Research article

Finite fractal dimension of pullback attractors for a nonclassical diffusion equation

  • Received: 08 January 2022 Revised: 11 February 2022 Accepted: 17 February 2022 Published: 24 February 2022
  • MSC : 35B40, 35B41, 35K57, 37F10

  • In this paper, we investigate the finite fractal dimension of pullback attractors for a nonclassical diffusion equation in $ H^1_0(\Omega) $. First, we prove the existence of pullback attractors for a nonclassical diffusion equation with arbitrary polynomial growth condition by applying the operator decomposition method. Then, by the fractal dimension theorem of pullback attractors given by [6], we prove the finite fractal dimension of pullback attractors for a nonclassical diffusion equation in $ H^1_0(\Omega) $.

    Citation: Xiaolei Dong, Yuming Qin. Finite fractal dimension of pullback attractors for a nonclassical diffusion equation[J]. AIMS Mathematics, 2022, 7(5): 8064-8079. doi: 10.3934/math.2022449

    Related Papers:

  • In this paper, we investigate the finite fractal dimension of pullback attractors for a nonclassical diffusion equation in $ H^1_0(\Omega) $. First, we prove the existence of pullback attractors for a nonclassical diffusion equation with arbitrary polynomial growth condition by applying the operator decomposition method. Then, by the fractal dimension theorem of pullback attractors given by [6], we prove the finite fractal dimension of pullback attractors for a nonclassical diffusion equation in $ H^1_0(\Omega) $.



    加载中


    [1] C. T. Anh, N. D. Toan, Pullback attractors for nonclassical diffusion equations in noncylindrical domains, Int. J. Math. Math. Sci., 2012 (2012), 875913. https://doi.org/10.1155/2012/875913 doi: 10.1155/2012/875913
    [2] Y. Q. Xie, J. Li, K. X. Zhu, Upper semicontinuity of attractors for nonclassical diffusion equations with arbitrary polynomial growth, Adv. Differ. Equ., 2021 (2021), 75. https://doi.org/10.1186/s13662-020-03146-2 doi: 10.1186/s13662-020-03146-2
    [3] J. B. Yuan, S. X. Zhang, Y. Q. Xie, J. W. Zhang, Exponential attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, AIMS Mathematics, 6 (2021), 11778–11795. https://doi.org/10.3934/math.2021684 doi: 10.3934/math.2021684
    [4] T. Chen, Z. Chen, Y. B. Tang, Finite dimensionality of global attractors for a non-classical reaction diffusion equation with memory, Appl. Math. Lett., 25 (2012), 357–362. https://doi.org/10.1016/j.aml.2011.09.014 doi: 10.1016/j.aml.2011.09.014
    [5] A. O. Celebi, V. K. Kalantarov, M. Polat, Attractors for the generalized Benjamin-Bona-Mahony Equation, J. Differ. Equ., 157 (1999), 439–451. https://doi.org/10.1006/jdeq.1999.3634 doi: 10.1006/jdeq.1999.3634
    [6] Y. Li, S. Wang, J. Wei, Finite fractal dimension of pullback attractors and application to non-autonomous reaction diffusion equations, Appl. Math. E-Notes, 10 (2010), 19–26.
    [7] C. T. Anh, T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Anal.-Theor., 73 (2010), 399–412. https://doi.org/10.1016/j.na.2010.03.031 doi: 10.1016/j.na.2010.03.031
    [8] J. Lee, V. M. Toi, Attractors for nonclassical diffusion equations with dynamic boundary conditions, Nonlinear Anal., 195 (2020), 111737. https://doi.org/10.1016/j.na.2019.111737 doi: 10.1016/j.na.2019.111737
    [9] C. Y. Sun, S. Y. Wang, C. K. Zhong, Global attractors for a nonclassical diffusion equation, Acta Math. Sinica, 23 (2007), 1271–1280. https://doi.org/10.1007/s10114-005-0909-6 doi: 10.1007/s10114-005-0909-6
    [10] C. Y. Sun, M. B. Yang, Dynamics of the nonclassical diffusion equations, Asymptot. Anal., 59 (2008), 51–81. https://doi.org/10.3233/ASY-2008-0886 doi: 10.3233/ASY-2008-0886
    [11] N. D. Toan, Existence and long-time behavior of variational solutions to a class of nonclassical diffusion equations in noncylindrical domains, Acta Math. Vietnam., 41 (2016), 37–53. https://doi.org/10.1007/s40306-015-0120-5 doi: 10.1007/s40306-015-0120-5
    [12] Y. H. Wang, P. R. Li, Y. M. Qin, Upper semicontinuity of uniform attractors for nonclassical diffusion equations, Bound. Value Probl., 2017 (2017), 84. https://doi.org/10.1186/s13661-017-0816-7 doi: 10.1186/s13661-017-0816-7
    [13] S. Y. Wang, D. S. Li, C. K. Zhong, On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl., 317 (2006), 565–582. https://doi.org/10.1016/j.jmaa.2005.06.094 doi: 10.1016/j.jmaa.2005.06.094
    [14] Y. H. Wang, Y. M. Qin, Upper semicontinuity of pullback attractors for nonclassical diffusion equations, J. Math. Phys., 51 (2010), 022701. https://doi.org/10.1063/1.3277152 doi: 10.1063/1.3277152
    [15] H. Q. Wu, Z. Y. Zhang, Asymptotic regularity for the nonclassical diffusion equation with lower regular forcing term, Dyn. Syst., 26 (2011), 391–400. https://doi.org/10.1080/14689367.2011.562185 doi: 10.1080/14689367.2011.562185
    [16] Y. J. Zhang, Q. Z. Ma, Exponential attractors of the nonclassical diffusion equations with lower regular forcing term, Int. J. Mod. Nonlinear Theor. Appl., 3 (2014), 15–22. https://doi.org/10.4236/ijmnta.2014.31003 doi: 10.4236/ijmnta.2014.31003
    [17] Y. H. Wang, Z. L. Zhu, P. R. Li, Regularity of pullback attractors for nonautonomous nonclassical diffusion equations, J. Math. Anal. Appl., 459 (2018), 16–31. https://doi.org/10.1016/j.jmaa.2017.10.075 doi: 10.1016/j.jmaa.2017.10.075
    [18] C. T. Anh, D. T. P. Thanh, N. D. Toan, Global attractors for nonclassical diffusion equations with hereditary memory and a new class of nonlinearities, Ann. Polon. Math., 119 (2017), 1–21. https://doi.org/10.4064/AP4015-2-2017 doi: 10.4064/AP4015-2-2017
    [19] T. Caraballo, A. M. Marquez-Duran, Existence, uniqueness and asymptotic behavior of solutions for a nonclassical diffusion equation with delay, Dyn. Partial Differ. Equ., 10 (2013), 267–281. https://doi.org/10.4310/DPDE.2013.v10.n3.a3 doi: 10.4310/DPDE.2013.v10.n3.a3
    [20] T. Caraballo, A. M. Marquez-Duran, F. Rivero, Well-posedness and asymptotic behavior of a nonclassical nonautonomous diffusion equation with delay, Int. J. Bifurcat. Chaos., 25 (2015), 1540021. https://doi.org/10.1142/S0218127415400210 doi: 10.1142/S0218127415400210
    [21] T. Caraballo, A. M. Marquez-Duran, F. Rivero, Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic, DCDS-B, 22 (2017), 1817–1833. https://doi.org/10.3934/dcdsb.2017108 doi: 10.3934/dcdsb.2017108
    [22] V. V. Chepyzhov, A. Miranville, Trajectory and global attractors of dissipative hyperbolic equations with memory, CPAA, 4 (2005), 115–142. https://doi.org/10.3934/cpaa.2005.4.115 doi: 10.3934/cpaa.2005.4.115
    [23] V. V. Chepyzhov, A. Miranville, On trajectory and global attractors for semilinear heat equations with fading memory, Indiana Univ. Math. J., 55 (2006), 119–168. https://doi.org/10.1512/iumj.2006.55.2597 doi: 10.1512/iumj.2006.55.2597
    [24] M. Conti, E. M. Marchini, A remark on nonclassical diffusion equations with memory, Appl. Math. Optim., 73 (2016), 1–21. https://doi.org/10.1007/S00245-015-9290-8 doi: 10.1007/S00245-015-9290-8
    [25] M. Conti, E. M. Marchini, V. Pata, Nonclassical diffusion with memory, Math. Method. Appl. Sci., 38 (2015), 948–958. https://doi.org/10.1002/mma.3120 doi: 10.1002/mma.3120
    [26] M. Conti, F. Dell'Oro, V. Pata, Nonclassical diffusion with memory lacking instantaneous damping, CPAA, 19 (2020), 2035–2050. https://doi.org/10.3934/cpaa.2020090 doi: 10.3934/cpaa.2020090
    [27] Z. Y. Hu, Y. J. Wang, Pullback attractors for a nonautonomous nonclassical diffusion equation with variable delay, J. Math. Phys., 53 (2012), 072702. https://doi.org/10.1063/1.4736847 doi: 10.1063/1.4736847
    [28] Y. H. Wang, L. Z. Wang, Trajectory attractors for nonclassical diffusion equations with fading memory, Acta Math. Sci., 33 (2013), 721–737. https://doi.org/10.1016/S0252-9602(13)60033-8 doi: 10.1016/S0252-9602(13)60033-8
    [29] X. Wang, L. Yang, C. K. Zhong, Attractors for the nonclassical diffusion equations with fading memory, J. Math. Anal. Appl., 362 (2010), 327–337. https://doi.org/10.1016/j.jmaa.2009.09.029 doi: 10.1016/j.jmaa.2009.09.029
    [30] X. Wang, C. K. Zhong, Attractors for the non-autonomous nonclassical diffusion equations with fading memory, Nonlinear Anal.-Theor., 71 (2009), 5733–5746. https://doi.org/10.1016/j.na.2009.05.001 doi: 10.1016/j.na.2009.05.001
    [31] Y. Q. Xie, Y. N. Li, Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Funct. Spaces, 2016 (2016), 5340489. http://doi.org/10.1155/2016/5340489 doi: 10.1155/2016/5340489
    [32] Y. B. Zhang, X. Wang, C. H. Gao, Strong global attractors for nonclassical diffusion equation with fading memory, Adv. Differ. Equ., 2017 (2017), 163. https://doi.org/10.1186/s13662-017-1222-2 doi: 10.1186/s13662-017-1222-2
    [33] K. X. Zhu, C. Y. Sun, Pullback attractors for nonclassical diffusion equations with delays, J. Math. Phys., 56 (2015), 092703. https://doi.org/10.1063/1.4931480 doi: 10.1063/1.4931480
    [34] T. Ding, Y. F. Liu, Time-dependent global attractor for the nonclassical diffusion equations, Appl. Anal., 94 (2015), 1439–1449. https://doi.org/10.1080/00036811.2014.933475 doi: 10.1080/00036811.2014.933475
    [35] Q. Z. Ma, X. P. Wang, L. Xu, Existence and regularity of time-dependent global attractors for the nonclassical reaction diffusion equations with lower forcing term, Bound. Value Probl., 2016 (2016), 10. https://doi.org/10.1186/s13661-015-0513-3 doi: 10.1186/s13661-015-0513-3
    [36] F. Rivero, Time dependent perturbation in a non-autonomous nonclassical parabolic equation, DCDS-B, 18 (2013), 209–221. https://doi.org/10.3934/dcdsb.2013.18.209 doi: 10.3934/dcdsb.2013.18.209
    [37] K. X. Zhu, Y. Q. Xie, F. Zhou, Attractors for the nonclassical reaction diffusion equations on time-dependent spaces, Bound. Value Probl., 2020 (2020), 95. https://doi.org/10.1186/s13661-020-01392-7 doi: 10.1186/s13661-020-01392-7
    [38] R. H. Wang, Y. R. Li, B. X. Wang, Bi-spatial pullback attractors of fractional nonclassical diffusion equationson unbounded domains with (p, q)-growth nonlinearities, Appl. Math. Optim., 84 (2021), 425–461. https://doi.org/10.1007/s00245-019-09650-6 doi: 10.1007/s00245-019-09650-6
    [39] R. H. Wang, L. Shi, B. X. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $R^N$, Nonlinearity, 32 (2019), 4524–4556. https://doi.org/10.1088/1361-6544/ab32d7 doi: 10.1088/1361-6544/ab32d7
    [40] R. H. Wang, Y. R. Li, B. X. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, DCDS, 39 (2019) 4091–4126. https://doi.org/10.3934/dcds.2019165 doi: 10.3934/dcds.2019165
    [41] J. Garc$\acute{i}$a-Luengo, P. Mar$\acute{i}$n-Rubio, Reaction-diffusion equations with non-autonomous force in $H^{-1}$ and delays under measurability conditions on the driving delay term, J. Math. Anal. Appl., 417 (2014), 80–95. https://doi.org/10.1016/j.jmaa.2014.03.026 doi: 10.1016/j.jmaa.2014.03.026
    [42] M. Marion, Attractors for reactions-diffusion equations: Existence and estimate of their dimension, Appl. Anal., 25 (1987), 101–147. https://doi.org/10.1080/00036818708839678 doi: 10.1080/00036818708839678
    [43] G. Lukaszewicz, On pullback attractors in $L^p$ for nonautonomous reaction-diffusion equations, Nonlinear Anal.-Theor., 73 (2010), 350–357. https://doi.org/10.1016/j.na.2010.03.023 doi: 10.1016/j.na.2010.03.023
    [44] C. Y. Sun, C. K. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains, Nonlinear Anal.-Theor., 63 (2005), 49–65. https://doi.org/10.1016/j.na.2005.04.034 doi: 10.1016/j.na.2005.04.034
    [45] B. X. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41–52. https://doi.org/10.1016/S0167-2789(98)00304-2 doi: 10.1016/S0167-2789(98)00304-2
    [46] Y. H. Wang, C. K. Zhong, On the existence of pullback attractors for nonautonomous reaction diffusion equations, Dyn. Syst., 23 (2008), 1–16. https://doi.org/10.1080/14689360701611821 doi: 10.1080/14689360701611821
    [47] C. K. Zhong, M. H. Yang, C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differ. Equ., 223 (2006), 367–399. https://doi.org/10.1016/j.jde.2005.06.008 doi: 10.1016/j.jde.2005.06.008
    [48] K. X. Zhu, Y. Q. Xie, F. Zhou, X. Li, Uniform attractors for the non-autonomous reaction-diffusion equations with delays, Asymptotic Anal., 123 (2021), 263–288. https://doi.org/10.3233/ASY-201633 doi: 10.3233/ASY-201633
    [49] Y. J. Li, C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020–1029. https://doi.org/10.1016/j.amc.2006.11.187 doi: 10.1016/j.amc.2006.11.187
    [50] Y. M. Qin, Integral and discrete inequalities and their applications, Volume I: Linear inequalities, Berlin, German: Birkhäuser, Cham, 2016. https://doi.org/10.1007/978-3-319-33301-4
    [51] Y. M. Qin, Integral and discrete inequalities and their applications, Volume II: Nonlinear inequalities, Berlin, German: Birkhäuser, Cham, 2016. https://doi.org/10.1007/978-3-319-33304-5
    [52] Y. M. Qin, Analytic inequalities and their applications in PDEs, Berlin, German: Birkhäuser, Cham, 2017. https://doi.org/10.1007/978-3-319-00831-8
    [53] I. D. Chueshov, Introduction to the theory of infinite-dimensional dissipative system, ACTA Scientific Publishing House, 1999.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1384) PDF downloads(88) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog