Research article Special Issues

Analysis of positive measure reducibility for quasi-periodic linear systems under Brjuno-Rüssmann condition

  • Received: 30 November 2021 Revised: 07 February 2022 Accepted: 16 February 2022 Published: 11 March 2022
  • MSC : 37K55, 70K40

  • In this article, we discuss the positive measure reducibility for quasi-periodic linear systems close to a constant which is defined as:

    $ \begin{align*} \frac{dx}{dt} = (A(\lambda) + Q(\varphi,\lambda))x, \dot{\varphi} = \omega, \end{align*} $

    where $ \omega $ is a Brjuno vector and parameter $ \lambda\in (a, b) $. The result is proved by using the KAM method, Brjuno-Rüssmann condition, and non-degeneracy condition.

    Citation: Muhammad Afzal, Tariq Ismaeel, Riaz Ahmad, Ilyas Khan, Dumitru Baleanu. Analysis of positive measure reducibility for quasi-periodic linear systems under Brjuno-Rüssmann condition[J]. AIMS Mathematics, 2022, 7(5): 9373-9388. doi: 10.3934/math.2022520

    Related Papers:

  • In this article, we discuss the positive measure reducibility for quasi-periodic linear systems close to a constant which is defined as:

    $ \begin{align*} \frac{dx}{dt} = (A(\lambda) + Q(\varphi,\lambda))x, \dot{\varphi} = \omega, \end{align*} $

    where $ \omega $ is a Brjuno vector and parameter $ \lambda\in (a, b) $. The result is proved by using the KAM method, Brjuno-Rüssmann condition, and non-degeneracy condition.



    加载中


    [1] R. Johnson, J. Moser, The rotation number for almost periodic potentials, Commun. Math. Phys., 84 (1982), 403–438. https://doi.org/10.1007/BF01208484 doi: 10.1007/BF01208484
    [2] W. Coppel, Pseudo-autonomous linear systems, Bull. Aust. Math. Soc., 16 (1977), 61–65. https://doi.org/10.1017/S0004972700023005 doi: 10.1017/S0004972700023005
    [3] R. A. Johnson, G. R. Sell, Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems, J. Differ. Equ., 41 (1981), 262–288. https://doi.org/10.1016/0022-0396(81)90062-0 doi: 10.1016/0022-0396(81)90062-0
    [4] N. N. Bogoljubov, J. A. Mitropolski, A. M. Samoilenko, Methods of accelerated convergence in nonlinear mechanics, New York: Springer-Verlag, 1976.
    [5] E. I. Dinaburg, Y. G. Sinai, The one dimensional Schrödinger equation with a quasi-periodic potential, Funct. Anal. Appl., 9 (1975), 279–289. https://doi.org/10.1007/BF01075873 doi: 10.1007/BF01075873
    [6] H. Rüssmann, On the one-dimensional Schrödinger equation with a quasi-periodic potential, Ann. NY. Acad. Sci., 357 (1980), 90–107. https://doi.org/10.1111/j.1749-6632.1980.tb29679.x doi: 10.1111/j.1749-6632.1980.tb29679.x
    [7] A. Jorba, C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differ. Equ., 98 (1992), 111–124. https://doi.org/10.1016/0022-0396(92)90107-X doi: 10.1016/0022-0396(92)90107-X
    [8] J. X. Xu, On the reducibility of linear differential equations with quasiperiodic coefficients, Mathematika, 46 (1999), 443–451. https://doi.org/10.1112/S0025579300007907 doi: 10.1112/S0025579300007907
    [9] L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrodinger equation, Commun. Math. Phys., 146 (1992), 447–482. https://doi.org/10.1007/BF02097013 doi: 10.1007/BF02097013
    [10] R. Krikorian, Reductibility des systems produits-croiss a valeurs dans des groupes compacts, Astérisque, 1999.
    [11] L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, Amer. Math. Soc., Providence, RI, 2001.
    [12] H. L. He, J. G. You, An improved result for positive measure reducibility of quasi-periodic linear systems, Acta. Math. Sinica., 22 (2006), 77–86. https://doi.org/10.1007/s10114-004-0473-5 doi: 10.1007/s10114-004-0473-5
    [13] D. F. Zhang, J. X. Xu, X. C. Wang, A new KAM iteration with nearly infinitely small steps in reversible systems of polynomial character, Qual. Theory Dyn. Syst., 17 (2018), 271–289. https://doi.org/10.1007/s12346-017-0229-0 doi: 10.1007/s12346-017-0229-0
    [14] C. Chavaudret, S. Marmi, Reducibility of quasi-periodic cocycles under a Brjuno-Rüssmann arithmetical condition, JMD, 6 (2012), 59–78. https://doi.org/10.3934/jmd.2012.6.59 doi: 10.3934/jmd.2012.6.59
    [15] A. D. Brjuno, Analytic form of differential equations I, Trudy. Moskov. Mat. Obsc., 25 (1971), 119–262.
    [16] A. D. Brjuno, Analytic form of differential equations II, Trudy. Moskov. Mat. Obsc., 26 (1972), 199–239.
    [17] H. L. Her, J. G. You, Full measure reducibility for a generic one-parameter family of quasi-periodic linear systems, J. Dyn. Differ. Equ., 20 (2008), 831. https://doi.org/10.1007/s10884-008-9113-6 doi: 10.1007/s10884-008-9113-6
    [18] P. Lancaster, Theory of matrices, New York and London: Academic Press, 1969.
    [19] J. G. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differ. Equ., 152 (1999), 1–29. https://doi.org/10.1006/jdeq.1998.3515 doi: 10.1006/jdeq.1998.3515
    [20] M. Afzal, S. Z. Guo, D. X. Piao, On the reducibility of a class of linear almost periodic Hamiltonian systems, Qual. Theory Dyn. Syst., 18 (2019), 723–738. https://doi.org/10.1007/s12346-018-0309-9 doi: 10.1007/s12346-018-0309-9
    [21] F. Rellich, Perturbation theory of eigenvalue problem, New York: Gordon and Breach, 1969.
    [22] J. G. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differ. Equ., 152 (1999), 1–29. https://doi.org/10.1006/jdeq.1998.3515 doi: 10.1006/jdeq.1998.3515
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1292) PDF downloads(61) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog