In this article, we discuss the positive measure reducibility for quasi-periodic linear systems close to a constant which is defined as:
$ \begin{align*} \frac{dx}{dt} = (A(\lambda) + Q(\varphi,\lambda))x, \dot{\varphi} = \omega, \end{align*} $
where $ \omega $ is a Brjuno vector and parameter $ \lambda\in (a, b) $. The result is proved by using the KAM method, Brjuno-Rüssmann condition, and non-degeneracy condition.
Citation: Muhammad Afzal, Tariq Ismaeel, Riaz Ahmad, Ilyas Khan, Dumitru Baleanu. Analysis of positive measure reducibility for quasi-periodic linear systems under Brjuno-Rüssmann condition[J]. AIMS Mathematics, 2022, 7(5): 9373-9388. doi: 10.3934/math.2022520
In this article, we discuss the positive measure reducibility for quasi-periodic linear systems close to a constant which is defined as:
$ \begin{align*} \frac{dx}{dt} = (A(\lambda) + Q(\varphi,\lambda))x, \dot{\varphi} = \omega, \end{align*} $
where $ \omega $ is a Brjuno vector and parameter $ \lambda\in (a, b) $. The result is proved by using the KAM method, Brjuno-Rüssmann condition, and non-degeneracy condition.
[1] | R. Johnson, J. Moser, The rotation number for almost periodic potentials, Commun. Math. Phys., 84 (1982), 403–438. https://doi.org/10.1007/BF01208484 doi: 10.1007/BF01208484 |
[2] | W. Coppel, Pseudo-autonomous linear systems, Bull. Aust. Math. Soc., 16 (1977), 61–65. https://doi.org/10.1017/S0004972700023005 doi: 10.1017/S0004972700023005 |
[3] | R. A. Johnson, G. R. Sell, Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems, J. Differ. Equ., 41 (1981), 262–288. https://doi.org/10.1016/0022-0396(81)90062-0 doi: 10.1016/0022-0396(81)90062-0 |
[4] | N. N. Bogoljubov, J. A. Mitropolski, A. M. Samoilenko, Methods of accelerated convergence in nonlinear mechanics, New York: Springer-Verlag, 1976. |
[5] | E. I. Dinaburg, Y. G. Sinai, The one dimensional Schrödinger equation with a quasi-periodic potential, Funct. Anal. Appl., 9 (1975), 279–289. https://doi.org/10.1007/BF01075873 doi: 10.1007/BF01075873 |
[6] | H. Rüssmann, On the one-dimensional Schrödinger equation with a quasi-periodic potential, Ann. NY. Acad. Sci., 357 (1980), 90–107. https://doi.org/10.1111/j.1749-6632.1980.tb29679.x doi: 10.1111/j.1749-6632.1980.tb29679.x |
[7] | A. Jorba, C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differ. Equ., 98 (1992), 111–124. https://doi.org/10.1016/0022-0396(92)90107-X doi: 10.1016/0022-0396(92)90107-X |
[8] | J. X. Xu, On the reducibility of linear differential equations with quasiperiodic coefficients, Mathematika, 46 (1999), 443–451. https://doi.org/10.1112/S0025579300007907 doi: 10.1112/S0025579300007907 |
[9] | L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrodinger equation, Commun. Math. Phys., 146 (1992), 447–482. https://doi.org/10.1007/BF02097013 doi: 10.1007/BF02097013 |
[10] | R. Krikorian, Reductibility des systems produits-croiss a valeurs dans des groupes compacts, Astérisque, 1999. |
[11] | L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, Amer. Math. Soc., Providence, RI, 2001. |
[12] | H. L. He, J. G. You, An improved result for positive measure reducibility of quasi-periodic linear systems, Acta. Math. Sinica., 22 (2006), 77–86. https://doi.org/10.1007/s10114-004-0473-5 doi: 10.1007/s10114-004-0473-5 |
[13] | D. F. Zhang, J. X. Xu, X. C. Wang, A new KAM iteration with nearly infinitely small steps in reversible systems of polynomial character, Qual. Theory Dyn. Syst., 17 (2018), 271–289. https://doi.org/10.1007/s12346-017-0229-0 doi: 10.1007/s12346-017-0229-0 |
[14] | C. Chavaudret, S. Marmi, Reducibility of quasi-periodic cocycles under a Brjuno-Rüssmann arithmetical condition, JMD, 6 (2012), 59–78. https://doi.org/10.3934/jmd.2012.6.59 doi: 10.3934/jmd.2012.6.59 |
[15] | A. D. Brjuno, Analytic form of differential equations I, Trudy. Moskov. Mat. Obsc., 25 (1971), 119–262. |
[16] | A. D. Brjuno, Analytic form of differential equations II, Trudy. Moskov. Mat. Obsc., 26 (1972), 199–239. |
[17] | H. L. Her, J. G. You, Full measure reducibility for a generic one-parameter family of quasi-periodic linear systems, J. Dyn. Differ. Equ., 20 (2008), 831. https://doi.org/10.1007/s10884-008-9113-6 doi: 10.1007/s10884-008-9113-6 |
[18] | P. Lancaster, Theory of matrices, New York and London: Academic Press, 1969. |
[19] | J. G. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differ. Equ., 152 (1999), 1–29. https://doi.org/10.1006/jdeq.1998.3515 doi: 10.1006/jdeq.1998.3515 |
[20] | M. Afzal, S. Z. Guo, D. X. Piao, On the reducibility of a class of linear almost periodic Hamiltonian systems, Qual. Theory Dyn. Syst., 18 (2019), 723–738. https://doi.org/10.1007/s12346-018-0309-9 doi: 10.1007/s12346-018-0309-9 |
[21] | F. Rellich, Perturbation theory of eigenvalue problem, New York: Gordon and Breach, 1969. |
[22] | J. G. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differ. Equ., 152 (1999), 1–29. https://doi.org/10.1006/jdeq.1998.3515 doi: 10.1006/jdeq.1998.3515 |