graph of Z℘. A graph is the best tool to
understand any kind of relationship between the elements of a set. Algebraic graph theory enables us
to better visualize the elements of groups or rings. New graphs are being developed by using different
algebraic structures, such as in [13] with the commuting graph of quaternion and dihedral groups,
in [14] with some non-commuting graphs and in [15] with inverse graphs of some finite groups.
In [16], some very useful groups and subgroups are presented as graphs with examples and a lot of
useful results are presented, especially for the identity graph of groups. in [17], studies on conjugate
graphs of groups are presented. In [18], the subgroup graph of groups is studied. In [19–24], studies
on the non-commuting graph of quasi-dihedral groups, dihedral groups and finite groups in general
are conducted. In [25, 26], the topological indices of the subgroup graphs of the symmetric group and
dihedral groups are calculated.
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In this research paper, we focus on studying the fuzzy and crisp cases of four well-known graph
indices, namely, the first fuzzy Zagreb index, second fuzzy Zagreb index, harmonic index and Randic
index for the identity graph of the ring Z℘, where ℘ is a prime number. The identity graph of the ring Z℘
is a specific type of graph that has ℘ nodes and represents the additive group structure of the integers
modulo ℘. We aim to investigate the relationships between these fuzzy and crisp indices and the prime
number ℘ and explore the potential of using machine learning techniques to model these relationships.
To achieve these objectives, we first generalize the existing definitions of the first fuzzy Zagreb index,
second fuzzy Zagreb index, harmonic index and Randic index to the identity graph of the ring Z℘. We
develop new mathematical formulations for these fuzzy and crisp indices based on fuzzy set theory
and graph theory concepts. We analyze the properties of these indices and provide insights into their
behavior in different scenarios.

Next, we propose a machine learning approach to find the polynomials that show the relationship
between these fuzzy and crisp indices and the prime number ℘. We collected a large data set of identity
graphs of the ring Z℘ for various prime numbers and applied machine learning techniques, such as
polynomial regression, to generate ℘ polynomials that show the relationship between these fuzzy and
crisp indices. To assess the accuracy of these polynomials, we compare the indices computed by using
these polynomials with the exact indices that we have generalized.

The results of our study are expected to contribute to the field of fuzzy graph theory by providing a
deeper understanding of the behavior of fuzzy and crisp indices in the context of the identity graph of
the ring Z℘. Moreover, our machine learning approach can potentially be applied to other graph indices
and graph structures, providing a valuable tool for analyzing and predicting the properties of complex
graphs in real-world applications.

In the following sections of this research paper, we will present the formal definitions and
mathematical formulations of the first Zagreb index, second Zagreb index, harmonic index and
Randic index for the identity graph of the ring Z℘. We will also describe our methodology for
collecting and preprocessing the data, developing the machine learning model and evaluating its
performance. Finally, we will present and discuss the results and provide insights into the
implications and potential applications of our findings.

2. Preliminaries

The identity graph of the ring z℘, as defined in [27], is denoted by Id(z℘), which is defined as the
graph with a vertex set equal to the set of units in z℘ ; also, two different vertices σ and ς are adjacent
if σς = 1, and every vertex of Id(z℘) is adjacent to the multiplicative identity of z℘. Id(z7), Id(z13)
and the generalized identity graph of Z℘ are given in Figure 1. The fuzzy graph of the identity graph
of z℘, Id f uz(Z℘), is defined as a triplet (ν,ϖ, ℏ), where ν is a set of vertices and µ is a set of edges,
furthermore, each edge (σ, ς) ∈ µ and each vertex σ, ∈ ν are associated with a membership value
ϖ(σ), ℏ(σ, ς) ∈ [0, 1], called the vertex weight ϖ and edge weight ℏ fuzzy degree of a vertex. The
fuzzy degree of a vertex σ in Id f uz(Z℘) is the sum of the membership values of all edges incident to that
vertex. It measures the degree of connectedness of a vertex in the graph and is given by the formula
ℵ(σ) =

∑
σ∈ν,(σ,ς)∈µ ℏ(σ, ς). The crisp degree of a vertex in a simple graph is simply the number of edges

connected to that vertex. Here, we will represent the crisp degree of vertex σ as ξ(σ). A topological
index is a numerical value that characterizes the topological structure of a graph. It can be used to
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study the chemical or physical properties of molecules represented by graphs. The formulae for crisp
and fuzzy topological indices are given in Table 1.

2

4

3

5

6

1

2
7

3

9

4
105

8

6

11

12

1

Figure 1. Idcrisp(Z7), Idcrisp(Z13) and genralized identity graph of Z℘.

Table 1. Table of fuzzy and crisp graph indices.

Index Name Formula
Crisp first Zagreb index [28] M1(Idcrisp(Z℘)) =

∑
σ∈V (ξ(σ))2

Crisp second Zagreb index [29] M2[Idcrisp(Z℘)] =
∑
σς∈E ξ(σ)ξ(ς)

Crisp first harmonic index [30–33] H[Idcrisp(Z℘)] =
∑
σς∈E

2
ξ(σ)+ξ(ς)

Crisp first Randic index [34] R[Idcrisp(Z℘)] =
∑
σς∈E(Id(z℘))

[
ξ(σ)ξ(ς)

] −1
2

Fuzzy first Zagreb index [35] M(Id f uz(Z℘)) =
∑
ϖ(σi)[ℵ(σi)]2

Fuzzy second Zagreb index [35] M∗(Id f uz(Z℘)) = 1
2[∑σς∈E ϖ(σi)ℵ(σ)ϖ(ς)ℵ(σ)]

Fuzzy harmonic index [36] H(Id f uz(Z℘)) = 1/2[∑σς∈E( 1
ϖ(σ)ℵ(σ)+ϖ(ς)ℵ(ς) )]

Fuzzy Randic index [36] R(Id f uz(Z℘)) = 1/2[∑σ,ς∈V ϖ(σ)ℵ(ς)ϖ(ς)ℵ(ς)]
−1
2

3. Generalization of topological indices into ℘-dependent polynomials and formulae

In this section, we will present the generalized formulae and ℘-dependent polynomials to calculate
the topological indices of Idcrisp(Z℘) for higher values of ℘. Using these formulae and polynomials, the
process of calculating and computing topological indices becomes significantly easier and faster.

3.1. Generalization of crisp topological indices

For the sake of simplicity, we have relabeled Id(z℘) in Figure 1 as the graph given below in Figure 2.

Figure 2. Relabeled Idcrisp(Z℘).
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Theorem 3.1. The crisp first Zagreb index M1(Idcrisp(Z℘)) = ℘2 − 7, where ℘ ≥ 5.

Proof. In Idcrisp(Z℘), ξ(℘ − 1) = 1 , ξ(1) = ℘ − 2 and ξ(σ) = 2 ∀ σ ∈ V ∧ σ , 1, ℘ − 1. Because the
total number of vertices in Idcrisp(Z℘) = ℘ − 1, the number of vertices with degree 2 is ℘ − 3.

M1(Id f uz(Z℘)) =
∑
x∈V

(ξ(σ))2 = [ξ(1))2 + (ξ(℘ − 1))2 + (ξ(2))2 + (ξ(3))2.........(ξ(℘ − 2))2]

= (℘ − 2)2 + (1)2 + (22 + 22 + 22........ + 22(℘ − 3) times)
= (℘ − 2)2 + 1 + 4(℘ − 3)
= ℘2 − 7.

□

Theorem 3.2. The crisp second Zagreb index M2(Idcrisp(Z℘)) = 2℘2 − 7℘ + 4, where ℘ ≥ 5.

Proof.

M2[Idcrisp(Z℘)] =
∑
xy∈E

ξ(σ)ξ(ς) = ξ(1)ξ(℘ − 1) + ξ(1)ξ(2) + ξ(1)ξ(3) + .....ξ(1)ξ(℘ − 2)

+ ξ(2)ξ(3) + ξ(4)ξ(5).....ξ(℘ − 3)ξ(℘ − 2)
= (℘ − 2) + 2(℘ − 2) + 2(℘ − 2).... + 2(℘ − 2) (℘ − 3) times

+ 2.2 + 2.2 + 2.2.... + 2.2 (
p − 3

2
) times

= p − 2 + 2(℘ − 3)(℘ − 2) + 4(
℘ − 3

2
)

= ℘ − 2 + 2(℘2 − 2℘ − 3℘ + 6) + 2℘ − 6
= ℘ − 2 + 2℘2 − 10℘ + 12 + 2℘ − 6
= 2℘2 − 7℘ + 4.

□

Theorem 3.3. The crisp Randic index R[Idcrisp(Z℘)] = 1√
(p−2)
+

℘−3
√

2(℘−2) +
℘−3

4 , where ℘ ≥ 5.

Proof.

R[Idcrisp(Z℘)] =
∑

xy∈E(Id(z℘))

[
ξ(σ)ξ(ς)

] −1
2

=
[
ξ(1)ξ(p − 1)

] −1
2 +
[
ξ(1)ξ(2)

] −1
2 +
[
ξ(1)ξ(3)

] −1
2 + .....

[
ξ(1)ξ(p − 2)

] −1
2

+
[
ξ(2)ξ(3)

] −1
2 +
[
ξ(4)ξ(5)

] −1
2 .....
[
ξ(℘ − 3)ξ(℘ − 2)

] −1
2

=
[
℘ − 2

] −1
2 +
[
2(℘ − 2)

] −1
2 +
[
2(℘ − 2)

] −1
2 .... +

[
2(℘ − 2)

] −1
2 (℘ − 3) times

+
[
2.2
] −1

2 +
[
2.2
] −1

2 +
[
2.2
] −1

2 .... +
[
2.2
] −1

2 (
℘ − 3

2
) times

=
[
℘ − 2

] −1
2 +
[
2(℘ − 2)

] −1
2 (℘ − 3) +

[
4
] −1

2 (
℘ − 3

2
)

=
1

√
(℘ − 2)

+
℘ − 3
√

2(℘ − 2)
+
℘ − 3

4
.
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□

Theorem 3.4. The crisp harmonic index H[Idcrisp(Z℘)] = 2
℘

(℘ − 3) + ℘−3
4 +

2
℘−1 , where ℘ ≥ 5.

Proof. As H[Idcrisp(Z℘)] =
∑
σς∈E

2
ξ(σ)+ξ(ς) . In the Idcrisp(Z℘) vertex, one has an edge with ℘−2 vertices.

Among those vertices, only the vertex (℘ − 1) has degree 1; all other vertices have degree 2, so vertex
one is connected to ℘ − 3 vertices with degree 2 and one vertex with degree 1. vertex one has degree
℘ − 2. There are ℘−3

2 edges in which the degree of both vertices is 2. Hence,

H(G) =
2

℘ − 2 + 2
(℘ − 3) +

2
2 + 2

(
℘ − 3

2
) +

2
℘ − 1

=
2
℘

(℘ − 3) +
℘ − 3

4
+

2
℘ − 1

.

□

3.2. Comparative analysis of generalized crisp topological indices

In this subsection, we delve into a comparative examination of the generalized topological indices.
These indices have been methodically calculated in line with four distinct theorems, notably, Theorems
3.1–3.4. To explain the nuanced variations and different applications of these generalized indices,
Figure 3 and Table 2 are provided in this subsection. This visual depiction will aid in illustrating the
relative strengths and unique qualities of these indices in diverse analytical scenarios.
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Figure 3. Comparative analysis of generalized crisp topological indices.

Table 2. Computed crisp topological indices.

Crisp Randic Crisp Harmonic Crisp First Second Crisp
Primes Index Index Zagreb Index Zagreb Index

7 2.7121 2.4762 42.0000 53.0000
11 4.2190 3.6545 114.0000 169.0000
13 4.9335 4.2051 162.0000 251.0000
17 6.3142 5.2721 282.0000 463.0000
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3.3. Generalization of fuzzy topological indices

For the sake of simplicity, we relabel Id(z℘) in Figure 1 as the graph given below in Figure 4 for a
generalized fuzzy Id(z℘).

Figure 4. Relabeled Id f uz(Z℘) .

Theorem 3.5. The fuzzy first Zagreb index

M[Id f uz(Z℘)] =
(℘ − 1) + (℘ − 2)2

℘3 +
1
℘3 [

℘−3
2∑

i=1

(2i(2i + 1) + (2i + 1)3)],

where ℘ ≥ 5.

Proof.

M[Id f uz(Z℘)] =
∑
ϖ(σ)[ℵ(σ)]2

= ϖ(σ)[ℵ(σ)]2 +ϖ(σ)[ℵ(σ)]2 +ϖ(σ)[ℵ(σ)]2 +ϖ(σ)[ℵ(σ)]2 +ϖ(σ)[ℵ(σ)]2

= (
℘ − 2
℘

)2 1
℘
+
℘ − 1
℘

(
1
℘

)2 +
2
℘

(
3
℘

)2 +
3
℘

(
3
℘

)2 +
4
℘

(
5
℘

)2 +
5
℘

(
5
℘

)2

+ ......
℘ − 3
℘

(
℘ − 2
℘

)2 +
℘ − 2
℘

(
℘ − 2
℘

)2

=
(℘ − 1 + (℘ − 2)2)

℘3 +
1
℘3 (2.32 + 3.32...(℘ − 3)(℘ − 2)2 + (℘ − 2)(℘ − 2)2)

=
(℘ − 1) + (℘ − 2)2

℘3 +
1
℘3 [

℘−3
2∑

i=1

(2i(2i + 1) + (2i + 1)3)].

□
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Theorem 3.6. The second fuzzy Zagreb index

M∗(Id f uz(Z℘)) = 1
2℘4[(℘ − 2)[(℘ − 1) +

∑ ℘−3
2

i=1 (2i(2i + 1) + (2i + 1)(2i + 1))] +
∑ p−3

2
i=1 2i(2i + 1)3],

where ℘ ≥ 5.

Proof.

M∗(Id f uz(Z℘)) =
1
2
[∑
σς∈E

ϖ(σ)ℵ(σ)ϖ(ς)ℵ(ς)]

=
1
2
[ varpi(1)ℵ(1)ϖ(℘ − 1)ℵ(℘ − 1) + varpi(1)ℵ(1)ϖ(2)ℵ(2)

+ varpi(1)ℵ(1)ϖ(3)ℵ(1) + ...... +ϖ(1)ℵ(1)ϖ(℘ − 2)ℵ(℘ − 2)

+ϖ(2)ℵ(2)ϖ(3)ℵ(3) +ϖ(4)ℵ(4)ϖ(5)ℵ(5) + ...

+ϖ(℘ − 3)ℵ(℘ − 3)ϖ(℘ − 2)ℵ(℘ − 2)]
= 1/2[ 1

℘

(℘ − 2)
℘

(℘ − 1)
℘

1
℘
+

1
℘

℘ − 2
℘

2
℘

3
℘
+ .....

1
℘

℘ − 2
℘

℘ − 2
℘

℘ − 2
℘

+
2
℘

3
℘

3
℘

3
℘
+

4
℘

5
℘

5
℘

5
℘
+ ....... +

℘ − 3
℘

℘ − 2
℘

℘ − 2
℘

℘ − 2
℘

]
=

1
2℘4[(℘ − 2)(℘ − 1) + (℘ − 2)2.3 + (℘ − 2)3.3 + ..... + (℘ − 2)(℘ − 2)(℘ − 2)

+ 2.3.3.3 + 4.5.5.5 + ...........(℘ − 3)(℘ − 2)(℘ − 2)(℘ − 2)]
=

1
2℘4[(℘ − 2)[(℘ − 1) + 2.3 + 3.3 + 4.5 + 5.5 + ....(℘ − 3)(℘ − 2) + (℘ − 2)(℘ − 2)]

+ (2.33 + 4.53 + ......(℘ − 3)(℘ − 2)3]

=
1

2℘4[(℘ − 2)[(℘ − 1) +

℘−3
2∑

i=1

(2i(2i + 1) + (2i + 1)(2i + 1))] +

p−3
2∑

i=1

2i(2i + 1)3].
□

Theorem 3.7. The fuzzy harmonic index

H(Id f uz(Z℘)) =
p2

2 [ 1
2p1

∑ p−3
2

i=1 ( 1
p−1+2i(2i+1) +

1
p−1+(2i+(2i+1)2) ) +

4i+1
2i(2i+1)2],

where ℘ ≥ 5.
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Proof.

H(Id f uz(Z℘)) = 1/2[∑
σς∈E

(
1

ϖ(σ)ℵ(σ) +ϖ(ς)ℵ(ς)
)]

= 1/2[((
1

ϖ(1)d(1) +ϖ(℘ − 1)d(℘ − 1)
+

1
ϖ(1)d(1) +ϖ(2) + d(2)

)

+
1

ϖ(1)d(1) +ϖ(3) + d(3)
+ ..... +

1
ϖ(1)d(1) +ϖ(℘ − 3) + d(℘ − 3)

+
1

ϖ(1)d(1) +ϖ(℘ − 2) + d(℘ − 2)
+

1
ϖ(2)d(2) +ϖ(3) + d(3

+
1

ϖ(4)d(4) +ϖ(5) + d(5)

+ ... + ...
1

ϖ(℘ − 3)d(℘ − 3) +ϖ(℘ − 2) + d(℘ − 2)
)]

=
1
2
[(

1
1
℘
℘−1
℘
+ 1
℘

1
℘

+
1

1
℘
℘−1
℘
+ 2
℘

3
℘

+
1

1
℘
℘−1
℘
+ 3
℘

3
℘

+ .....
1

1
℘
℘−1
℘
+
℘−3
℘
℘−2
℘

+
1

1
℘
℘−1
℘
℘−2
℘
℘−2
℘

)

+ (
1

2
℘

3
℘
+ 3
℘

3
℘

+
1

4
℘

5
℘
+ 5
℘

5
℘

+ .....
1

℘−3
℘
℘−2
℘
+
℘−2
℘
℘−2
℘

)]

=
℘2

2
[(

1
2℘ − 1

+
1

(℘ − 1) + 2.3
+

1
(℘ − 1) + 3.3

+ ......
1

(℘ + 1) + (℘ − 3)(℘ − 2)

+
1

(℘ − 1) + (℘ − 2(℘ − 2))
) + (

1
2.3 + 3.3

+
1

3.3 + 3.3
+ ....

1
(℘ − 3)(℘ − 2)(℘ − 2)(℘ − 2)

)]
=

p2

2
[ 1

2p − 1
+

℘−3
2∑

i=1

(
1

℘ − 1 + 2(i)(2i + 1)
) +

1
(℘ − 1)

+ (2i + 1)2) +

℘−3
2∑

i=1

(
1

2i(2i + 1)
+

1
(2i + 1)2 )]

p2

2
[ 1

2℘ − 1

℘−3
2∑

i=1

(
1

℘ − 1 + 2i(2i + 1)
+

1
(℘ − 1) + (2i + 1)2 +

1
2i(2i + 1)

+
1

(2i + 1)2]

=
℘2

2
[ 1

2℘ − 1

℘−3
2∑

i=1

(
1

℘ − 1 + 2i(2i + 1)
+

1
℘ − 1 + (2i + 1)2 +

2i + 1 + 2i
2i(2i + 1)2]

=
℘2

2
[ 1

2℘1

℘−3
2∑

i=1

(
1

℘ − 1 + 2i(2i + 1)
+

1
℘ − 1 + (2i + (2i + 1)2)

) +
4i + 1

2i(2i + 1)2].
□

Theorem 3.8. The second fuzzy Randic index

R(Id f uz(Zϖ)) =
℘ − 2
℘4 [(℘ − 1)

℘−3
2∑
κ=1

(2κ(2κ + 1) + (2κ + 1)2) +

℘−3
2∑
κ=1

2κ(2κ + 1)3

+ (

℘−5
2∑
κ=1

2κ(2κ + 1)[

℘−3
2∑

τ=κ+1

[2τ(2τ + 1) + (2τ + 1)2] + (℘ − 1)]

+ [

℘−5
2∑
κ=1

2κ(2κ + 1)2(

℘−3
2∑

τ=κ+1

(2τ(2τ + 1) + (2τ + 1)2)) + (℘ − 1)]],
where ℘ ≥ 5.
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Proof.

R(Id f uz(Zϖ)) = 1/2[ ∑
σ,ς∈V

ϖ(σ)ℵ(ς)ϖ(ς)ℵ(ς)]
−1
2

=
1
2
[∑
σς∈E

ϖ(σ)ℵ(ς)ϖ(σ)ℵ(ς) +
∑
σς<E

ϖ(σ)ℵ(σ)ϖ(ς)ℵ(ς)]
−1
2

=
1
2
[2M∗(G)) +

∑
σς<E

ϖ(σ)ℵ(σ)ϖ(ς)ℵ(ς)]
−1
2

,

R(Id f uz(Zϖ)) =
1
2
[2M∗(G)) +

∑
σς<E

ϖ(σ)ℵ(σ)ϖ(ς)ℵ(ς)]
−1
2

. (3.1)

To calculate
∑
σς<E ϖ(σ)ℵ(σ)ϖ(ς)ℵ(ς), we can see that the non-adjacent pairs of vertices are

(2, 4), (2, 5), (2, 6)....(2, ℘ − 3), (2, ℘ − 2), (2, ℘ − 1), (3, 4), (3, 5), (3, 6)....(3, ℘ − 3), (3, ℘ − 2), (3, ℘ −
1), (4, 6), (4, 7), (4, 8)....(4, ℘ − 3), (4, ℘ − 2), (4, ℘ − 1).....(℘ − 4, ℘ − 3), (℘ − 4, ℘ − 2), (℘ − 4, ℘ − 1).∑
σς<E

ϖ(σ)ℵ(σ)ϖ(ς)ℵ(ς) =
2
℘

3
℘

4
℘

5
℘
+

2
℘

3
℘

5
℘

5
℘
+ .....

2
℘

3
℘

℘ − 3
℘

℘ − 2
℘
+

2
℘

3
℘

℘ − 2
℘

℘ − 2
℘
+

2
℘

3
℘

℘ − 1
℘

1
℘

+
3
℘

3
℘

4
℘

5
℘
+

3
℘

3
℘

5
℘

5
℘
+ .....

3
℘

3
℘

℘ − 3
℘

℘ − 2
℘
+

3
℘

3
℘

℘ − 2
℘

℘ − 2
℘
+

3
℘

3
℘

℘ − 1
℘

1
℘
+

4
℘

5
℘

6
℘

7
℘

+
4
℘

5
℘

7
℘

7
℘
+ .......

4
℘

5
℘

℘ − 3
℘

℘ − 2
℘
+

4
℘

5
℘

℘ − 2
℘

℘ − 2
℘
+

4
℘

5
℘

℘ − 1
℘

1
℘

+ ......
℘ − 5
℘

℘ − 4
℘

℘ − 3
℘

℘ − 2
℘
+
℘ − 5
℘

℘ − 4
℘

℘ − 2
℘

℘ − 2
℘
+
℘ − 5
℘

℘ − 4
℘

℘ − 1
℘

1
℘

+
℘ − 4
℘

℘ − 4
℘

℘ − 3
℘

℘ − 2
℘
+
℘ − 4
℘

℘ − 4
℘

℘ − 2
℘

℘ − 2
℘

+
℘ − 4
℘

℘ − 4
℘

℘ − 1
℘

1
℘
+
℘ − 3
℘

℘ − 2
℘

℘ − 1
℘
+
℘ − 2
℘

℘ − 2
℘

℘ − 1
℘

=
1
℘4[2.3.4.5 + 2.3.5.5......(2.3)(℘ − 3)(℘ − 2)(2.3)(℘ − 2)(℘ − 2)

+ 2.3(℘ − 1)3.3.4.5 + 3.3.5.5....(3 − 3)(℘ − 3)(℘ − 2) + (3.3)(℘ − 2)(℘ − 2) + 3.3(℘ − 1)

+ 4.5.6.7 + 4.5.7.7 + .....(4.5)(℘ − 3)(℘ − 2) + (4.5)(℘ − 2)(℘ − 2) + 4.5(℘ − 1) + 5.5.6.7

+ 5.5.7.7 + ......(5 − 5)(℘ − 3)(℘ − 2) + (5.5)(℘ − 2)(℘ − 2) + (5.5)(℘ − 1) + .........

+ (℘ − 5)(℘ − 4)(℘ − 3)(℘ − 2) + (℘ − 5)(℘ − 5)(℘ − 2)(℘ − 2) + (℘ − 5)(℘ − 4)(℘ − 1)

(℘ − 4)(℘ − 4)(℘ − 3)(℘ − 2) + (℘ − 4)(℘ − 4)(℘ − 2)(℘ − 2)(℘ − 4)(℘ − 4)(℘ − 1)

+ (℘ − 3)(℘ − 2)(℘ − 1) + (℘ − 2)(℘ − 2)(℘ − 1)].
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∑
σς<E

ϖ(σ)ℵ(σ)ϖ(ς)ℵ(ς) =
1
℘4[(

℘−5
2∑
κ=1

2κ(2κ + 1)(

℘−3
2∑

τ=κ+1

(2τ(2τ + 1) + (2τ + 1)2)) + (℘ − 1)

+ [

℘−5
2∑
κ=1

2κ(2κ + 1)2(

℘−3
2∑

τ=κ+1

(2τ(2τ + 1) + (2τ + 1)2)) + (℘ − 1)]].

R(Id f uz(Zϖ)) =
℘ − 2
℘4 [(℘ − 1)

℘−3
2∑
κ=1

(2κ(2κ + 1) + (2κ + 1)2) +

℘−3
2∑
κ=1

2κ(2κ + 1)3

+ (

℘−5
2∑
κ=1

2κ(2κ + 1)[

℘−3
2∑

τ=κ+1

[2τ(2τ + 1) + (2τ + 1)2] + (℘ − 1)]

+ [

℘−5
2∑
κ=1

2κ(2κ + 1)2(

℘−3
2∑

τ=κ+1

(2τ(2τ + 1) + (2τ + 1)2)) + (℘ − 1)]].
□

Table 3. Fuzzy graph indices.

Index Formula

Fuzzy First Zagreb Index M(Id f uz(Z℘)) =
∑
ϖ(σi)[ℵ(σi)]2

Fuzzy Second Zagreb Index M∗(Id f uz(Z℘)) = 1
2

[∑
σ,ς∈E ϖ(σi)ℵ(σi)ϖ(ς)ℵ(ς)

]
Fuzzy Harmonic Index H(Id f uz(Z℘)) = 1

2

[∑
σ,ς∈E

(
1

ϖ(σi)ℵ(σi)+ϖ(ς)ℵ(ς)

)]
Fuzzy Randic Index R(Id f uz(Z℘)) = 1

2

[∑
σ,ς∈V ϖ(σi)ℵ(ς)ϖ(ς)ℵ(ς)

]−1/2

3.4. Comparative analysis of generalized fuzzy topological indices

In this subsection, we dig into a comparative evaluation of the generalized topological fuzzy
indices. These indices have been meticulously determined in conformity with four distinct theorems,
i.e Theorems 3.5–3.8. To clarify the nuanced variations and diverse applications of these generalized
indices, Figure 5 and Table 4 are provided below this paragraph. This graphic depiction will aid in
presenting the relative strengths and unique properties of various indices in diverse analytical
contexts.
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Figure 5. Comparative analysis of generalized fuzzy topological indices.
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Table 4. Computed fuzzy topological indices.

Crisp Randic Crisp Harmonic Crisp First Second Crisp
Primes Index Index Zagreb Index Zagreb Index

7 0.6033 10.1790 0.8776 0.1841
11 0.2951 24.5308 1.7844 0.3849
13 0.2336 33.5780 2.2567 0.4862
17 0.1640 55.1355 3.2192 0.6886

4. Use of machine learning to find relationships between fuzzy and crisp topological indices

We generated topological indices using mathematical formulas and polynomials, yielding numerical
descriptions of the identity graph of Z℘. These indices give insight on the mathematical characteristics
of the ring Z℘. Our investigation extended to employing machine learning, specifically, polynomial
regression, to build a polynomial equation that can explain the link between fuzzy and crisp topological
indices. This technique describes this relationship as an nth-degree polynomial function.

4.1. Relationship between fuzzy first Zagreb index and crisp first Zagreb index

Equation (4.1) shows the relationship between the fuzzy first Zagreb index and crisp first Zagreb
index. In this equation, x is the fuzzy first Zagreb index and y is the crisp first Zagreb index.

y =
47939412149347 x6

73786976294838206464
−

6857742982524237 x5

147573952589676412928
+

3093798587684389 x4

2305843009213693952

−
5820187159405795 x3

288230376151711744
+

569009884489911 x2

35184372088832
+

5132010386538057 x
140737488355328

−
2755429523750739
1125899906842624

.

(4.1)

The error analysis given in Figure 6 shows the absolute error between the exact crisp first Zagreb
index and the approximated crisp first Zagreb index, as obtained by putting the values of the fuzzy first
Zagreb index in equation (4.1).
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Figure 6. Absolute error between exact crisp first Zagreb index and approximated crisp
first Zagreb index, as obtained by putting the values of the fuzzy first Zagreb index in
equation (4.1).
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4.2. Relationship between fuzzy second Zagreb index and crisp second Zagreb index

Equation (4.2) shows the relationship between the fuzzy second Zagreb index and crisp second
Zagreb index. In this equation, x is the fuzzy second Zagreb index and y is the crisp 2nd Zagreb index.

y = −
4198636757307237 x6

36028797018963968
+

3821466390892453 x5

2251799813685248
−

2802698852264907 x4

281474976710656

+
8535138556461969 x3

281474976710656
+

3290590709507179 x2

4398046511104
+

5076600172600843 x
35184372088832

+
1099082828796479
1125899906842624

.

(4.2)

The error analysis given in Figure 7 shows the absolute error between the exact crisp second Zagreb
index and the approximated second Zagreb index, as obtained by putting the values of the fuzzy second
Zagreb index in equation (4.2).
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Figure 7. Absolute error between exact crisp second Zagreb index and approximated crisp
second zagreb index, as obtained by putting the values of the fuzzy second Zagreb index in
equation (4.2).

4.3. Relationship between fuzzy Randic index and crisp Randic index

Equation (4.3) shows the relationship between the fuzzy Randic index and crisp Randic index. In
this equation, y is the fuzzy Randic index and x is the crisp Randic index.

y =
3387822566640705 x6

4294967296
−

613321410237291 x5

536870912
+

5283103041825209 x4

8589934592

−
5527648527392327 x3

34359738368
+

3026309911703795 x2

137438953472
−

3464515882695811 x
2199023255552

+
1015109594679643
17592186044416

.

(4.3)

The error analysis given in Figure 8 shows the absolute error between the exact crisp Randic index
and the approximated crisp Randic index by putting the values of fuzzy Randic index, as obtained in
equation (4.3).
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Figure 8. Absolute error between exact crisp Randic index and approximated crisp Randic
index, as obtained by putting the values of the fuzzy Randic index in equation (4.3).

4.4. Relationship between fuzzy harmonic index and crisp Harmonic index

The equation (4.4) shows the relationship the between fuzzy harmonic index and crisp harmonic
index. In this equation, y is the fuzzy harmonic index and x is the crisp harmonic index.

y =
403444852988239 x6

536870912
−

584110388243953 x5

536870912
+

5028519656072005 x4

8589934592

−
82120743106149 x3

536870912
+

5742473945352849 x2

274877906944
−

6537294962543317 x
4398046511104

+
7543435388536107
140737488355328

.

(4.4)

The error analysis given in Figure 9 shows the absolute error between the exact crisp harmonic index
and the approximated crisp harmonic index, as obtained by putting the values of the fuzzy harmonic
index in equation( 4.4).
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Figure 9. Absolute error between exact crisp harmonic index, as obtained and approximated
crisp harmonic index by putting the values of the fuzzy harmonic index in Eq (4.4).
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5. Entropy analysis of fuzzy and crisp harmonic indices

A histogram was created based on the values in Table 5 to visualize the distribution of values of
the crisp and fuzzy harmonic indices, where each value haws a frequency of 1. The histogram was
normalized by calculating the probability p℘ for each value of ℘, which is obtained by dividing 1 by
the total number of data points (22 unique values). Using the entropy formula H = −

∑
(p℘ × log2(p℘)),

we can calculate the entropy for one value and multiply it by the total number of unique values,

H ≈ −log2(22) ≈ 4.4594 bits.

The calculated entropy for the crisp and fuzzy harmonic index data sets was approximately 4.4594 bits,
indicating a high level of diversity or variability in the data sets. Since, in both sets of fuzzy and crisp
harmonic index data we had 22 unique values, we obtained similar entropy for both cases.

Table 5. Computed fuzzy topological indices.

Primes Crisp Harmonic Index Fuzzy Harmonic Index
7 2.47619047619048 10.1789898989899

11 3.65454545454545 24.5308251717810
13 4.20512820512821 33.5780230683808
17 5.27205882352941 55.1354778355809
19 5.79532163742690 67.5670022740206
23 6.83003952569170 95.5855934587529
29 8.36453201970443 145.167387770706
31 8.87311827956989 163.637353961643
37 10.3933933933934 224.678535925363
41 11.4036585365854 269.951399961616
43 11.9080841638981 293.931851943150
47 12.9158186864015 344.538365193520
53 14.4252539912917 426.950810142852
59 15.9327878433665 517.011058539206
61 16.4349726775956 548.704070302761
67 17.9407507914971 648.731886496325
71 18.9440643863179 719.496195087863
73 19.4455859969559 756.089633679920
79 20.9496916585524 870.669847861048
83 21.9521010872759 951.021763737825
89 23.4553115423902 1077.43332459459
97 25.4589776632302 1256.84413254844

6. Conclusions and opportunity for future work

In conclusion, this research paper introduces a set of generalized formulae that are dependent on ℘
for both fuzzy and crisp versions of several graph indices. The formulae have been applied to the
identity graph of the commutative ring Z℘, and the resulting indices were computed by using
MATLAB software for 20 prime numbers. The data obtained from these calculations were then
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utilized for machine learning purposes by using Python and Jupyter notebook to explore the
correlation between fuzzy and crisp indices. The paper also establishes the connection between fuzzy
and crisp indices through the representation of six-degree polynomials, and it provides an error
analysis. The findings of this study significantly contribute to the comprehension of the relationship
between fuzzy and crisp graph indices. This knowledge holds potential applications in various fields,
particularly in the realms of computer science and engineering. By establishing generalized formulae
and analyzing the relationship between fuzzy and crisp indices, researchers and practitioners can gain
deeper insights into the behavior of graph indices in different contexts. This understanding can
enhance the development of more efficient algorithms and decision-making processes in various
domains.

Additionally, it was observed that the accuracy of the results is influenced by the proximity of the
input data set. Specifically, when the input data set is closer, the accuracy of the computed indices
improves. This finding underscores the importance of selecting appropriate data sets and emphasizes
the need for careful consideration when applying these generalized formulae in practical applications.
By taking into account the proximity of the input data set, researchers and practitioners can enhance the
accuracy of their calculations and ensure more reliable results. This further strengthens the significance
of this research, as it provides valuable insights into the factors that impact the relationship between
fuzzy and crisp graph indices. Overall, this research not only contributes to the understanding of the
relationship between fuzzy and crisp graph indices, it also highlights the importance of data quality and
proximity in achieving accurate results. These findings have implications for a wide range of fields,
offering opportunities for improved decision-making processes and algorithmic advancements in the
fields of computer science and engineering.
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