In this paper, we investigate the finite fractal dimension of pullback attractors for a nonclassical diffusion equation in $ H^1_0(\Omega) $. First, we prove the existence of pullback attractors for a nonclassical diffusion equation with arbitrary polynomial growth condition by applying the operator decomposition method. Then, by the fractal dimension theorem of pullback attractors given by [
Citation: Xiaolei Dong, Yuming Qin. Finite fractal dimension of pullback attractors for a nonclassical diffusion equation[J]. AIMS Mathematics, 2022, 7(5): 8064-8079. doi: 10.3934/math.2022449
In this paper, we investigate the finite fractal dimension of pullback attractors for a nonclassical diffusion equation in $ H^1_0(\Omega) $. First, we prove the existence of pullback attractors for a nonclassical diffusion equation with arbitrary polynomial growth condition by applying the operator decomposition method. Then, by the fractal dimension theorem of pullback attractors given by [
[1] | C. T. Anh, N. D. Toan, Pullback attractors for nonclassical diffusion equations in noncylindrical domains, Int. J. Math. Math. Sci., 2012 (2012), 875913. https://doi.org/10.1155/2012/875913 doi: 10.1155/2012/875913 |
[2] | Y. Q. Xie, J. Li, K. X. Zhu, Upper semicontinuity of attractors for nonclassical diffusion equations with arbitrary polynomial growth, Adv. Differ. Equ., 2021 (2021), 75. https://doi.org/10.1186/s13662-020-03146-2 doi: 10.1186/s13662-020-03146-2 |
[3] | J. B. Yuan, S. X. Zhang, Y. Q. Xie, J. W. Zhang, Exponential attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, AIMS Mathematics, 6 (2021), 11778–11795. https://doi.org/10.3934/math.2021684 doi: 10.3934/math.2021684 |
[4] | T. Chen, Z. Chen, Y. B. Tang, Finite dimensionality of global attractors for a non-classical reaction diffusion equation with memory, Appl. Math. Lett., 25 (2012), 357–362. https://doi.org/10.1016/j.aml.2011.09.014 doi: 10.1016/j.aml.2011.09.014 |
[5] | A. O. Celebi, V. K. Kalantarov, M. Polat, Attractors for the generalized Benjamin-Bona-Mahony Equation, J. Differ. Equ., 157 (1999), 439–451. https://doi.org/10.1006/jdeq.1999.3634 doi: 10.1006/jdeq.1999.3634 |
[6] | Y. Li, S. Wang, J. Wei, Finite fractal dimension of pullback attractors and application to non-autonomous reaction diffusion equations, Appl. Math. E-Notes, 10 (2010), 19–26. |
[7] | C. T. Anh, T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Anal.-Theor., 73 (2010), 399–412. https://doi.org/10.1016/j.na.2010.03.031 doi: 10.1016/j.na.2010.03.031 |
[8] | J. Lee, V. M. Toi, Attractors for nonclassical diffusion equations with dynamic boundary conditions, Nonlinear Anal., 195 (2020), 111737. https://doi.org/10.1016/j.na.2019.111737 doi: 10.1016/j.na.2019.111737 |
[9] | C. Y. Sun, S. Y. Wang, C. K. Zhong, Global attractors for a nonclassical diffusion equation, Acta Math. Sinica, 23 (2007), 1271–1280. https://doi.org/10.1007/s10114-005-0909-6 doi: 10.1007/s10114-005-0909-6 |
[10] | C. Y. Sun, M. B. Yang, Dynamics of the nonclassical diffusion equations, Asymptot. Anal., 59 (2008), 51–81. https://doi.org/10.3233/ASY-2008-0886 doi: 10.3233/ASY-2008-0886 |
[11] | N. D. Toan, Existence and long-time behavior of variational solutions to a class of nonclassical diffusion equations in noncylindrical domains, Acta Math. Vietnam., 41 (2016), 37–53. https://doi.org/10.1007/s40306-015-0120-5 doi: 10.1007/s40306-015-0120-5 |
[12] | Y. H. Wang, P. R. Li, Y. M. Qin, Upper semicontinuity of uniform attractors for nonclassical diffusion equations, Bound. Value Probl., 2017 (2017), 84. https://doi.org/10.1186/s13661-017-0816-7 doi: 10.1186/s13661-017-0816-7 |
[13] | S. Y. Wang, D. S. Li, C. K. Zhong, On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl., 317 (2006), 565–582. https://doi.org/10.1016/j.jmaa.2005.06.094 doi: 10.1016/j.jmaa.2005.06.094 |
[14] | Y. H. Wang, Y. M. Qin, Upper semicontinuity of pullback attractors for nonclassical diffusion equations, J. Math. Phys., 51 (2010), 022701. https://doi.org/10.1063/1.3277152 doi: 10.1063/1.3277152 |
[15] | H. Q. Wu, Z. Y. Zhang, Asymptotic regularity for the nonclassical diffusion equation with lower regular forcing term, Dyn. Syst., 26 (2011), 391–400. https://doi.org/10.1080/14689367.2011.562185 doi: 10.1080/14689367.2011.562185 |
[16] | Y. J. Zhang, Q. Z. Ma, Exponential attractors of the nonclassical diffusion equations with lower regular forcing term, Int. J. Mod. Nonlinear Theor. Appl., 3 (2014), 15–22. https://doi.org/10.4236/ijmnta.2014.31003 doi: 10.4236/ijmnta.2014.31003 |
[17] | Y. H. Wang, Z. L. Zhu, P. R. Li, Regularity of pullback attractors for nonautonomous nonclassical diffusion equations, J. Math. Anal. Appl., 459 (2018), 16–31. https://doi.org/10.1016/j.jmaa.2017.10.075 doi: 10.1016/j.jmaa.2017.10.075 |
[18] | C. T. Anh, D. T. P. Thanh, N. D. Toan, Global attractors for nonclassical diffusion equations with hereditary memory and a new class of nonlinearities, Ann. Polon. Math., 119 (2017), 1–21. https://doi.org/10.4064/AP4015-2-2017 doi: 10.4064/AP4015-2-2017 |
[19] | T. Caraballo, A. M. Marquez-Duran, Existence, uniqueness and asymptotic behavior of solutions for a nonclassical diffusion equation with delay, Dyn. Partial Differ. Equ., 10 (2013), 267–281. https://doi.org/10.4310/DPDE.2013.v10.n3.a3 doi: 10.4310/DPDE.2013.v10.n3.a3 |
[20] | T. Caraballo, A. M. Marquez-Duran, F. Rivero, Well-posedness and asymptotic behavior of a nonclassical nonautonomous diffusion equation with delay, Int. J. Bifurcat. Chaos., 25 (2015), 1540021. https://doi.org/10.1142/S0218127415400210 doi: 10.1142/S0218127415400210 |
[21] | T. Caraballo, A. M. Marquez-Duran, F. Rivero, Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic, DCDS-B, 22 (2017), 1817–1833. https://doi.org/10.3934/dcdsb.2017108 doi: 10.3934/dcdsb.2017108 |
[22] | V. V. Chepyzhov, A. Miranville, Trajectory and global attractors of dissipative hyperbolic equations with memory, CPAA, 4 (2005), 115–142. https://doi.org/10.3934/cpaa.2005.4.115 doi: 10.3934/cpaa.2005.4.115 |
[23] | V. V. Chepyzhov, A. Miranville, On trajectory and global attractors for semilinear heat equations with fading memory, Indiana Univ. Math. J., 55 (2006), 119–168. https://doi.org/10.1512/iumj.2006.55.2597 doi: 10.1512/iumj.2006.55.2597 |
[24] | M. Conti, E. M. Marchini, A remark on nonclassical diffusion equations with memory, Appl. Math. Optim., 73 (2016), 1–21. https://doi.org/10.1007/S00245-015-9290-8 doi: 10.1007/S00245-015-9290-8 |
[25] | M. Conti, E. M. Marchini, V. Pata, Nonclassical diffusion with memory, Math. Method. Appl. Sci., 38 (2015), 948–958. https://doi.org/10.1002/mma.3120 doi: 10.1002/mma.3120 |
[26] | M. Conti, F. Dell'Oro, V. Pata, Nonclassical diffusion with memory lacking instantaneous damping, CPAA, 19 (2020), 2035–2050. https://doi.org/10.3934/cpaa.2020090 doi: 10.3934/cpaa.2020090 |
[27] | Z. Y. Hu, Y. J. Wang, Pullback attractors for a nonautonomous nonclassical diffusion equation with variable delay, J. Math. Phys., 53 (2012), 072702. https://doi.org/10.1063/1.4736847 doi: 10.1063/1.4736847 |
[28] | Y. H. Wang, L. Z. Wang, Trajectory attractors for nonclassical diffusion equations with fading memory, Acta Math. Sci., 33 (2013), 721–737. https://doi.org/10.1016/S0252-9602(13)60033-8 doi: 10.1016/S0252-9602(13)60033-8 |
[29] | X. Wang, L. Yang, C. K. Zhong, Attractors for the nonclassical diffusion equations with fading memory, J. Math. Anal. Appl., 362 (2010), 327–337. https://doi.org/10.1016/j.jmaa.2009.09.029 doi: 10.1016/j.jmaa.2009.09.029 |
[30] | X. Wang, C. K. Zhong, Attractors for the non-autonomous nonclassical diffusion equations with fading memory, Nonlinear Anal.-Theor., 71 (2009), 5733–5746. https://doi.org/10.1016/j.na.2009.05.001 doi: 10.1016/j.na.2009.05.001 |
[31] | Y. Q. Xie, Y. N. Li, Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Funct. Spaces, 2016 (2016), 5340489. http://doi.org/10.1155/2016/5340489 doi: 10.1155/2016/5340489 |
[32] | Y. B. Zhang, X. Wang, C. H. Gao, Strong global attractors for nonclassical diffusion equation with fading memory, Adv. Differ. Equ., 2017 (2017), 163. https://doi.org/10.1186/s13662-017-1222-2 doi: 10.1186/s13662-017-1222-2 |
[33] | K. X. Zhu, C. Y. Sun, Pullback attractors for nonclassical diffusion equations with delays, J. Math. Phys., 56 (2015), 092703. https://doi.org/10.1063/1.4931480 doi: 10.1063/1.4931480 |
[34] | T. Ding, Y. F. Liu, Time-dependent global attractor for the nonclassical diffusion equations, Appl. Anal., 94 (2015), 1439–1449. https://doi.org/10.1080/00036811.2014.933475 doi: 10.1080/00036811.2014.933475 |
[35] | Q. Z. Ma, X. P. Wang, L. Xu, Existence and regularity of time-dependent global attractors for the nonclassical reaction diffusion equations with lower forcing term, Bound. Value Probl., 2016 (2016), 10. https://doi.org/10.1186/s13661-015-0513-3 doi: 10.1186/s13661-015-0513-3 |
[36] | F. Rivero, Time dependent perturbation in a non-autonomous nonclassical parabolic equation, DCDS-B, 18 (2013), 209–221. https://doi.org/10.3934/dcdsb.2013.18.209 doi: 10.3934/dcdsb.2013.18.209 |
[37] | K. X. Zhu, Y. Q. Xie, F. Zhou, Attractors for the nonclassical reaction diffusion equations on time-dependent spaces, Bound. Value Probl., 2020 (2020), 95. https://doi.org/10.1186/s13661-020-01392-7 doi: 10.1186/s13661-020-01392-7 |
[38] | R. H. Wang, Y. R. Li, B. X. Wang, Bi-spatial pullback attractors of fractional nonclassical diffusion equationson unbounded domains with (p, q)-growth nonlinearities, Appl. Math. Optim., 84 (2021), 425–461. https://doi.org/10.1007/s00245-019-09650-6 doi: 10.1007/s00245-019-09650-6 |
[39] | R. H. Wang, L. Shi, B. X. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $R^N$, Nonlinearity, 32 (2019), 4524–4556. https://doi.org/10.1088/1361-6544/ab32d7 doi: 10.1088/1361-6544/ab32d7 |
[40] | R. H. Wang, Y. R. Li, B. X. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, DCDS, 39 (2019) 4091–4126. https://doi.org/10.3934/dcds.2019165 doi: 10.3934/dcds.2019165 |
[41] | J. Garc$\acute{i}$a-Luengo, P. Mar$\acute{i}$n-Rubio, Reaction-diffusion equations with non-autonomous force in $H^{-1}$ and delays under measurability conditions on the driving delay term, J. Math. Anal. Appl., 417 (2014), 80–95. https://doi.org/10.1016/j.jmaa.2014.03.026 doi: 10.1016/j.jmaa.2014.03.026 |
[42] | M. Marion, Attractors for reactions-diffusion equations: Existence and estimate of their dimension, Appl. Anal., 25 (1987), 101–147. https://doi.org/10.1080/00036818708839678 doi: 10.1080/00036818708839678 |
[43] | G. Lukaszewicz, On pullback attractors in $L^p$ for nonautonomous reaction-diffusion equations, Nonlinear Anal.-Theor., 73 (2010), 350–357. https://doi.org/10.1016/j.na.2010.03.023 doi: 10.1016/j.na.2010.03.023 |
[44] | C. Y. Sun, C. K. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains, Nonlinear Anal.-Theor., 63 (2005), 49–65. https://doi.org/10.1016/j.na.2005.04.034 doi: 10.1016/j.na.2005.04.034 |
[45] | B. X. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41–52. https://doi.org/10.1016/S0167-2789(98)00304-2 doi: 10.1016/S0167-2789(98)00304-2 |
[46] | Y. H. Wang, C. K. Zhong, On the existence of pullback attractors for nonautonomous reaction diffusion equations, Dyn. Syst., 23 (2008), 1–16. https://doi.org/10.1080/14689360701611821 doi: 10.1080/14689360701611821 |
[47] | C. K. Zhong, M. H. Yang, C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differ. Equ., 223 (2006), 367–399. https://doi.org/10.1016/j.jde.2005.06.008 doi: 10.1016/j.jde.2005.06.008 |
[48] | K. X. Zhu, Y. Q. Xie, F. Zhou, X. Li, Uniform attractors for the non-autonomous reaction-diffusion equations with delays, Asymptotic Anal., 123 (2021), 263–288. https://doi.org/10.3233/ASY-201633 doi: 10.3233/ASY-201633 |
[49] | Y. J. Li, C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020–1029. https://doi.org/10.1016/j.amc.2006.11.187 doi: 10.1016/j.amc.2006.11.187 |
[50] | Y. M. Qin, Integral and discrete inequalities and their applications, Volume I: Linear inequalities, Berlin, German: Birkhäuser, Cham, 2016. https://doi.org/10.1007/978-3-319-33301-4 |
[51] | Y. M. Qin, Integral and discrete inequalities and their applications, Volume II: Nonlinear inequalities, Berlin, German: Birkhäuser, Cham, 2016. https://doi.org/10.1007/978-3-319-33304-5 |
[52] | Y. M. Qin, Analytic inequalities and their applications in PDEs, Berlin, German: Birkhäuser, Cham, 2017. https://doi.org/10.1007/978-3-319-00831-8 |
[53] | I. D. Chueshov, Introduction to the theory of infinite-dimensional dissipative system, ACTA Scientific Publishing House, 1999. |