In this study, we give the notions about some new post-quantum partial derivatives and then use these derivatives to prove an integral equality via post-quantum double integrals. We establish some new post-quantum Ostrowski type inequalities for differentiable coordinated functions using the newly established equality. We also show that the results presented in this paper are the extensions of some existing results.
Citation: Miguel Vivas-Cortez, Muhammad Aamir Ali, Hüseyin Budak, Ifra Bashir Sial. Post-quantum Ostrowski type integral inequalities for functions of two variables[J]. AIMS Mathematics, 2022, 7(5): 8035-8063. doi: 10.3934/math.2022448
[1] | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu . Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity. AIMS Mathematics, 2020, 5(6): 7122-7144. doi: 10.3934/math.2020456 |
[2] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103 |
[3] | Andrea Aglić Aljinović, Domagoj Kovačević, Mehmet Kunt, Mate Puljiz . Correction: Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Mathematics, 2021, 6(2): 1880-1888. doi: 10.3934/math.2021114 |
[4] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Saowaluck Chasreechai . Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes. AIMS Mathematics, 2021, 6(11): 11989-12010. doi: 10.3934/math.2021695 |
[5] | Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some q-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192 |
[6] | Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon . Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for s-convex functions in the second sense with applications. AIMS Mathematics, 2021, 6(12): 13327-13346. doi: 10.3934/math.2021771 |
[7] | Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769 |
[8] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[9] | Mehmet Kunt, Artion Kashuri, Tingsong Du, Abdul Wakil Baidar . Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Mathematics, 2020, 5(6): 5439-5457. doi: 10.3934/math.2020349 |
[10] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Ghulam Murtaza, Ifra Bashir Sial . Hermite-Hadamard and Ostrowski type inequalities in h-calculus with applications. AIMS Mathematics, 2022, 7(4): 7056-7068. doi: 10.3934/math.2022393 |
In this study, we give the notions about some new post-quantum partial derivatives and then use these derivatives to prove an integral equality via post-quantum double integrals. We establish some new post-quantum Ostrowski type inequalities for differentiable coordinated functions using the newly established equality. We also show that the results presented in this paper are the extensions of some existing results.
A. M. Ostowski established the following intriguing integral inequality in 1938, which is known in the literature as the Ostrowski inequality.
Theorem 1.1. [47] Let ϝ:[π1,π2]→R be a differentiable function on (π1,π2) whose derivative isbounded on (π1,π2), i.e., ‖ϝ′(τ)‖∞:=sup|ϝ′(τ)|<∞, for all τ∈(π1,π2).Then we have the following integral inequality:
|ϝ(x)−1π2−π1∫π2π1ϝ(x)dx|≤[14+(x−π1+π22)(π2−π1)2](π2−π1)‖ϝ′‖∞, | (1.1) |
for all x∈[π1,π2]. The 14 is the bestpossible.
Inequality (1.1) can be rewritten in the following way:
|ϝ(x)−1π2−π1∫π2π1ϝ(x)dx|≤[(x−π1)2+(π2−x)22(π2−π1)]‖ϝ′‖∞. | (1.2) |
Since 1938, numerous mathematicians have worked on and around the Ostrowski inequality, in a variety of ways and with a variety of applications in Numerical Analysis and Probability, etc.
Many authors investigate several versions of the Ostrowski integral inequality for bounded variation mappings, Lipschitzian mappings, monotonic mappings, absolutely continuous mappings, convex mappings, and n-times differentiable mappings with error estimates for various particular means and numerical quadrature techniques. For recent results and generalizations concerning Ostrowski's inequality, one can consult [8,9,15,24,26,27,42,48,49,50,52] and the references therein.
The following is a formal definition of co-ordinated convex (concave) functions:
Definition 1.2. A function ϝ:Δ→R is called co-ordinated convex on Δ, for all (x,u),(y,v)∈Δ and τ,s∈[0,1], if it satisfies the following inequality:
ϝ(τx+(1−τ)y,su+(1−s)v)≤τsϝ(x,u)+τ(1−s)ϝ(x,v)+s(1−τ)ϝ(y,u)+(1−τ)(1−s)ϝ(y,v). | (1.3) |
The mapping ϝ is a co-ordinated concave on Δ if the inequality (1.3) holds in reversed direction for all τ,s∈[0,1] and (x,u),(y,v)∈Δ.
For co-ordinated convex functions, M. A. Latif et al. established the following Ostrowski type inequalities in [41]:
Theorem 1.3. [41] Let ϝ:Δ:=[π1,π2]×[π3,π4]→R be a twice partial differentiable mapping on Δ∘ with π1<π2,π3<π4,π1,π3≥0 such that ∂2ϝ∂s∂τ∈L(Δ). If |∂2ϝ∂s∂τ| is co-ordinated convex on Δ and |∂2ϝ∂s∂τ|≤M,(x,y)∈Δ, then the following inequality holds:
|ϝ(x,y)+1(π2−π1)(π4−π3)∫π2π1∫π4π3ϝ(u,v)dvdu−π11|≤M[(x−π1)2+(π2−x)22(π2−π1)][(y−π3)2+(π4−y)22(π4−π3)], | (1.4) |
where
π11=1π4−π3∫π4π3ϝ(x,v)dv+1π2−π1∫π2π1ϝ(u,y)du. |
Theorem 1.4. [41] Let ϝ:Δ:=[π1,π2]×[π3,π4]→R be a twice partial differentiable mapping on Δ∘ with π1<π2,π3<π4,π1,π3≥0 such that ∂2ϝ∂s∂τ∈L(Δ). If |∂2ϝ∂s∂τ|s is co-ordinated convex on Δ, s>1,1s+1r=1 and |∂2ϝ∂s∂τ(x,y)|≤M,(x,y)∈Δ, then thefollowing inequality holds:
|ϝ(x,y)+1(π2−π1)(π4−π3)∫π2π1∫π4π3ϝ(u,v)dvdu−π11|≤M(1+r)2r[(x−π1)2+(π2−x)22(π2−π1)][(y−π3)2+(π4−y)22(π4−π3)], | (1.5) |
where π11 is defined in Theorem 1.3.
Theorem 1.5. [41] Let ϝ:Δ:=[π1,π2]×[π3,π4]→R be a twice partial differentiable mapping on Δ∘ with π1<π2,π3<π4,π1,π3≥0 such that ∂2ϝ∂s∂τ∈L(Δ). If |∂2ϝ∂s∂τ|p is co-ordinated convex on Δ, p≥1 and |∂2ϝ∂s∂τ(x,y)|≤M,(x,y)∈Δ, then the following inequality holds:
|ϝ(x,y)+1(π2−π1)(π4−π3)∫π2π1∫π4π3ϝ(u,v)dvdu−π11|≤M4[(x−π1)2+(π2−x)22(π2−π1)][(y−π3)2+(π4−y)22(π4−π3)], | (1.6) |
where π11 is defined in Theorem 1.3.
On the other side, in the domain of q-analysis, many works are being carried out initiating from Euler in order to attain adeptness in mathematics that constructs quantum computing q-calculus considered as a relationship between physics and mathematics. In different areas of mathematics, it has numerous applications such as combinatorics, number theory, basic hypergeometric functions, orthogonal polynomials, and other sciences, mechanics, the theory of relativity, and quantum theory [31,35]. Quantum calculus also has many applications in quantum information theory which is an interdisciplinary area that encompasses computer science, information theory, philosophy, and cryptography, among other areas [16,17]. Apparently, Euler invented this important mathematics branch. He used the q parameter in Newton's work on infinite series. Later, in a methodical manner, the q-calculus that knew without limits calculus was firstly given by F. H. Jackson [30,33]. In 1966, W. Al-Salam [12] introduced a q-analogue of the q -fractional integral and q-Riemann-Liouville fractional. Since then, the related research has gradually increased. In particular, in 2013, J. Tariboon and S. K. Ntouyas introduced π1Dq-difference operator and qπ1-integral in [54]. In 2020, S. Bermudo et al. introduced the notion of π2Dq derivative and qπ2 -integral in [14]. T. Acar et al. generalized to quantum calculus and introduced the notions of post-quantum calculus or shortly (p,q)-calculus in [1]. In [53], M. Tunç and E. Gö v gave the post-quantum variant of π1Dq-difference operator and qπ1-integral. Recently, in 2021, Y. M. Chu et al. introduced the notions of π2Dp,q derivative and (p,q)π2-integral in [25].
Many integral inequalities have been studied using quantum and post-quantum integrals for various types of functions. For example, in [3,6,10,11,14,18,19,34,43,44], the authors used π1Dq,π2Dq-derivatives and qπ1,qπ2-integrals to prove Hermite-Hadamard integral inequalities and their left-right estimates for convex and coordinated convex functions. In [45], M. A. Noor et al. presented a generalized version of quantum integral inequalities. For generalized quasi-convex functions, E. R. Nwaeze et al. proved certain parameterized quantum integral inequalities in [46]. M. A. Khan et al. proved quantum Hermite-Hadamard inequality using the green function in [37]. H. Budak et al. [20], M. A. Ali et al. [2,4] and M. Vivas-Cortez et al. [55] developed new quantum Simpson's and quantum Newton's type inequalities for convex and coordinated convex functions. For quantum Ostrowski's inequalities for convex and co-ordinated convex functions on can consult [5,7,23]. M. Kunt et al. [38] generalized the results of [10] and proved Hermite-Hadamard type inequalities and their left estimates using π1Dp,q-difference operator and (p,q)π1 -integral. Recently, M. A. Latif et al. [39] found the right estimates of Hermite-Hadamard type inequalities proved by M. Kunt et al. [38]. To prove Ostrowski's inequalities, Y.-M. Chu et al. [25] used the concepts of π2Dp,q-difference operator and (p,q)π2-integral.
The following quantum variants of inequalities (1.4)–(1.6) proved my H. Budak et al. in [21].
Theorem 1.6. [21] Let ϝ:Δ⊆R2→R be a twice partially q1q2-differentiable function on Δ∘ and partial q1q2-derivatives π2,π4∂2q1,q2ϝ(τ,s)π2∂q1τπ4∂q2s, π4π1∂2q1,q2ϝ(τ,s)π1∂q1τπ4∂q2s, π2π3∂2q1,q2ϝ(τ,s)π2∂q1τπ3∂q2s, π1,π3∂2q1,q2ϝ(τ,s)π1∂q1τπ3∂q2s be continuous and integrable on [π1,π2]×[π3,π4]⊆Δ∘. If |π2,π4∂2q1,q2ϝ(τ,s)π2∂q1τπ4∂q2s|, |π4π1∂2q1,q2ϝ(τ,s)π1∂q1τπ4∂q2s|, |π2π3∂2q1,q2ϝ(τ,s)π2∂q1τπ3∂q2s|, |π1,π3∂2q1,q2ϝ(τ,s)π1∂q1τπ3∂q2s|≤M for all (τ,s)∈[π1,π2]×[π3,π4], then we have the following quantumOstrowski's type inequality:
|1(π2−π1)(π4−π3)[∫π2x∫π4yϝ(τ,s)π2dq1τπ4dq2s+∫π2x∫yπ3ϝ(τ,s)π2dq1τπ3dq2s+∫xπ1∫π4yϝ(τ,s)π1dq1τπ4dq2s+∫xπ1∫yπ3ϝ(τ,s)π1dq1τπ3dq2s]−1π4−π3[∫π4yϝ(x,s)π4dq2s+∫yπ3ϝ(x,s)π3dq2s]−1π2−π1[∫π2xϝ(τ,y)π2dq1τ+∫xπ1ϝ(τ,y)π1dq1τ]+ϝ(x,y)|≤M(π2−π1)(π4−π3)q1q2(1+[2]q1)(1+[2]q2)[3]q1[3]q2[(π2−x)2+(x−π1)2[2]q1][(π4−y)2+(y−π3)2[2]q2] | (1.7) |
for all (x,y)∈[π1,π2]×[π3,π4] where q1,q2∈(0,1).
Theorem 1.7. [21] Let ϝ:Δ⊆R2→R be a twice partially q1q2-differentiable function on Δ∘ and partial q1q2-derivatives π2,π4∂2q1,q2ϝ(τ,s)π2∂q1τπ4∂q2s, π4π1∂2q1,q2ϝ(τ,s)π1∂q1τπ4∂q2s, π2π3∂2q1,q2ϝ(τ,s)π2∂q1τπ3∂q2s, π1,π3∂2q1,q2ϝ(τ,s)π1∂q1τπ3∂q2s be continuous and integrable on [π1,π2]×[π3,π4]⊆Δ∘. If |π2,π4∂2q1,q2ϝ(τ,s)π2∂q1τπ4∂q2s|, |π4π1∂2q1,q2ϝ(τ,s)π1∂q1τπ4∂q2s|, |π2π3∂2q1,q2ϝ(τ,s)π2∂q1τπ3∂q2s|, |π1,π3∂2q1,q2ϝ(τ,s)π1∂q1τπ3∂q2s|≤M for all (τ,s)∈[π1,π2]×[π3,π4], then we have the following quantumOstrowski's type inequality:
|1(π2−π1)(π4−π3)[∫π2x∫π4yϝ(τ,s)π2dq1τπ4dq2s+∫π2x∫yπ3ϝ(τ,s)π2dq1τπ3dq2s+∫xπ1∫π4yϝ(τ,s)π1dq1τπ4dq2s+∫xπ1∫yπ3ϝ(τ,s)π1dq1τπ3dq2s]−1π4−π3[∫π4yϝ(x,s)π4dq2s+∫yπ3ϝ(x,s)π3dq2s]−1π2−π1[∫π2xϝ(τ,y)π2dq1τ+∫xπ1ϝ(τ,y)π1dq1τ]+ϝ(x,y)|≤q1q2M(π2−π1)(π4−π3)(1[r+1]q11[r+1]q2)1r[(π2−x)2+(x−π1)2][(π4−y)2+(y−π3)2] | (1.8) |
for all (x,y)∈[π1,π2]×[π3,π4] where q1,q2∈(0,1) and 1r+1s=1, s>1.
Theorem 1.8. [21] Let ϝ:Δ⊆R2→R be a twice partially q1q2-differentiable function on Δ∘ and partial q1q2-derivatives π2,π4∂2q1,q2ϝ(τ,s)π2∂q1τπ4∂q2s, π4π1∂2q1,q2ϝ(τ,s)π1∂q1τπ4∂q2s, π2π3∂2q1,q2ϝ(τ,s)π2∂q1τπ3∂q2s, π1,π3∂2q1,q2ϝ(τ,s)π1∂q1τπ3∂q2s be continuous and integrable on [π1,π2]×[π3,π4]⊆Δ∘. If |π2,π4∂2q1,q2ϝ(τ,s)π2∂q1τπ4∂q2s|, |π4π1∂2q1,q2ϝ(τ,s)π1∂q1τπ4∂q2s|, |π2π3∂2q1,q2ϝ(τ,s)π2∂q1τπ3∂q2s|, |π1,π3∂2q1,q2ϝ(τ,s)π1∂q1τπ3∂q2s|≤M for all (τ,s)∈[π1,π2]×[π3,π4], then we have the following quantumOstrowski's type inequality:
|1(π2−π1)(π4−π3)[∫π2x∫π4yϝ(τ,s)π2dq1τπ4dq2s+∫π2x∫yπ3ϝ(τ,s)π2dq1τπ3dq2s+∫xπ1∫π4yϝ(τ,s)π1dq1τπ4dq2s+∫xπ1∫yπ3ϝ(τ,s)π1dq1τπ3dq2s]−1π4−π3[∫π4yϝ(x,s)π4dq2s+∫yπ3ϝ(x,s)π3dq2s]−1π2−π1[∫π2xϝ(τ,y)π2dq1τ+∫xπ1ϝ(τ,y)π1dq1τ]+ϝ(x,y)|≤Mq1q2(π2−π1)(π4−π3)((1+[2]q1)(1+[2]q2)[3]q1[3]q2)1s×[(π2−x)2+(x−π1)2[2]q1][(π4−y)2+(y−π3)2[2]q2] | (1.9) |
for all (x,y)∈[π1,π2]×[π3,π4] where q1,q2∈(0,1) and s≥1.
Inspired by this ongoing studies, we introduce some new notions of post-quantum partial derivatives and prove some new ostrowski type inequalities for the functions of two variables by using the post-quantum double integrals and newly introduced post-quantum partial derivatives. Moreover, we show that the results presented in this paper are the extensions of results proved in [21,40].
The following is the structure of this paper: A brief overview of the concepts of q-calculus, as well as some related works, is given in Section 2. In Section 3, we recall the notions of (p,q)-calculus and give some realted works. In Section 4, we show the relationship between the results presented here and comparable results in the literature by proving some new post-quantum Ostrowski type inequalities for the functions of two variables. Section 5 concludes with some recommendations for future studies.
In this section, we present some required definitions and inequalities.
In [33], F. H. Jackson gave the q-Jackson integral from 0 to π2 for 0<q<1 as follows:
π2∫0ϝ(x)dqx=(1−q)π2∞∑n=0qnϝ(π2qn) | (2.1) |
provided the sum converge absolutely. Moreover, he gave the q-Jackson integral in an arbitrary interval [π1,π2] as:
π2∫π1ϝ(x)dqx=π2∫0ϝ(x)dqx−π1∫0ϝ(x)dqx. |
Definition 2.1. [54] For a continuous function ϝ:[π1,π2]→R, then qπ1-derivative of ϝ at x∈[π1,π2] is characterized by the expression:
π1Dqϝ(x)=ϝ(x)−ϝ(qx+(1−q)π1)(1−q)(x−π1),x≠π1. | (2.2) |
For x=π1, we state π1Dqϝ(π1)=limx→π1π1Dqϝ(x) if it exists and it is finite.
Definition 2.2. [14] For a continuous function ϝ:[π1,π2]→R, then qπ2-derivative of ϝ at x∈[π1,π2] is characterized by the expression:
π2Dqϝ(x)=ϝ(qx+(1−q)π2)−ϝ(x)(1−q)(π2−x),x≠π2. | (2.3) |
For x=π2, we state π2Dqϝ(π2)=limx→π2π2Dqϝ(x) if it exists and it is finite.
Definition 2.3. [54] Let ϝ:[π1,π2]→R be a continuous function. Then, the qπ1-definite integral on [π1,π2] is defined as:
π2∫π1ϝ(x)π1dqx=(1−q)(π2−π1)∞∑n=0qnϝ(qnπ2+(1−qn)π1)=(π2−π1)1∫0ϝ((1−τ)π1+τπ2)dqτ. | (2.4) |
On the other hand, S. Bermudo et al. gave the following new definition:
Definition 2.4. [14] Let ϝ:[π1,π2]→R be a continuous function. Then, the qπ2-definite integral on [π1,π2] is defined as:
π2∫π1ϝ(x)π2dqx=(1−q)(π2−π1)∞∑n=0qnϝ(qnπ1+(1−qn)π2)=(π2−π1)1∫0ϝ(τπ1+(1−τ)π2)dqτ. | (2.5) |
For more details about qπ2-integrals and corresponding inequalities one can see [14].
Now, let's give the following notation which will be used many times in the next sections (see, [35]):
[n]q=qn−1q−1. |
Moreover, we give the following Lemma for our main results:
Lemma 2.5. [54] We have the equality
π2∫π1(x−π1)απ1dqx=(π2−π1)α+1[α+1]q |
for α∈R∖{−1}.
In [23], H. Budak et al. proved the following variant of quantum Ostrowski inequality using the qπ1 and qπ2-integrals:
Theorem 2.6. [23] Let ϝ:[π1,π2]⊂R→R be a function and π2Dqϝ, π1Dqϝbe two continuous and integrable functions on [π1,π2]. If |π2Dqϝ(τ)|,|π1Dqϝ(τ)|≤M for all τ∈[π1,π2], then we have the following quantum Ostrowskitype inequality:
|ϝ(x)−1π2−π1[x∫π1ϝ(τ)π1dqτ+π2∫xϝ(τ)π2dqτ]|≤qM(π2−π1)[(x−π1)2+(π2−x)2[2]q] | (2.6) |
for all x∈[π1,π2] where 0<q<1.
On the other hand, the authors gave the following definitions of qπ1π3, qπ4π1, qπ3π2 and qπ2π4integrals and related inequalities of Hermite-Hadamard type:
Definition 2.7. [19,40] Suppose that ϝ:[π1,π2]×[π3,π4]⊂R2→R is a continuous function. Then, the following qπ1π3, qπ4π1, qπ2π3 and qπ2π4 integrals on [π1,π2]×[π3,π4] are defined by
x∫π1y∫π3ϝ(τ,s)π3dq2sπ1dq1τ=(1−q1)(1−q2)(x−π1)(y−π3)×∞∑n=0∞∑m=0qn1qm2ϝ(qn1x+(1−qn1)π1,qm2y+(1−qm2)π3)x∫π1π4∫yϝ(τ,s)π4dq2sπ1dq1τ=(1−q1)(1−q2)(x−π1)(π4−y)×∞∑n=0∞∑m=0qn1qm2ϝ(qn1x+(1−qn1)π1,qm2y+(1−qm2)π4) | (2.7) |
π2∫xy∫π3ϝ(τ,s)π3dq2sπ2dq1τ=(1−q1)(1−q2)(π2−x)(y−π3)×∞∑n=0∞∑m=0qn1qm2ϝ(qn1x+(1−qn1)π2,qm2y+(1−qm2)π3) | (2.8) |
and
π2∫xπ4∫yϝ(τ,s)π4dq2sπ2dq1τ=(1−q1)(1−q2)(π2−x)(π4−y)×∞∑n=0∞∑m=0qn1qm2ϝ(qn1x+(1−qn1)π2,qm2y+(1−qm2)π4) | (2.9) |
respectively, for (x,y)∈[π1,π2]×[π3,π4].
[40,57] Let ϝ:[π1,π2]×[π3,π4]⊆R2→R be a continuous function of two variables. Then, the partial q1 -derivatives, q2-derivatives and q1q2-derivatives at (x,y)∈[π1,π2]×[π3,π4] can be given as follows:
π1∂q1ϝ(x,y)π1∂q1x=ϝ(q1x+(1−q1)π1,y)−ϝ(x,y)(1−q1)(x−π1),x≠π1π3∂q2ϝ(x,y)π3∂q2y=ϝ(x,q2y+(1−q2)π3)−ϝ(x,y)(1−q2)(y−π3),y≠π3π1,π3∂2q1,q2ϝ(x,y)π1∂q1xπ3∂q2y=1(x−π1)(y−π3)(1−q1)(1−q2)[ϝ(q1x+(1−q1)π1,q2y+(1−q2)π3)−ϝ(q1x+(1−q1)π1,y)−ϝ(x,q2y+(1−q2)π3)+ϝ(x,y)],x≠π1,y≠π3 |
π2∂q1ϝ(x,y)π2∂q1x=ϝ(q1x+(1−q1)π2,y)−ϝ(x,y)(1−q1)(π2−x),x≠π2π4∂q2ϝ(x,y)π4∂q2y=ϝ(x,q2y+(1−q2)π4)−ϝ(x,y)(1−q2)(π4−y),y≠π4π4π1∂2q1,q2ϝ(x,y)π1∂q1xπ4∂q2y=1(x−π1)(π4−y)(1−q1)(1−q2)[ϝ(q1x+(1−q1)π1,q2y+(1−q2)π4)−ϝ(q1x+(1−q1)π1,y)−ϝ(x,q2y+(1−q2)π4)+ϝ(x,y)],x≠π1,y≠π4,π2π3∂2q1,q2ϝ(x,y)π2∂q1xπ3∂q2y=1(π2−x)(y−π3)(1−q1)(1−q2)[ϝ(q1x+(1−q1)π2,q2y+(1−q2)π3)−ϝ(q1x+(1−q1)π2,y)−ϝ(x,q2y+(1−q2)π3)+ϝ(x,y)],x≠π2,y≠π3,π2,π4∂2q1,q2ϝ(x,y)π2∂q1xπ4∂q2y=1(π2−x)(π4−y)(1−q1)(1−q2)[ϝ(q1x+(1−q1)π2,q2y+(1−q2)π4)−ϝ(q1x+(1−q1)π2,y)−ϝ(x,q2y+(1−q2)π4)+ϝ(x,y)],x≠π2,y≠π4. |
In this section, we review some fundamental notions and notations of (p,q)-calculus.
The [n]p,q is said to be (p,q)-integers and expressed as [13,28,29]:
[n]p,q=pn−qnp−q |
with 0<q<p≤1. The [n]p,q! and [nk]! are called (p,q)-factorial and (p,q)-binomial, respectively, and expressed as:
[n]p,q!=n∏k=1[k]p,q,n≥1,[0]p,q!=1,[nk]!=[n]p,q![n−k]p,q![k]p,q!. |
Definition 3.1. [1] The (p,q)-derivative of mapping ϝ:[π1,π2]→R is given as:
Dp,qϝ(x)=ϝ(px)−ϝ(qx)(p−q)x,x≠0 |
with 0<q<p≤1.
Definition 3.2. [53] The (p,q)π1-derivative of mapping ϝ:[π1,π2]→R is given as:
π1Dp,qϝ(x)=ϝ(px+(1−p)π1)−ϝ(qx+(1−q)π1)(p−q)(x−π1),x≠π1 | (3.1) |
with 0<q<p≤1. For x=π1, we state π1Dp,qϝ(π1)=limx→π1π1Dp,qϝ(x) if it exists and it is finite.
Definition 3.3. [25] The (p,q)π2-derivative of mapping ϝ:[π1,π2]→R is given as:
π2Dp,qϝ(x)=ϝ(qx+(1−q)π2)−ϝ(px+(1−p)π2)(p−q)(π2−x),x≠π2. | (3.2) |
with 0<q<p≤1. For x=π2, we state π2Dp,qϝ(π2)=limx→π2π2Dp,qϝ(x) if it exists and it is finite.
Remark 3.4. It is clear that if we use p=1 in (3.1) and (3.2), then the equalities (3.1) and (3.2) reduce to (2.2) and (2.3), respectively.
Definition 3.5. [53] The definite (p,q)π1-integral of mapping ϝ:[π1,π2]→R on [π1,π2] is stated as:
∫xπ1ϝ(τ)π1dp,qτ=(p−q)(x−π1)∞∑n=0qnpn+1ϝ(qnpn+1x+(1−qnpn+1)π1) | (3.3) |
with 0<q<p≤1.
Definition 3.6. [25] The definite (p,q)π2-integral of mapping ϝ:[π1,π2]→R on [π1,π2] is stated as:
∫π2xϝ(τ)π2dp,qτ=(p−q)(π2−x)∞∑n=0qnpn+1ϝ(qnpn+1x+(1−qnpn+1)π2) | (3.4) |
with 0<q<p≤1.
Remark 3.7. It is evident that if we pick p=1 in (3.3) and (3.4), then the equalities (3.3) and (3.4) change into (2.4) and (2.5), respectively.
Remark 3.8. If we take π1=0 and x=π2=1 in (3.3), then we have
∫10ϝ(τ)0dp,qτ=(p−q)∞∑n=0qnpn+1ϝ(qnpn+1). |
Similarly, by taking x=π1=0 and \pi _{2} = 1 in (3.4), then we obtain that
\int_{0}^{1}\digamma \left( \tau \right) \; ^{1}d_{p, q}\tau = \left( p-q\right) \sum \limits_{n = 0}^{\infty }\frac{q^{n}}{p^{n+1}}\digamma \left( 1-\frac{ q^{n}}{p^{n+1}}\right) . |
Lemma 3.9. [56] We have the following equalities
\int_{\pi _{1}}^{\pi _{2}}\left( \pi _{2}-x\right) ^{\alpha }\; ^{\pi _{2}}d_{p, q}x = \frac{\left( \pi _{2}-\pi _{1}\right) ^{\alpha +1}}{\left[ \alpha +1\right] _{p, q}} |
\int_{\pi _{1}}^{\pi _{2}}\left( x-\pi _{1}\right) ^{\alpha }\; _{\pi _{1}}d_{p, q}x = \frac{\left( \pi _{2}-\pi _{1}\right) ^{\alpha +1}}{\left[ \alpha +1\right] _{p, q}}, |
where \alpha \in \mathbb{R} \backslash \left\{ -1\right\}.
For more details in \left(p, q\right) -calculus, one can consult [22,32,51].
In [38], M. Kunt et al. proved the following HH type inequalities for convex functions via ( p, q ) _{\pi _{1}} -integral:
Theorem 3.10. [38] For a convex mapping \digamma :\left[\pi _{1}, \pi _{2}\right]\rightarrow \mathbb{R} which is differentiable on \left[\pi _{1}, \pi _{2}\right], thefollowing inequalities hold for \left(p, q\right) _{\pi _{1}} -integral:
\begin{equation} \digamma \left( \frac{q\pi _{1}+p\pi _{2}}{\left[ 2\right] _{p, q}}\right) \leq \frac{1}{p\left( \pi _{2}-\pi _{1}\right) }\int_{\pi _{1}}^{p\pi _{2}+\left( 1-p\right) \pi _{1}}\digamma \left( x\right) \; _{\pi _{1}}d_{p, q}x\leq \frac{q\digamma \left( \pi _{1}\right) +p\digamma \left( \pi _{2}\right) }{\left[ 2\right] _{p, q}}, \end{equation} | (3.5) |
where 0 < q < p\leq 1.
Recently, M. Vivas-Cortez et al. [56] proved the following HH type inequalities for convex functions using the \left(p, q\right) ^{\pi _{2}} -integral:
Theorem 3.11. [56] For a convex mapping \digamma :\left[\pi _{1}, \pi _{2}\right]\rightarrow \mathbb{R} which is differentiable on \left[\pi _{1}, \pi _{2}\right], thefollowing inequalities hold for \left(p, q\right) ^{\pi _{2}} -integral:
\begin{equation} \digamma \left( \frac{p\pi _{1}+q\pi _{2}}{\left[ 2\right] _{p, q}}\right) \leq \frac{1}{p\left( \pi _{2}-\pi _{1}\right) }\int_{p\pi _{1}+\left( 1-p\right) \pi _{2}}^{\pi _{2}}\digamma \left( x\right) \; ^{\pi _{2}}d_{p, q}x\leq \frac{p\digamma \left( \pi _{1}\right) +q\digamma \left( \pi _{2}\right) }{\left[ 2\right] _{p, q}}, \end{equation} | (3.6) |
where 0 < q < p\leq 1.
In [36] and [58], the authors gave the following notions of post-quantum integrals for the functions of two variables.
Definition 3.12. [36,58] For a function \digamma :\left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, \pi _{4}\right] \rightarrow \mathbb{R} :
(1) The \left(p, q\right) _{\pi _{1}}^{\pi _{4}} integral of \digamma is given as:
\begin{eqnarray*} &&\int_{\pi _{1}}^{x}\int_{y}^{\pi _{4}}\digamma \left( \tau , s\right) \; ^{\pi _{4}}d_{p_{2}, q_{2}}s\; _{\pi _{1}}d_{p_{1}, q_{1}}\tau = \left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) \left( x-\pi _{1}\right) \left( \pi _{4}-y\right) \\ &&\times \sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty }\frac{ q_{1}^{n}}{p_{1}^{n+1}}\frac{q_{2}^{m}}{p_{2}^{m+1}}\digamma \left( \frac{ q_{1}^{n}}{p_{1}^{n+1}}x+\left( 1-\frac{q_{1}^{n}}{p_{1}^{n+1}}\right) \pi _{1}, \frac{q_{2}^{m}}{p_{2}^{m+1}}y+\left( 1-\frac{q_{2}^{m}}{p_{2}^{m+1}} \right) \pi _{4}\right) , \end{eqnarray*} |
where x, y\in \left[\pi _{1}, p_{1}\pi _{2}+\left(1-p_{1}\right) \pi _{1} \right] \times \left[p_{2}\pi _{3}+\left(1-p_{2}\right) \pi _{4}, \pi _{4} \right].
(2) The \left(p, q\right) _{\pi _{3}}^{\pi _{2}} integral of \digamma is given as:
\begin{eqnarray*} &&\int_{x}^{\pi _{2}}\int_{\pi _{3}}^{y}\digamma \left( \tau , s\right) \; _{\pi _{3}}d_{p_{2}, q_{2}}s\; ^{\pi _{2}}d_{p_{1}, q_{1}}\tau = \left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) \left( \pi _{2}-x\right) \left( y-\pi _{3}\right) \\ &&\times \sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty }\frac{ q_{1}^{n}}{p_{1}^{n+1}}\frac{q_{2}^{m}}{p_{2}^{m+1}}\digamma \left( \frac{ q_{1}^{n}}{p_{1}^{n+1}}x+\left( 1-\frac{q_{1}^{n}}{p_{1}^{n+1}}\right) \pi _{2}, \frac{q_{2}^{m}}{p_{2}^{m+1}}y+\left( 1-\frac{q_{2}^{m}}{p_{2}^{m+1}} \right) \pi _{3}\right) \end{eqnarray*} |
where x, y\in \left[p_{1}\pi _{1}+\left(1-p_{1}\right) \pi _{1}, \pi _{2} \right] \times \left[\pi _{3}, p_{2}\pi _{4}+\left(1-p_{2}\right) \pi _{3} \right].
(3) The \left(p, q\right) ^{\pi _{2}\pi _{4}} integral of \digamma is given as:
\begin{eqnarray*} &&\int_{x}^{\pi _{2}}\int_{y}^{\pi _{4}}\digamma \left( \tau , s\right) \; ^{\pi _{4}}d_{p_{2}, q_{2}}s\; ^{\pi _{2}}d_{p_{1}, q_{1}}\tau = \left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) \left( \pi _{2}-x\right) \left( \pi _{4}-y\right) \\ &&\times \sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty }\frac{ q_{1}^{n}}{p_{1}^{n+1}}\frac{q_{2}^{m}}{p_{2}^{m+1}}\digamma \left( \frac{ q_{1}^{n}}{p_{1}^{n+1}}x+\left( 1-\frac{q_{1}^{n}}{p_{1}^{n+1}}\right) \pi _{2}, \frac{q_{2}^{m}}{p_{2}^{m+1}}y+\left( 1-\frac{q_{2}^{m}}{p_{2}^{m+1}} \right) \pi _{4}\right) , \end{eqnarray*} |
where x, y\in \left[p_{1}\pi _{1}+\left(1-p_{1}\right) \pi _{2}, \pi _{2} \right] \times \left[p_{2}\pi _{3}+\left(1-p_{2}\right) \pi _{4}, \pi _{4} \right].
(4) The \left(p, q\right) _{\pi _{1}\pi _{3}} integral of \digamma is given as:
\begin{eqnarray*} &&\int_{\pi _{1}}^{x}\int_{\pi _{3}}^{y}\digamma \left( \tau , s\right) \; _{\pi _{3}}d_{p_{2}, q_{2}}s\; _{\pi _{1}}d_{p_{1}, q_{1}}\tau = \left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) \left( x-\pi _{1}\right) \left( y-\pi _{3}\right) \\ &&\times \sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty }\frac{ q_{1}^{n}}{p_{1}^{n+1}}\frac{q_{2}^{m}}{p_{2}^{m+1}}\digamma \left( \frac{ q_{1}^{n}}{p_{1}^{n+1}}x+\left( 1-\frac{q_{1}^{n}}{p_{1}^{n+1}}\right) \pi _{1}, \frac{q_{2}^{m}}{p_{2}^{m+1}}y+\left( 1-\frac{q_{2}^{m}}{p_{2}^{m+1}} \right) \pi _{3}\right) \end{eqnarray*} |
where x, y\in \left[\pi _{1}, p_{1}\pi _{2}+\left(1-p_{1}\right) \pi _{3} \right] \times \left[\pi _{3}, p_{2}\pi _{4}+\left(1-p_{2}\right) \pi _{3} \right].
Remark 3.13. It is obvious that if we use p_{1} = p_{2} = 1 , then Definition 3.12 transforms into Definition 2.7.
In [36], H. Kalsoom et al. introduced the following notions of post-quantum partial derivatives.
Definition 3.14. [36] Let \digamma :\left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, \pi _{4}\right] \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a continuous function of two variables. Then the partial p_{1}q_{1} -derivatives, p_{2}q_{2} -derivatives and p_{1}q_{1}p_{2}q_{2} -derivatives at \left(x, y\right) \in \left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, \pi _{4}\right] can be given as follows:
\begin{array}{l}\frac{_{\pi _{1}}\partial _{p_{1}, q_{1}}\digamma \left( x, y\right) }{_{\pi _{1}}\partial _{p_{1}, q_{1}}x} = \frac{\digamma \left( q_{1}x+\left( 1-q_{1}\right) \pi _{1}, y\right) -\digamma \left( p_{1}x+\left( 1-p_{1}\right) \pi _{1}, y\right) }{\left( p_{1}-q_{1}\right) \left( x-\pi _{1}\right) }, {\rm{ }}x\neq \pi _{1} \\ \\ \frac{_{\pi _{3}}\partial _{p_{2}, q_{2}}\digamma \left( x, y\right) }{_{\pi _{3}}\partial _{p_{2}, q_{2}}y} = \frac{\digamma \left( x, q_{2}y+\left( 1-q_{2}\right) \pi _{3}\right) -\digamma \left( x, p_{2}y+\left( 1-p_{2}\right) \pi _{3}\right) }{\left( p_{2}-q_{2}\right) \left( y-\pi _{3}\right) }, {\rm{ }}y\neq \pi _{3} \\ \\ \frac{_{\pi _{1}, \; \pi _{3}}\partial _{p_{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( x, y\right) }{_{\pi _{1}}\partial _{p_{1}, q_{1}}x\; _{\pi _{3}}\partial _{p_{2}, q_{2}}y} = \frac{1}{\left( x-\pi _{1}\right) \left( y-\pi _{3}\right) \left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) }\\ \left[ \digamma \left( q_{1}x+\left( 1-q_{1}\right) \pi _{1}, q_{2}y+\left( 1-q_{2}\right) \pi _{3}\right) \right. \\ \\ -\digamma \left( q_{1}x+\left( 1-q_{1}\right) \pi _{1}, p_{2}y+\left( 1-p_{2}\right) \pi _{3}\right) -\digamma \left( p_{1}x+\left( 1-p_{1}\right) \pi _{1}, q_{2}y+\left( 1-q_{2}\right) \pi _{3}\right) \\ \\ \left. +\digamma \left( p_{1}x+\left( 1-p_{1}\right) \pi _{1}, p_{2}y+\left( 1-p_{2}\right) \pi _{3}\right) \right] , \; x\neq \pi _{1} {\rm{, }}y\neq \pi _{3}. \end{array} |
Now, from the above given concepts, we give the following new post-quantum partial derivatives.
Definition 3.15. Let \digamma :\left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, \pi _{4}\right] \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a continuous function of two variables. Then the partial p_{1}q_{1} -derivatives, p_{2}q_{2} -derivatives and p_{1}q_{1}p_{2}q_{2} -derivatives at \left(x, y\right) \in \left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, \pi _{4}\right] can be given as follows:
\begin{align*} \frac{^{\pi _{2}}\partial _{p_{1}, q_{1}}\digamma \left( x, y\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}x} = &\frac{\digamma \left( q_{1}x+\left( 1-q_{1}\right) \pi _{2}, y\right) -\digamma \left( p_{1}x+\left( 1-p_{1}\right) \pi _{2}, y\right) }{\left( p_{1}-q_{1}\right) \left( \pi _{2}-x\right) }, {\rm{ }}x\neq \pi _{2} \\ \frac{^{\pi _{4}}\partial _{p_{2}, q_{2}}\digamma \left( x, y\right) }{^{\pi _{4}}\partial _{p_{2}, q_{2}}y} = & \frac{\digamma \left( x, q_{2}y+\left( 1-q_{2}\right) \pi _{4}\right) -\digamma \left( x, p_{2}y+\left( 1-p_{2}\right) \pi _{4}\right) }{\left( p_{2}-q_{2}\right) \left( \pi _{4}-y\right) }, {\rm{ }}y\neq \pi _{4} \\ \frac{_{\pi _{1}}^{\pi _{4}}\partial _{p_{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( x, y\right) }{_{\pi _{1}}\partial _{p_{1}, q_{1}}x\; ^{\pi _{4}}\partial _{p_{2}, q_{2}}y} = & \frac{1}{\left( x-\pi _{1}\right) \left( \pi _{4}-y\right) \left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) }\\ &\times \left[ \digamma \left( q_{1}x+\left( 1-q_{1}\right) \pi _{1}, q_{2}y+\left( 1-q_{2}\right) \pi _{4}\right) \right. \\ & -\digamma \left( q_{1}x+\left( 1-q_{1}\right) \pi _{1}, p_{2}y+\left( 1-p_{2}\right) \pi _{4}\right)\\ &- \digamma \left( p_{1}x+\left( 1-p_{1}\right) \pi _{1}, q_{2}y+\left( 1-q_{2}\right) \pi _{4}\right) \\ & \left. +\digamma \left( p_{1}x+\left( 1-p_{1}\right) \pi _{1}, p_{2}y+\left( 1-p_{2}\right) \pi _{4}\right) \right] , \; x\neq \pi _{1} {\rm{, }}y\neq \pi _{4}, \\ \frac{_{\pi _{3}}^{\pi _{2}}\partial _{p_{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( x, y\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}x_{\; \pi _{3}}\partial _{p_{2}, q_{2}}y} = & \frac{1}{\left( \pi _{2}-x\right) \left( y-\pi _{3}\right) \left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) }\\ &\times \left[ \digamma \left( q_{1}x+\left( 1-q_{1}\right) \pi _{2}, q_{2}y+\left( 1-q_{2}\right) \pi _{3}\right) \right. \\ & -\digamma \left( q_{1}x+\left( 1-q_{1}\right) \pi _{2}, p_{2}y+\left( 1-p_{2}\right) \pi _{3}\right)\\ & -\digamma \left( p_{1}x+\left( 1-p_{1}\right) \pi _{2}, q_{2}y+\left( 1-q_{2}\right) \pi _{3}\right) \\ & \left. +\digamma \left( p_{1}x+\left( 1-p_{1}\right) \pi _{2}, p_{2}y+\left( 1-p_{2}\right) \pi _{3}\right) \right] , \; x\neq \pi _{2}, \; y\neq \pi _{3}, \\ \frac{^{\pi _{2}, \; \pi _{4}}\partial _{p_{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( x, y\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}x\; _{\; }^{\pi _{4}}\partial _{p_{2}, q_{2}}y} = & \frac{1}{\left( \pi _{2}-x\right) \left( \pi _{4}-y\right) \left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) } \\ &\times \left[ \digamma \left( q_{1}x+\left( 1-q_{1}\right) \pi _{2}, q_{2}y+\left( 1-q_{2}\right) \pi _{4}\right) \right. \\ & -\digamma \left( q_{1}x+\left( 1-q_{1}\right) \pi _{2}, p_{2}y+\left( 1-p_{2}\right) \pi _{4}\right) \\ &-\digamma \left( p_{1}x+\left( 1-p_{1}\right) \pi _{2}, q_{2}y+\left( 1-q_{2}\right) \pi _{4}\right) \\ &\left. +\digamma \left( p_{1}x+\left( 1-p_{1}\right) \pi _{2}, p_{2}y+\left( 1-p_{2}\right) \pi _{4}\right) \right] , \; x\neq \pi _{2}, \; y\neq \pi _{4}. \end{align*} |
Remark 3.16. It is obvious that if we set p_{1} = p_{2} = 1 in Definitions 3.14 and 3.15, then we obtain the Definition 2.8.
In this section, we prove some new post-quantum Ostrowski type inequalities for the functions of two variables.
Lemma 4.1. Let \digamma :\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially p_{1}q_{1}p_{2}q_{2} -differentiable function on \Delta ^{\circ } . If partial p_{1}q_{1}p_{2}q_{2} -derivatives \frac{^{\pi _{2}, \; \pi _{4}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma\left(\tau, s\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}\tau \; ^{\pi_{4}}\partial _{p_{2}, q_{2}}s}, \frac{_{\pi _{1}}^{\pi _{4}}\partial_{p_{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left(\tau, s\right) }{_{\pi_{1}}\partial _{p_{1}, q_{1}}\tau \; ^{\pi _{4}}\partial _{p_{2}, q_{2}}s}, \frac{_{\pi _{3}}^{\pi _{2}}\partial _{p_{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma\left(\tau, s\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}\tau _{\; \pi_{3}}\partial _{p_{2}, q_{2}}s} and \frac{_{\pi _{1}, \; \pi _{3}}\partial_{p_{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left(\tau, s\right) }{_{\pi_{1}}\partial _{p_{1}, q_{1}}\tau \; _{\pi _{3}}\partial _{p_{2}, q_{2}}s} arecontinuous and integrable on \left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, \pi _{4}\right] \subseteq \Delta ^{\circ } , then followingidentity holds for p_{1}q_{1}p_{2}q_{2} -integrals:
\begin{align*} & _{\pi _{1}\pi _{2}}^{\pi _{3}\pi _{4}}\mathcal{J} _{p_{1}, q_{1}, p_{2}, q_{2}}\left( F\left( \tau , s\right) \right) \\ = &\frac{q_{1}q_{2}}{\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) } \\ &\times \left[ \left( \pi _{2}-x\right) ^{2}\left( \pi _{4}-y\right) ^{2}\int_{0}^{1}\int_{0}^{1}\tau s\frac{^{\pi _{2}, \; \pi _{4}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{4}\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}\tau \; ^{\pi _{4}}\partial _{p_{2}, q_{2}}s}\; d_{p_{1}, q_{1}}\tau \mathit{\rm{}}d_{p_{2}, q_{2}}s\right. \\ &+\left( \pi _{2}-x\right) ^{2}\left( y-\pi _{3}\right) ^{2}\int_{0}^{1}\int_{0}^{1}\tau s\frac{_{\pi _{3}}^{\pi _{2}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{3}\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}\tau _{\; \pi _{3}}\partial _{p_{2}, q_{2}}s}\; d_{p_{1}, q_{1}}\tau \mathit{\rm{}}d_{p_{2}, q_{2}}s \\ &+\left( x-\pi _{1}\right) ^{2}\left( \pi _{4}-y\right) ^{2}\int_{0}^{1}\int_{0}^{1}\tau s\frac{_{\pi _{1}}^{\pi _{4}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{4}\right) }{_{\pi _{1}}\partial _{p_{1}, q_{1}}\tau \; ^{\pi _{4}}\partial _{p_{2}, q_{2}}s}\; d_{p_{1}, q_{1}}\tau \mathit{\rm{}}d_{p_{2}, q_{2}}s \\ &\left. +\left( x-\pi _{1}\right) ^{2}\left( y-\pi _{3}\right) ^{2}\int_{0}^{1}\int_{0}^{1}\tau s\frac{_{\pi _{1}, \pi _{3}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{3}\right) }{_{\pi _{1}}\partial _{p_{1}, q_{1}}\tau \; _{\pi _{3}}\partial _{p_{2}, q_{2}}s}\; d_{p_{1}, q_{1}}\tau \mathit{\rm{}}d_{p_{2}, q_{2}}s\right] \end{align*} |
where
\begin{align} & _{\pi _{1}\pi _{2}}^{\pi _{3}\pi _{4}}\mathcal{J} _{p_{1}, q_{1}, p_{2}, q_{2}}\left( F\left( \tau , s\right) \right) \\ = &\frac{1}{p_{1}p_{2}\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) }\left[ \int_{p_{1}x+\left( 1-p_{1}\right) \pi _{2}}^{\pi _{2}}\int_{p_{2}y+\left( 1-p_{2}\right) \pi _{4}}^{\pi _{4}}\digamma \left( \tau , s\right) \; ^{\pi _{2}}d_{p_{1}, q_{1}}\tau \; ^{\pi _{4}}d_{p_{2}, q_{2}}s\right. \\ & +\int_{p_{1}x+\left( 1-p_{1}\pi _{2}\right) }^{\pi _{2}}\int_{\pi _{3}}^{p_{2}y+\left( 1-p_{2}\right) \pi _{3}}\digamma \left( \tau , s\right) \; ^{\pi _{2}}d_{p_{1}, q_{1}}\tau \; _{\pi _{3}}d_{p_{2}, q_{2}}s \\ & +\int_{\pi _{1}}^{p_{1}x+\left( 1-p_{1}\right) \pi _{1}}\int_{p_{2}y+\left( 1-p_{2}\right) \pi _{4}}^{\pi _{4}}\digamma \left( \tau , s\right) \; _{\pi _{1}}d_{p_{1}, q_{1}}\tau \; ^{\pi _{4}}d_{p_{2}, q_{2}}s \\ & \left. +\int_{\pi _{1}}^{p_{1}x+\left( 1-p_{1}\right) \pi _{1}}\int_{\pi _{3}}^{p_{2}y+\left( 1-p_{2}\right) \pi _{3}}\digamma \left( \tau , s\right) \; _{\pi _{1}}d_{p_{1}, q_{1}}\tau \; _{\pi _{3}}d_{p_{2}, q_{2}}s\right] \\ & -\frac{1}{p_{2}\left( \pi _{4}-\pi _{3}\right) }\left[ \int_{p_{2}y+\left( 1-p_{2}\right) \pi _{4}}^{\pi _{4}}\digamma \left( x, s\right) \; ^{\pi _{4}}d_{p_{2}, q_{2}}s+\int_{\pi _{3}}^{p_{2}y+\left( 1-p_{2}\right) \pi _{3}}\digamma \left( x, s\right) \; _{\pi _{3}}d_{p_{2}, q_{2}}s\right] \\ & -\frac{1}{\pi _{2}-\pi _{1}}\left[ \int_{p_{1}x+\left( 1-p_{1}\right) \pi _{2}}^{\pi _{2}}\digamma \left( \tau , y\right) \; ^{\pi _{2}}d_{p_{1}, q_{1}}\tau +\int_{\pi _{1}}^{p_{1}x+\left( 1-p_{1}\right) \pi _{1}}\digamma \left( \tau , y\right) \; _{\pi _{1}}d_{p_{1}, q_{1}}\tau \right] +\digamma \left( x, y\right) \end{align} | (4.1) |
for all \left(x, y\right) \in \left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, d\right] and 0 < q_{i} < p_{i}\leq 1.
Proof. From Definitions 3.14 and 3.15, we have
\begin{array}{l} \frac{^{\pi _{2}, \; \pi _{4}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{4}\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}\tau \; ^{\pi _{4}}\partial _{p_{2}, q_{2}}s} \\ = \frac{1}{\left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) \left( \pi _{2}-x\right) \left( \pi _{4}-y\right) \tau s}\left[ \digamma \left( \tau q_{1}x+\left( 1-\tau q_{1}\right) \pi _{2}, sq_{2}y+\left( 1-sq_{2}\right) \pi _{4}\right) \right. \\ \\ -\digamma \left( \tau q_{1}x+\left( 1-\tau q_{1}\right) \pi _{2}, sp_{2}y+\left( 1-sp_{2}\right) \pi _{4}\right) -\digamma \left( \tau p_{1}x+\left( 1-\tau p_{1}\right) \pi _{2}, \\sq_{2}y+\left( 1-sq_{2}\right) \pi _{4}\right) \\ \\ \left. +\digamma \left( \tau p_{1}x+\left( 1-\tau p_{1}\right) \pi _{2}, sp_{2}y+\left( 1-sp_{2}\right) \pi _{4}\right) \right] , \end{array} | (4.2) |
\begin{array}{l} \frac{_{\pi _{3}}^{\pi _{2}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{3}\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}\tau _{\; \pi _{3}}\partial _{p_{2}, q_{2}}s} \\ = \frac{1}{\left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) \left( \pi _{2}-x\right) \left( y-\pi _{3}\right) \tau s}\left[ \digamma \left( \tau q_{1}x+\left( 1-\tau q_{1}\right) \pi _{2}, sq_{2}y+\left( 1-sq_{2}\right) \pi _{3}\right) \right. \\ \\ -\digamma \left( \tau q_{1}x+\left( 1-\tau q_{1}\right) \pi _{2}, sp_{2}y+\left( 1-sp_{2}\right) \pi _{4}\right) -\digamma \left( \tau p_{1}x+\left( 1-\tau p_{1}\right) \pi _{2}, \\sq_{2}y+\left( 1-sq_{2}\right) \pi _{3}\right) \\ \\ \left. +\digamma \left( \tau p_{1}x+\left( 1-\tau p_{1}\right) \pi _{2}, sp_{2}y+\left( 1-sp_{2}\right) \pi _{4}\right) \right] , \end{array} | (4.3) |
\begin{array}{l} \frac{_{\pi _{1}}^{\pi _{4}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{4}\right) }{_{\pi _{1}}\partial _{p_{1}, q_{1}}\tau \; ^{\pi _{4}}\partial _{p_{2}, q_{2}}s} \\ = \frac{1}{\left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) \left( x-\pi _{1}\right) \left( \pi _{4}-y\right) \tau s}\left[ \digamma \left( \tau q_{1}x+\left( 1-\tau q_{1}\right) \pi _{1}, sq_{2}y+\left( 1-sq_{2}\right) \pi _{4}\right) \right. \\ \\ -\digamma \left( \tau q_{1}x+\left( 1-\tau q_{1}\right) \pi _{1}, sp_{2}y+\left( 1-sp_{2}\right) \pi _{4}\right) -\digamma \left( \tau p_{1}x+\left( 1-\tau p_{1}\right) \pi _{1}, \\sq_{2}y+\left( 1-sq_{2}\right) \pi _{4}\right) \\ \\ \left. +\digamma \left( \tau p_{1}x+\left( 1-\tau p_{1}\right) \pi _{1}, sp_{2}y+\left( 1-sp_{2}\right) \pi _{4}\right) \right] , \end{array} | (4.4) |
\begin{array}{l} \frac{_{\pi _{1}, \pi _{3}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{3}\right) }{_{\pi _{1}}\partial _{p_{1}, q_{1}}\tau \; _{\pi _{3}}\partial _{p_{2}, q_{2}}s} \\ = \frac{1}{\left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) \left( x-\pi _{1}\right) \left( y-\pi _{3}\right) \tau s}\left[ \digamma \left( \tau q_{1}x+\left( 1-\tau q_{1}\right) \pi _{1}, sq_{2}y+\left( 1-sq_{2}\right) \pi _{3}\right) \right. \\ \\ -\digamma \left( \tau q_{1}x+\left( 1-\tau q_{1}\right) \pi _{1}, sp_{2}y+\left( 1-sp_{2}\right) \pi _{3}\right) -\digamma \left( \tau p_{1}x+\left( 1-\tau p_{1}\right) \pi _{1}, \\ sq_{2}y+\left( 1-sq_{2}\right) \pi _{3}\right) \\ \\ \left. +\digamma \left( \tau p_{1}x+\left( 1-\tau p_{1}\right) \pi _{1}, sp_{2}y+\left( 1-sp_{2}\right) \pi _{3}\right) \right] . \end{array} | (4.5) |
By the equality (4.2) and Definition 3.12, we have
\begin{array}{l} \\ I_{1} = \int_{0}^{1}\int_{0}^{1}\tau s\frac{^{\pi _{2}, \; \pi _{4}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{4}\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}\tau \; ^{\pi _{4}}\partial _{p_{2}, q_{2}}s}\; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s \\ = \frac{1}{\left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) \left( \pi _{2}-x\right) \left( \pi _{4}-y\right) }\int_{0}^{1}\int_{0}^{1}\left[ \digamma \left( \tau q_{1}x+\left( 1-\tau q_{1}\right) \pi _{2}, sq_{2}y+\left( 1-sq_{2}\right) \pi _{4}\right) \right. \\ \\ -\digamma \left( \tau q_{1}x+\left( 1-\tau q_{1}\right) \pi _{2}, sp_{2}y+\left( 1-sp_{2}\right) \pi _{4}\right) -\digamma \left( \tau p_{1}x+\left( 1-\tau p_{1}\right) \pi _{2}, sq_{2}y+\left( 1-sq_{2}\right) \pi _{4}\right) \\ \\ \left. +\digamma \left( \tau p_{1}x+\left( 1-\tau p_{1}\right) \pi _{2}, sp_{2}y+\left( 1-sp_{2}\right) \pi _{4}\right) \right] \; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s \\ = \frac{1}{\left( \pi _{2}-x\right) \left( \pi _{4}-y\right) }\left[ \sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty }\frac{ q_{1}^{n}q_{2}^{m}}{p_{1}^{n+1}p_{2}^{m+1}}\digamma \left( \frac{q_{1}^{n+1} }{p_{1}^{n+1}}x+\left( 1-\frac{q_{1}^{n+1}}{p_{1}^{n+1}}\right) \pi _{2}, \frac{q_{2}^{m+1}}{p_{2}^{m+1}}y+\left( 1-\frac{q_{2}^{m+1}}{p_{2}^{m+1}} \right) \pi _{4}\right) \right. \\ -\sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty }\frac{ q_{1}^{n}q_{2}^{m}}{p_{1}^{n+1}p_{2}^{m+1}}\digamma \left( \frac{q_{1}^{n+1} }{p_{1}^{n+1}}x+\left( 1-\frac{q_{1}^{n+1}}{p_{1}^{n+1}}\right) \pi _{2}, \frac{q_{2}^{m}}{p_{2}^{m}}y+\left( 1-\frac{q_{2}^{m}}{p_{2}^{m}}\right) \pi _{4}\right) \\ -\sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty }\frac{ q_{1}^{n}q_{2}^{m}}{p_{1}^{n+1}p_{2}^{m+1}}\digamma \left( \frac{q_{1}^{n}}{ p_{1}^{n}}x+\left( 1-\frac{q_{1}^{n}}{p_{1}^{n}}\right) \pi _{2}, \frac{ q_{2}^{m+1}}{p_{2}^{m+1}}y+\left( 1-\frac{q_{2}^{m+1}}{p_{2}^{m+1}}\right) \pi _{4}\right) \\ \left. +\sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty }\frac{ q_{1}^{n}q_{2}^{m}}{p_{1}^{n+1}p_{2}^{m+1}}\digamma \left( \frac{q_{1}^{n}}{ p_{1}^{n}}x+\left( 1-\frac{q_{1}^{n}}{p_{1}^{n}}\right) \pi _{2}, \frac{ q_{2}^{m}}{p_{2}^{m}}y+\left( 1-\frac{q_{2}^{m}}{p_{2}^{m}}\right) \pi _{4}\right) \right]\\ = \frac{1}{\left( \pi _{2}-x\right) \left( \pi _{4}-y\right) } \\ \times \left[ \frac{p_{1}p_{2}}{q_{1}q_{2}}\sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty }\frac{q_{1}^{n}q_{2}^{m}}{p_{1}^{n+1}p_{2}^{m+1}} \digamma \left( \frac{q_{1}^{n}}{p_{1}^{n+1}}p_{1}x+\left( 1-\frac{q_{1}^{n} }{p_{1}^{n+1}}p_{1}\right) \pi _{2}, \frac{q_{2}^{m}}{p_{2}^{m+1}} p_{2}y+\left( 1-\frac{q_{2}^{m}}{p_{2}^{m+1}}p_{2}\right) \pi _{4}\right) \right. \\ -\frac{p_{2}}{q_{1}q_{2}}\sum \limits_{m = 0}^{\infty }\frac{q_{2}^{m}}{ p_{2}^{m+1}}\digamma \left( x, \frac{q_{2}^{m}}{p_{2}^{m+1}}p_{2}y+\left( 1- \frac{q_{2}^{m}}{p_{2}^{m+1}}p_{2}\right) \pi _{4}\right) \\ -\frac{p_{1}}{q_{1}q_{2}}\sum \limits_{n = 0}^{\infty }\frac{q_{1}^{n}}{ p_{1}^{n+1}}\digamma \left( \frac{q_{1}^{n}}{p_{1}^{n+1}}p_{1}x+\left( 1- \frac{q_{1}^{n}}{p_{1}^{n+1}}p_{1}\right) \pi _{2}, y\right) +\frac{1}{ q_{1}q_{2}}\digamma \left( x, y\right) \\ -\frac{p_{1}}{q_{1}}\sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty } \frac{q_{1}^{n}q_{2}^{m}}{p_{1}^{n+1}p_{2}^{m+1}}\digamma \left( \frac{ q_{1}^{n}}{p_{1}^{n+1}}p_{1}x+\left( 1-\frac{q_{1}^{n}}{p_{1}^{n+1}} p_{1}\right) \pi _{2}, \frac{q_{2}^{m}}{p_{2}^{m+1}}p_{2}y+\left( 1-\frac{ q_{2}^{m}}{p_{2}^{m+1}}p_{2}\right) \pi _{4}\right) \\ +\frac{1}{q_{1}}\sum \limits_{m = 0}^{\infty }\frac{q_{2}^{m}}{p_{2}^{m+1}} \digamma \left( x, \frac{q_{2}^{m}}{p_{2}^{m+1}}p_{2}y+\left( 1-\frac{ q_{2}^{m}}{p_{2}^{m+1}}p_{2}\right) \pi _{4}\right) \\ -\frac{p_{2}}{q_{2}}\sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty } \frac{q_{1}^{n}q_{2}^{m}}{p_{1}^{n+1}p_{2}^{m+1}}\digamma \left( \frac{ q_{1}^{n}}{p_{1}^{n+1}}p_{1}x+\left( 1-\frac{q_{1}^{n}}{p_{1}^{n+1}} p_{1}\right) \pi _{2}, \frac{q_{2}^{m}}{p_{2}^{m+1}}p_{2}y+\left( 1-\frac{ q_{2}^{m}}{p_{2}^{m+1}}p_{2}\right) \pi _{4}\right) \\ +\frac{1}{q_{2}}\sum \limits_{n = 0}^{\infty }\frac{q_{1}^{n}}{p_{1}^{n+1}} \digamma \left( \frac{q_{1}^{n}}{p_{1}^{n+1}}p_{1}x+\left( 1-\frac{q_{1}^{n} }{p_{1}^{n+1}}p_{1}\right) \pi _{2}, y\right) \\ \left. +\sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty }\frac{ q_{1}^{n}q_{2}^{m}}{p_{1}^{n+1}p_{2}^{m+1}}\digamma \left( \frac{q_{1}^{n}}{ p_{1}^{n+1}}p_{1}x+\left( 1-\frac{q_{1}^{n}}{p_{1}^{n+1}}p_{1}\right) \pi _{2}, \frac{q_{2}^{m}}{p_{2}^{m+1}}p_{2}y+\left( 1-\frac{q_{2}^{m}}{ p_{2}^{m+1}}p_{2}\right) \pi _{4}\right) \right] \\ = \frac{1}{\left( \pi _{2}-x\right) \left( \pi _{4}-y\right) } \\ \times \left[ \frac{\left( p_{1}-q_{1}\right) \left( p_{2}-q_{2}\right) }{ q_{1}q_{2}}\sum \limits_{n = 0}^{\infty }\sum \limits_{m = 0}^{\infty }q_{1}^{n}q_{2}^{m}\digamma \left( \frac{q_{1}^{n}}{p_{1}^{n+1}} p_{1}x+\left( 1-\frac{q_{1}^{n}}{p_{1}^{n+1}}p_{1}\right) \pi _{2}, \frac{ q_{2}^{m}}{p_{2}^{m+1}}p_{2}y+\\ \left( 1-\frac{q_{2}^{m}}{p_{2}^{m+1}} p_{2}\right) \pi _{4}\right) \right. \\ -\frac{\left( p_{2}-q_{2}\right) }{q_{1}q_{2}}\sum \limits_{m = 0}^{\infty } \frac{q_{2}^{m}}{p_{2}^{m+1}}\digamma \left( x, \frac{q_{2}^{m}}{p_{2}^{m+1}} p_{2}y+\left( 1-\frac{q_{2}^{m}}{p_{2}^{m+1}}p_{2}\right) \pi _{4}\right) \\ \left. -\frac{\left( p_{1}-q_{1}\right) }{q_{1}q_{2}}\sum \limits_{n = 0}^{ \infty }\frac{q_{1}^{n}}{p_{1}^{n+1}}\digamma \left( \frac{q_{1}^{n}}{ p_{1}^{n+1}}p_{1}x+\left( 1-\frac{q_{1}^{n}}{p_{1}^{n+1}}p_{1}\right) \pi _{2}, y\right) +\frac{1}{q_{1}q_{2}}\digamma \left( x, y\right) \right] \\ = \frac{1}{q_{1}q_{2}}\left[ \frac{1}{p_{1}p_{2}\left( \pi _{2}-x\right) ^{2}\left( \pi _{4}-y\right) ^{2}}\int_{p_{1}x+\left( 1-p_{1}\right) \pi _{2}}^{\pi _{2}}\int_{p_{2}y+\left( 1-p_{2}\right) \pi _{4}}^{\pi _{4}}\digamma \left( \tau , s\right) \; ^{\pi _{2}}d_{p_{1}, q_{1}}\tau \; ^{\pi _{4}}d_{p_{2}, q_{2}}s\right. \\ -\frac{1}{p_{2}\left( \pi _{2}-x\right) \left( \pi _{4}-y\right) ^{2}} \int_{p_{2}y+\left( 1-p_{2}\right) \pi _{4}}^{\pi _{4}}\digamma \left( x, s\right) \; ^{\pi _{4}}d_{p_{2}, q_{2}}s \\ \left. -\frac{1}{p_{1}\left( \pi _{2}-x\right) ^{2}\left( \pi _{4}-y\right) }\int_{p_{1}x+\left( 1-p_{1}\right) \pi _{2}}^{\pi _{2}}\digamma \left( \tau , y\right) \; ^{\pi _{2}}d_{p_{1}, q_{1}}\tau +\frac{1 }{\left( \pi _{2}-x\right) \left( d-y\right) }\digamma \left( x, y\right) \right] . \end{array} |
Similarly, by the equalities (4.3)–(4.5) we obtain the identities
\begin{align} I_{2}& = \int_{0}^{1}\int_{0}^{1}\tau s\frac{_{\pi _{3}}^{\pi _{2}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{3}\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}\tau _{\; \pi _{3}}\partial _{p_{2}, q_{2}}s}\; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s \\ & = \frac{1}{q_{1}q_{2}}\left[ \frac{1}{p_{1}p_{2}\left( \pi _{2}-x\right) ^{2}\left( y-\pi _{3}\right) ^{2}}\int_{p_{1}x+\left( 1-p_{1}\right) \pi _{2}}^{\pi _{2}}\int_{\pi _{3}}^{p_{2}y+\left( 1-p_{2}\right) \pi _{3}}\digamma \left( \tau , s\right) \; ^{\pi _{2}}d_{p_{1}, q_{1}}\tau \; _{\pi _{3}}d_{p_{2}, q_{2}}s\right. \\ & -\frac{1}{p_{2}\left( \pi _{2}-x\right) \left( y-\pi _{3}\right) ^{2}} \int_{\pi _{3}}^{p_{2}y+\left( 1-p_{2}\right) \pi _{3}}\digamma \left( x, s\right) \; _{\pi _{3}}d_{p_{2}, q_{2}}s \\ & \left. -\frac{1}{p_{1}\left( \pi _{2}-x\right) ^{2}\left( y-\pi _{3}\right) }\int_{p_{1}x+\left( 1-p_{1}\right) \pi _{2}}^{\pi _{2}}\digamma \left( \tau , y\right) \; ^{\pi _{2}}d_{p_{1}, q_{1}}\tau +\frac{1}{\left( \pi _{2}-x\right) \left( y-\pi _{3}\right) }\digamma \left( x, y\right) \right] , \end{align} | (4.6) |
\begin{eqnarray} I_{3} & = &\int_{0}^{1}\int_{0}^{1}\tau s\frac{_{\pi _{1}}^{\pi _{4}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{4}\right) }{_{\pi _{1}}\partial _{p_{1}, q_{1}}\tau \; ^{\pi _{4}}\partial _{p_{2}, q_{2}}s}\; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s \\ & = &\frac{1}{q_{1}q_{2}}\left[ \frac{1}{p_{1}p_{2}\left( x-\pi _{1}\right) ^{2}\left( \pi _{4}-y\right) ^{2}}\int_{\pi _{1}}^{p_{1}x+\left( 1-p_{1}\right) \pi _{1}}\int_{p_{2}y+\left( 1-p_{2}\right) \pi _{4}}^{\pi _{4}}\digamma \left( \tau , s\right) \; _{\pi _{1}}d_{p_{1}, q_{1}}\tau \; ^{\pi _{4}}d_{p_{2}, q_{2}}s\right. \\ &&-\frac{1}{p_{2}\left( x-\pi _{1}\right) \left( \pi _{4}-y\right) ^{2}} \int_{p_{2}y+\left( 1-p_{2}\right) \pi _{4}}^{\pi _{4}}\digamma \left( x, s\right) \; ^{\pi _{4}}d_{p_{2}, q_{2}}s \\ &&\left. -\frac{1}{p_{1}\left( x-\pi _{1}\right) ^{2}\left( \pi _{4}-y\right) }\int_{\pi _{1}}^{p_{1}x+\left( 1-p_{1}\right) \pi _{1}}\digamma \left( \tau , y\right) \; _{\pi _{1}}d_{p_{1}, q_{1}}\tau +\frac{1 }{\left( x-\pi _{1}\right) \left( \pi _{4}-y\right) }\digamma \left( x, y\right) \right] , \end{eqnarray} | (4.7) |
and
\begin{eqnarray} \label{8} I_{4} & = &\int_{0}^{1}\int_{0}^{1}\tau s\frac{_{\pi _{1}, \pi _{3}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{3}\right) }{_{\pi _{1}}\partial _{p_{1}, q_{1}}\tau \; _{\pi _{3}}\partial _{p_{2}, q_{2}}s}\; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s \\ & = &\frac{1}{q_{1}q_{2}}\left[ \frac{1}{p_{1}p_{2}\left( x-\pi _{1}\right) ^{2}\left( y-\pi _{3}\right) ^{2}}\int_{\pi _{1}}^{p_{1}x+\left( 1-p_{1}\right) \pi _{1}}\int_{\pi _{3}}^{p_{2}y+\left( 1-p_{2}\right) \pi _{3}}\digamma \left( \tau , s\right) \; _{\pi _{1}}d_{p_{1}, q_{1}}\tau \; _{\pi _{3}}d_{p_{2}, q_{2}}s\right. \\ &&-\frac{1}{p_{2}\left( x-\pi _{1}\right) \left( y-\pi _{3}\right) ^{2}} \int_{\pi _{3}}^{p_{2}y+\left( 1-p_{2}\right) \pi _{3}}\digamma \left( x, s\right) \; _{\pi _{3}}d_{p_{2}, q_{2}}s \\ &&\left. -\frac{1}{p_{1}\left( x-\pi _{1}\right) ^{2}\left( y-\pi _{3}\right) }\int_{\pi _{1}}^{p_{1}x+\left( 1-p_{1}\right) \pi _{1}}\digamma \left( \tau , y\right) \; _{\pi _{1}}d_{p_{1}, q_{1}}\tau +\frac{1}{\left( x-\pi _{1}\right) \left( y-\pi _{3}\right) }\digamma \left( x, y\right) \right] . \end{eqnarray} |
Thus, we have
\begin{eqnarray*} &&\frac{q_{1}q_{2}\left( \pi _{2}-x\right) ^{2}\left( \pi _{4}-y\right) ^{2} }{\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) }I_{1}+ \frac{q_{1}q_{2}\left( \pi _{2}-x\right) ^{2}\left( y-\pi _{3}\right) ^{2}}{ \left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) }I_{2} \\ && \\ &&+\frac{q_{1}q_{2}\left( x-\pi _{1}\right) ^{2}\left( \pi _{4}-y\right) ^{2} }{\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) }I_{3}+ \frac{q_{1}q_{2}\left( x-\pi _{1}\right) ^{2}\left( y-\pi _{3}\right) ^{2}}{ \left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) }I_{4} \\ && \\ & = &\frac{1}{p_{1}p_{2}\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) }\left[ \int_{p_{1}x+\left( 1-p_{1}\right) \pi _{2}}^{\pi _{2}}\int_{p_{2}y+\left( 1-p_{2}\right) \pi _{4}}^{\pi _{4}}\digamma \left( \tau , s\right) \; ^{\pi _{2}}d_{p_{1}, q_{1}}\tau \; ^{\pi _{4}}d_{p_{2}, q_{2}}s\right. \\ &&+\int_{p_{1}x+\left( 1-p_{1}\pi _{2}\right) }^{\pi _{2}}\int_{\pi _{3}}^{p_{2}y+\left( 1-p_{2}\right) \pi _{3}}\digamma \left( \tau , s\right) \; ^{\pi _{2}}d_{p_{1}, q_{1}}\tau \; _{\pi _{3}}d_{p_{2}, q_{2}}s \\ &&+\int_{\pi _{1}}^{p_{1}x+\left( 1-p_{1}\right) \pi _{1}}\int_{p_{2}y+\left( 1-p_{2}\right) \pi _{4}}^{\pi _{4}}\digamma \left( \tau , s\right) \; _{\pi _{1}}d_{p_{1}, q_{1}}\tau \; ^{\pi _{4}}d_{p_{2}, q_{2}}s \\ &&\left. +\int_{\pi _{1}}^{p_{1}x+\left( 1-p_{1}\right) \pi _{1}}\int_{\pi _{3}}^{p_{2}y+\left( 1-p_{2}\right) \pi _{3}}\digamma \left( \tau , s\right) \; _{\pi _{1}}d_{p_{1}, q_{1}}\tau \; _{\pi _{3}}d_{p_{2}, q_{2}}s\right]\\ &&-\frac{1}{p_{2}\left( \pi _{4}-\pi _{3}\right) }\left[ \int_{p_{2}y+\left( 1-p_{2}\right) \pi _{4}}^{\pi _{4}}\digamma \left( x, s\right) \; ^{\pi _{4}}d_{p_{2}, q_{2}}s+\int_{\pi _{3}}^{p_{2}y+\left( 1-p_{2}\right) \pi _{3}}\digamma \left( x, s\right) \; _{\pi _{3}}d_{p_{2}, q_{2}}s\right] \\ &&-\frac{1}{\pi _{2}-\pi _{1}}\left[ \int_{p_{1}x+\left( 1-p_{1}\right) \pi _{2}}^{\pi _{2}}\digamma \left( \tau , y\right) \; ^{\pi _{2}}d_{p_{1}, q_{1}}\tau +\int_{\pi _{1}}^{p_{1}x+\left( 1-p_{1}\right) \pi _{1}}\digamma \left( \tau , y\right) \; _{\pi _{1}}d_{p_{1}, q_{1}}\tau \right] +\digamma \left( x, y\right) \\ & = &\; _{\pi _{1}\pi _{2}}^{\pi _{3}\pi _{4}}\mathcal{J} _{p_{1}, q_{1}, p_{2}, q_{2}}\left( F\left( \tau , s\right) \right) \end{eqnarray*} |
which completes the proof.
Remark 4.2. In Lemma 4.1, if we set p_{1} = p_{2} = 1 , then the Lemma 4.1 reduces to [21,Lemma 2].
Remark 4.3. In Lemma 4.1, if we set p_{1} = p_{2} = 1 and q_{1}, q_{2}\rightarrow 1^{-}, then Lemma 4.1 reduces to [41,Lemma 1].
In terms of brevity, we will use the following notations
\begin{eqnarray*} \Phi (\tau , s) & = &\frac{^{\pi _{2}, \; \pi _{4}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau , s\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}\tau \; ^{\pi _{4}}\partial _{p_{2}, q_{2}}s}, {\rm{ }}\Psi (\tau , s) = \frac{_{\pi _{1}}^{\pi _{4}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau , s\right) }{_{\pi _{1}}\partial _{p_{1}, q_{1}}\tau \; ^{\pi _{4}}\partial _{p_{2}, q_{2}}s}, {\rm{ }} \\ \Theta (\tau , s) & = &\frac{_{\pi _{3}}^{\pi _{2}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau , s\right) }{^{\pi _{2}}\partial _{p_{1}, q_{1}}\tau _{\; \pi _{3}}\partial _{p_{2}, q_{2}}s}\;{\rm{ and }}\;\Omega (\tau , s) = \frac{_{\pi _{1}, \; \pi _{3}}\partial _{p\, _{1}, q_{1}, p_{2}, q_{2}}^{2}\digamma \left( \tau , s\right) }{_{\pi _{1}}\partial _{p_{1}, q_{1}}\tau \; _{\pi _{3}}\partial _{p_{2}, q_{2}}s}. \end{eqnarray*} |
Theorem 4.4. Suppose that the assumptions of Lemma 4.1 hold. If \left\vert \Phi (\tau, s)\right \vert, \left \vert \Theta (\tau, s)\right\vert, \left \vert \Psi (\tau, s)\right \vert and \left \vert \Omega(\tau, s)\right \vert are co-ordinated convex on \left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, \pi _{4}\right] , then we have the inequality
\begin{eqnarray*} &&\left \vert _{\pi _{1}\pi _{2}}^{\pi _{3}\pi _{4}}\mathcal{J} _{p_{1}, q_{1}, p_{2}, q_{2}}\left( F\left( \tau , s\right) \right) \right \vert \\ &\leq &\frac{1}{\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) }\frac{q_{1}q_{2}}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}} \\ &&\times \left[ \left( \pi _{2}-x\right) ^{2}\left( \pi _{4}-y\right) ^{2}\right. \\ &&\times \left( \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Phi \left( x, y\right) \right \vert +\left[ 2 \right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Phi \left( x, \pi _{4}\right) \right \vert \right. \\ &&\left. +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2\right] _{p_{1}, q_{1}}\right) \left \vert \Phi \left( \pi _{2}, y\right) \right \vert +\left \vert \Phi \left( \pi _{2}, \pi _{4}\right) \right \vert \right) \\ &&+\left( \pi _{2}-x\right) ^{2}\left( y-\pi _{3}\right) ^{2} \\ &&\times \left( \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Theta \left( x, y\right) \right \vert +\left[ 2 \right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Theta \left( x, \pi _{3}\right) \right \vert \right. \\ &&\left. +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2\right] _{p_{1}, q_{1}}\right) \left \vert \Theta \left( \pi _{2}, y\right) \right \vert +\left \vert \Theta \left( \pi _{2}, \pi _{3}\right) \right \vert \right) \\ &&\left( x-\pi _{1}\right) ^{2}\left( \pi _{4}-y\right) ^{2} \\ &&\times \left( \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Psi \left( x, y\right) \right \vert +\left[ 2 \right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Psi \left( x, \pi _{4}\right) \right \vert \right. \\ &&\left. +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2\right] _{p_{1}, q_{1}}\right) \left \vert \Psi \left( \pi _{1}, y\right) \right \vert +\left \vert \Psi \left( \pi _{1}, \pi _{4}\right) \right \vert \right) \\ &&+\left( x-\pi _{1}\right) ^{2}\left( y-\pi _{3}\right) ^{2} \\ &&\times \left( \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Omega \left( x, y\right) \right \vert +\left[ 2 \right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Omega \left( x, \pi _{3}\right) \right \vert \right. \\ &&\left. \left. +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2\right] _{p_{1}, q_{1}}\right) \left \vert \Omega \left( \pi _{1}, y\right) \right \vert +\left \vert \Omega \left( \pi _{1}, \pi _{3}\right) \right \vert \right) \right] . \end{eqnarray*} |
Proof. Taking modulus in (4.1), we have
\begin{eqnarray} &&\left \vert _{\pi _{1}\pi _{2}}^{\pi _{3}\pi _{4}}\mathcal{J} _{p_{1}, q_{1}, p_{2}, q_{2}}\left( F\left( \tau , s\right) \right) \right \vert \\ &\leq &\frac{q_{1}q_{2}}{\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) } \\ &&\times \left[ \left( \pi _{2}-x\right) ^{2}\left( \pi _{4}-y\right) ^{2}\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Phi \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{4}\right) \right \vert \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s\right. \\ &&+\left( \pi _{2}-x\right) ^{2}\left( y-\pi _{3}\right) ^{2}\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Theta \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{3}\right) \right \vert \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s \\ &&+\left( x-\pi _{1}\right) ^{2}\left( \pi _{4}-y\right) ^{2}\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Psi \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{4}\right) \right \vert \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s \\ &&\left. +\left( x-\pi _{1}\right) ^{2}\left( y-\pi _{3}\right) ^{2}\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Omega \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{3}\right) \right \vert \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s\right] . \end{eqnarray} | (4.8) |
Since \left \vert \Phi (\tau, s)\right \vert is co-ordinated convex, we obtain
\begin{eqnarray} &&\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Phi \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{4}\right) \right \vert \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s \\ && \\ &\leq &\int_{0}^{1}\int_{0}^{1}\tau s\left[ \begin{array}{c} \tau s\left \vert \Phi \left( x, y\right) \right \vert +\tau \left( 1-s\right) \left \vert \Phi \left( x, \pi _{4}\right) \right \vert +\left( 1-\tau \right) s\left \vert \Phi \left( \pi _{2}, y\right) \right \vert \\ \\ +\left( 1-\tau \right) \left( 1-s\right) \left \vert \Phi \left( \pi _{2}, \pi _{4}\right) \right \vert \end{array} \right] \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s \\ && \\ & = &\frac{ \begin{array}{c} \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Phi \left( x, y\right) \right \vert +\left[ 2\right] _{p_{1}, q_{1}}\left( \left[ 3 \right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Phi \left( x, \pi _{4}\right) \right \vert \\ +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2 \right] _{p_{1}, q_{1}}\right) \left \vert \Phi \left( \pi _{2}, y\right) \right \vert +\left \vert \Phi \left( \pi _{2}, \pi _{4}\right) \right \vert \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}}. \end{eqnarray} | (4.9) |
By the similar way, as \left \vert \Theta (\tau, s)\right \vert, \left \vert \Psi (\tau, s)\right \vert and \left \vert \Omega (\tau, s)\right \vert are co-ordinated convex, we establish
\begin{eqnarray} &&\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Theta \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{3}\right) \right \vert \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s \\ && \\ &\leq &\frac{ \begin{array}{c} \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Theta \left( x, y\right) \right \vert +\left[ 2\right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Theta \left( x, \pi _{3}\right) \right \vert \\ +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2 \right] _{p_{1}, q_{1}}\right) \left \vert \Theta \left( \pi _{2}, y\right) \right \vert +\left \vert \Theta \left( \pi _{2}, \pi _{3}\right) \right \vert \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}}, \end{eqnarray} | (4.10) |
\begin{eqnarray} &&\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Psi \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{4}\right) \right \vert \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s \\ && \\ &\leq &\frac{ \begin{array}{c} \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Psi \left( x, y\right) \right \vert +\left[ 2\right] _{p_{1}, q_{1}}\left( \left[ 3 \right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Psi \left( x, \pi _{4}\right) \right \vert \\ +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2 \right] _{p_{1}, q_{1}}\right) \left \vert \Psi \left( \pi _{1}, y\right) \right \vert +\left \vert \Psi \left( \pi _{1}, \pi _{4}\right) \right \vert \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}} \end{eqnarray} | (4.11) |
and
\begin{eqnarray} &&\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Omega \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{3}\right) \right \vert \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s \\ && \\ &\leq &\frac{ \begin{array}{c} \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Omega \left( x, y\right) \right \vert +\left[ 2\right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Omega \left( x, \pi _{3}\right) \right \vert \\ +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2 \right] _{p_{1}, q_{1}}\right) \left \vert \Omega \left( \pi _{1}, y\right) \right \vert +\left \vert \Omega \left( \pi _{1}, \pi _{3}\right) \right \vert \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}}. \end{eqnarray} | (4.12) |
If we substitute the inequalities (4.9)–(4.12) in (4.8), then we obtain the desired result.
Remark 4.5. In Theorem 4.4, if we set p_{1} = p_{2} = 1 , then Theorem 4.4 reduces to [21,Theorem 5].
Corollary 4.6. In Theorem 4.4, if we choose \left \vert \Phi (\tau, s)\right \vert, \left \vert \Theta (\tau, s)\right \vert, \left \vert\Psi (\tau, s)\right \vert , \left \vert \Omega (\tau, s)\right \vert \leq M for all \left(\tau, s\right) \in \left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, \pi _{4}\right], then we obtain the following post-quantumOstrowski type inequality
\begin{eqnarray*} &&\left \vert _{\pi _{1}\pi _{2}}^{\pi _{3}\pi _{4}}\mathcal{J} _{p_{1}, q_{1}, p_{2}, q_{2}}\left( F\left( \tau , s\right) \right) \right \vert \\ &\leq &\frac{M}{\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) }\frac{q_{1}q_{2}\left[ 2\right] _{p_{1}, q_{1}}\left( \left[ 3 \right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) +\left[ 2\right] _{p_{2}, q_{2}}\left[ 3\right] _{p_{1}, q_{1}}+1}{\left[ 3\right] _{p_{1, }q_{1}}\left[ 3\right] _{p_{2}, q_{2}}} \\ &&\times \left[ \frac{\left( \pi _{2}-x\right) ^{2}+\left( x-\pi _{1}\right) ^{2}}{\left[ 2\right] _{p_{1}, q_{1}}}\right] \left[ \frac{\left( \pi _{4}-y\right) ^{2}+\left( y-\pi _{3}\right) ^{2}}{\left[ 2\right] _{p_{2}, q_{2}}}\right] . \end{eqnarray*} |
Remark 4.7. In Corollary 4.6, if we put p_{1} = p_{2} = 1 , then we recapture the inequality (1.7).
Remark 4.8. In Corollary 4.6, if we set p_{1} = p_{2} = 1 and q_{1}, q_{2}\rightarrow 1^{-}, then Corollary 4.6 reduces to Theorem 1.3.
Theorem 4.9. Suppose that the assumptions of Lemma 4.1 are hold. If \left \vert \Phi (\tau, s)\right \vert ^{s}, \left \vert \Theta (\tau, s)\right \vert ^{s}, \left \vert \Psi (\tau, s)\right \vert ^{s} and \left \vert \Omega (\tau, s)\right \vert ^{s} are co-ordinated convex on \left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, \pi _{4}\right] , then we have the inequality
\begin{eqnarray*} &&\left \vert _{\pi _{1}\pi _{2}}^{\pi _{3}\pi _{4}}\mathcal{J} _{p_{1}, q_{1}, p_{2}, q_{2}}\left( F\left( \tau , s\right) \right) \right \vert \\ &\leq &\frac{q_{1}q_{2}}{\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) }\left( \frac{1}{\left[ r+1\right] _{p_{1}, q_{1}}}\frac{1}{\left[ r+1\right] _{p_{2}, q_{2}}}\right) ^{\frac{1}{r}} \\ &&\times \left[ \left( \pi _{2}-x\right) ^{2}\left( \pi _{4}-y\right) ^{2}\left( \frac{ \begin{array}{c} \left \vert \Phi \left( x, y\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left \vert \Phi \left( x, \pi _{4}\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Phi \left( \pi _{2}, y\right) \right \vert ^{s} \\ +\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Phi \left( \pi _{2}, \pi _{4}\right) \right \vert ^{s} \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{ \frac{1}{s}}\right. \end{eqnarray*} |
\begin{eqnarray*} &&+\left( \pi _{2}-x\right) ^{2}\left( y-\pi _{3}\right) ^{2}\left( \frac{ \begin{array}{c} \left \vert \Theta \left( x, y\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left \vert \Theta \left( x, \pi _{3}\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Theta \left( \pi _{2}, y\right) \right \vert ^{s} \\ +\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Theta \left( \pi _{2}, \pi _{3}\right) \right \vert ^{s} \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{ \frac{1}{s}} \\ &&+\left( x-\pi _{1}\right) ^{2}\left( \pi _{4}-y\right) ^{2}\left( \frac{ \begin{array}{c} \left \vert \Psi \left( x, y\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left \vert \Psi \left( x, \pi _{4}\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Psi \left( \pi _{1}, y\right) \right \vert ^{s} \\ +\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Psi \left( \pi _{1}, \pi _{4}\right) \right \vert ^{s} \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{ \frac{1}{s}} \\ &&\left. +\left( x-\pi _{1}\right) ^{2}\left( y-\pi _{3}\right) ^{2}\left( \frac{ \begin{array}{c} \left \vert \Omega \left( x, y\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left \vert \Omega \left( x, \pi _{3}\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Omega \left( \pi _{1}, y\right) \right \vert ^{s} \\ +\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Omega \left( \pi _{1}, \pi _{3}\right) \right \vert ^{s} \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{ \frac{1}{s}}\right] \end{eqnarray*} |
where \frac{1}{r}+\frac{1}{s} = 1, s > 1.
Proof. From the Lemma 4.1, we have
\begin{eqnarray} &&\left \vert _{\pi _{1}\pi _{2}}^{\pi _{3}\pi _{4}}\mathcal{J} _{p_{1}, q_{1}, p_{2}, q_{2}}\left( F\left( \tau , s\right) \right) \right \vert \\ &\leq &\frac{q_{1}q_{2}}{\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) } \\ &&\times \left[ \left( \pi _{2}-x\right) ^{2}\left( \pi _{4}-y\right) ^{2}\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Phi \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{4}\right) \right \vert \; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s\right. \\ &&+\left( \pi _{2}-x\right) ^{2}\left( y-\pi _{3}\right) ^{2}\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Theta \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{3}\right) \right \vert \; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s \\ &&+\left( x-\pi _{1}\right) ^{2}\left( \pi _{4}-y\right) ^{2}\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Psi \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{4}\right) \right \vert \; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s \\ &&\left. +\left( x-\pi _{1}\right) ^{2}\left( y-\pi _{3}\right) ^{2}\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Omega \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{3}\right) \right \vert \; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s\right] . \end{eqnarray} | (4.13) |
By using the well-known Hölder inequality and the co-ordinated convexity of \left \vert \Phi (\tau, s)\right \vert ^{s} , we obtain
\begin{eqnarray} &&\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Phi \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{4}\right) \right \vert \; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s \\ &\leq &\left( \int_{0}^{1}\int_{0}^{1}\tau ^{r}s^{r}\; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s\right) ^{\frac{1}{r}} \\ &\times&\left( \int_{0}^{1}\int_{0}^{1}\left \vert \Phi \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{4}\right) \right \vert ^{s}\; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s\right) ^{\frac{1}{s}} \\ &\leq &\left( \frac{1}{\left[ r+1\right] _{p_{1}, q_{1}}}\frac{1}{\left[ r+1 \right] _{p_{2}, q_{2}}}\right) ^{\frac{1}{r}} \\ &\times& \left( \int_{0}^{1}\int_{0}^{1}\left[ \tau s\left \vert \Phi \left( x, y\right) \right \vert ^{s}+\tau \left( 1-s\right) \left \vert \Phi \left( x, \pi _{4}\right) \right \vert ^{s}\right. \; \right. \\ & +&\left( 1-\tau \right) s\left \vert \Phi \left( \pi _{2}, y\right) \right \vert ^{s}+\left( 1-\tau ) \left( 1-s) \left \vert \Phi \left( \pi _{2}, \pi _{4}\right) \right \vert ^{s}\right] d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s\right) ^{\frac{1}{s}} \\ & = &\left( \frac{1}{\left[ r+1\right] _{p_{1}, q_{1}}}\frac{1}{\left[ r+1 \right] _{p_{2}, q_{2}}}\right) ^{\frac{1}{r}} \\ &\times& \left( \frac{ \begin{array}{c} \left \vert \Phi \left( x, y\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left \vert \Phi \left( x, \pi _{4}\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Phi \left( \pi _{2}, y\right) \right \vert ^{s} \\ +\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Phi \left( \pi _{2}, \pi _{4}\right) \right \vert ^{s} \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{ \frac{1}{s}}. \end{eqnarray} | (4.14) |
Similarly, we have
\begin{eqnarray} &&\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Theta \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{3}\right) \right \vert \; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s \\ &\leq &\left( \frac{1}{\left[ r+1\right] _{p_{1}, q_{1}}}\frac{1}{\left[ r+1 \right] _{p_{2}, q_{2}}}\right) ^{\frac{1}{r}} \\ &\times& \left( \frac{ \begin{array}{c} \left \vert \Theta \left( x, y\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left \vert \Theta \left( x, \pi _{3}\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Theta \left( \pi _{2}, y\right) \right \vert ^{s} \\ +\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Theta \left( \pi _{2}, \pi _{3}\right) \right \vert ^{s} \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{ \frac{1}{s}}, \end{eqnarray} | (4.15) |
\begin{eqnarray} &&\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Psi \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{4}\right) \right \vert \; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s \\ && \\ &\leq &\left( \frac{1}{\left[ r+1\right] _{p_{1}, q_{1}}}\frac{1}{\left[ r+1 \right] _{p_{2}, q_{2}}}\right) ^{\frac{1}{r}} \\ &&\times \left( \frac{ \begin{array}{c} \left \vert \Psi \left( x, y\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left \vert \Psi \left( x, \pi _{4}\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Psi \left( \pi _{1}, y\right) \right \vert ^{s} \\ +\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Psi \left( \pi _{1}, \pi _{4}\right) \right \vert ^{s} \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{ \frac{1}{s}} \end{eqnarray} | (4.16) |
and
\begin{eqnarray} &&\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Omega \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{3}\right) \right \vert \; d_{p_{1}, q_{1}}\tau {\rm{ }}d_{p_{2}, q_{2}}s \\ && \\ &\leq &\left( \frac{1}{\left[ r+1\right] _{p_{1}, q_{1}}}\frac{1}{\left[ r+1 \right] _{p_{2}, q_{2}}}\right) ^{\frac{1}{r}} \\ &\times&\left( \frac{ \begin{array}{c} \left \vert \Omega \left( x, y\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left \vert \Omega \left( x, \pi _{3}\right) \right \vert ^{s}+\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Omega \left( \pi _{1}, y\right) \right \vert ^{s} \\ +\left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) \left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left \vert \Omega \left( \pi _{1}, \pi _{3}\right) \right \vert ^{s} \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{ \frac{1}{s}}. \end{eqnarray} | (4.17) |
By substituting the inequalities (4.14)–(4.17) in (4.13), then we obtain the required result.
Remark 4.10. In Theorem 4.9, if we use p_{1} = p_{2} = 1 , then Theorem 4.9 reduces to [21,Theorem 6].
Corollary 4.11. In Theorem 4.9, if we choose \left \vert \Phi (\tau, s)\right \vert, \left \vert \Theta (\tau, s)\right \vert, \left \vert\Psi (\tau, s)\right \vert , \left \vert \Omega (\tau, s)\right \vert \leq M for all \left(\tau, s\right) \in \left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, \pi _{4}\right], then we obtain the following post-quantumOstrowski type inequality
\begin{eqnarray*} &&\left \vert _{\pi _{1}\pi _{2}}^{\pi _{3}\pi _{4}}\mathcal{J} _{p_{1}, q_{1}, p_{2}, q_{2}}\left( F\left( \tau , s\right) \right) \right \vert \\ &\leq &\frac{q_{1}q_{2}M}{\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) }\left( \frac{1}{\left[ r+1\right] _{p_{1}, q_{1}}}\frac{ 1}{\left[ r+1\right] _{p_{2}, q_{2}}}\right) ^{\frac{1}{r}}\left[ \left( \pi _{2}-x\right) ^{2}+\left( x-\pi _{1}\right) ^{2}\right] \left[ \left( \pi _{4}-y\right) ^{2}+\left( y-\pi _{3}\right) ^{2}\right] . \end{eqnarray*} |
Remark 4.12. In Corollary 4.11, if we set p_{1} = p_{2} = 1 , then we recpature the inequality (1.8).
Remark 4.13. In Corollary 4.11, if we set p_{1} = p_{2} = 1 and q_{1}, q_{2}\rightarrow 1^{-}, then Corollary 4.11 reduces to Theorem 1.4.
Theorem 4.14. Suppose that the assumptions of Lemma 4.1 hold. If \left\vert \Phi (\tau, s)\right \vert ^{s}, \left \vert \Theta (\tau, s)\right\vert ^{s}, \left \vert \Psi (\tau, s)\right \vert ^{s} and \left \vert\Omega (\tau, s)\right \vert ^{s} , s\geq 1 are co-ordinated convex on \left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, \pi _{4}\right] , then we have the inequality
\begin{eqnarray*} &&\left \vert _{\pi _{1}\pi _{2}}^{\pi _{3}\pi _{4}}\mathcal{J} _{p_{1}, q_{1}, p_{2}, q_{2}}\left( F\left( \tau , s\right) \right) \right \vert \\ &\leq &\frac{1}{\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) }\frac{q_{1}q_{2}}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}} \\ &&\times \left[ \left( \pi _{2}-x\right) ^{2}\left( \pi _{4}-y\right) ^{2}\right. \\ &&\times \left( \frac{ \begin{array}{c} \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Phi \left( x, y\right) \right \vert ^{s}+\left[ 2\right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Phi \left( x, \pi _{4}\right) \right \vert ^{s} \\ +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2 \right] _{p_{1}, q_{1}}\right) \left \vert \Phi \left( \pi _{2}, y\right) \right \vert ^{s}+\left \vert \Phi \left( \pi _{2}, \pi _{4}\right) \right \vert ^{s} \end{array} }{\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}}\right) ^{ \frac{1}{s}} \\ &&+\left( \pi _{2}-x\right) ^{2}\left( y-\pi _{3}\right) ^{2} \\ &&\times \left( \frac{ \begin{array}{c} \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Theta \left( x, y\right) \right \vert ^{s}+\left[ 2\right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Theta \left( x, \pi _{3}\right) \right \vert ^{s} \\ +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2 \right] _{p_{1}, q_{1}}\right) \left \vert \Theta \left( \pi _{2}, y\right) \right \vert ^{s}+\left \vert \Theta \left( \pi _{2}, \pi _{3}\right) \right \vert ^{s} \end{array} }{\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}}\right) ^{ \frac{1}{s}} \\ &&+\left( x-\pi _{1}\right) ^{2}\left( \pi _{4}-y\right) ^{2} \\ &&\times \left( \frac{ \begin{array}{c} \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Psi \left( x, y\right) \right \vert ^{s}+\left[ 2\right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Psi \left( x, \pi _{4}\right) \right \vert ^{s} \\ +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2 \right] _{p_{1}, q_{1}}\right) \left \vert \Psi \left( \pi _{1}, y\right) \right \vert ^{s}+\left \vert \Psi \left( \pi _{1}, \pi _{4}\right) \right \vert ^{s} \end{array} }{\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}}\right) ^{ \frac{1}{s}}\\ &&+\left( x-\pi _{1}\right) ^{2}\left( y-\pi _{3}\right) ^{2} \\ &&\times \left. \left( \frac{ \begin{array}{c} \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Omega \left( x, y\right) \right \vert +\left[ 2\right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Omega \left( x, \pi _{3}\right) \right \vert \\ +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2 \right] _{p_{1}, q_{1}}\right) \left \vert \Omega \left( \pi _{1}, y\right) \right \vert +\left \vert \Omega \left( \pi _{1}, \pi _{3}\right) \right \vert \end{array} }{\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}}\right) \right] . \end{eqnarray*} |
Proof. By using the power mean inequality and the co-ordinated convexity of \left \vert \Phi (\tau, s)\right \vert ^{s} , we obtain
\begin{eqnarray} &&\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Phi \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{4}\right) \right \vert \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s \\ && \\ &\leq &\left( \int_{0}^{1}\int_{0}^{1}\tau s\; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s\right) ^{1-\frac{1}{s}} \\ &&\times \left( \int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Phi \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{4}\right) \right \vert ^{s}\; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s\right) ^{\frac{1}{s}} \\ &\leq &\left( \frac{1}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{1-\frac{1}{s}} \\ &&\times \left( \int_{0}^{1}\int_{0}^{1}\tau s\left[ \tau s\left \vert \Phi \left( x, y\right) \right \vert ^{s}+\tau \left( 1-s\right) \left \vert \Phi \left( x, \pi _{4}\right) \right \vert ^{s}\right. \; \right. \\ &&\left. \left. +\left( 1-\tau \right) s\left \vert \Phi \left( \pi _{2}, y\right) \right \vert ^{s}+\left( 1-\tau \right) \left( 1-s\right) \left \vert \Phi \left( \pi _{2}, \pi _{4}\right) \right \vert ^{s}\right] d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s\right) ^{\frac{1}{s}} \\ & = &\left( \frac{1}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{1-\frac{1}{s}} \\ &&\times \left( \frac{ \begin{array}{c} \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Phi \left( x, y\right) \right \vert ^{s}+\left[ 2\right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Phi \left( x, \pi _{4}\right) \right \vert ^{s} \\ +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2 \right] _{p_{1}, q_{1}}\right) \left \vert \Phi \left( \pi _{2}, y\right) \right \vert ^{s}+\left \vert \Phi \left( \pi _{2}, \pi _{4}\right) \right \vert ^{s} \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}}\right) ^{\frac{1}{s}}. \end{eqnarray} | (4.18) |
Similarly, since \left \vert \Theta (\tau, s)\right \vert ^{s}, \left \vert \Psi (\tau, s)\right \vert ^{s} and \left \vert \Omega (\tau, s)\right \vert ^{s} are co-ordinated convex, we establish
\begin{eqnarray} &&\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Theta \left( \tau x+\left( 1-\tau \right) \pi _{2}, sy+\left( 1-s\right) \pi _{3}\right) \right \vert \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s \\ && \\ &\leq &\left( \frac{1}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{1-\frac{1}{s}} \\ &&\times \left( \frac{ \begin{array}{c} \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Theta \left( x, y\right) \right \vert ^{s}+\left[ 2\right] _{p_{1}, q_{1}} \left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Theta \left( x, \pi _{3}\right) \right \vert ^{s} \\ +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2 \right] _{p_{1}, q_{1}}\right) \left \vert \Theta \left( \pi _{2}, y\right) \right \vert ^{s}+\left \vert \Theta \left( \pi _{2}, \pi _{3}\right) \right \vert ^{s} \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}}\right) ^{\frac{1}{s}} \end{eqnarray} | (4.19) |
\begin{eqnarray} &&\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Psi \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{4}\right) \right \vert \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s \\ && \\ &\leq &\left( \frac{1}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{1-\frac{1}{s}} \\ &&\times \left( \frac{ \begin{array}{c} \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Psi \left( x, y\right) \right \vert ^{s}+\left[ 2\right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Psi \left( x, \pi _{4}\right) \right \vert ^{s} \\ +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2 \right] _{p_{1}, q_{1}}\right) \left \vert \Psi \left( \pi _{1}, y\right) \right \vert ^{s}+\left \vert \Psi \left( \pi _{1}, \pi _{4}\right) \right \vert ^{s} \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}}\right) ^{\frac{1}{s}} \end{eqnarray} | (4.20) |
and
\begin{eqnarray} &&\int_{0}^{1}\int_{0}^{1}\tau s\left \vert \Omega \left( \tau x+\left( 1-\tau \right) \pi _{1}, sy+\left( 1-s\right) \pi _{3}\right) \right \vert \; d_{p_{1}, q_{1}}\tau d_{p_{2}, q_{2}}s \\ && \\ &\leq &\left( \frac{1}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\right) ^{1-\frac{1}{s}} \\ &&\times \left( \frac{ \begin{array}{c} \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left \vert \Omega \left( x, y\right) \right \vert ^{s}+\left[ 2\right] _{p_{1}, q_{1}} \left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) \left \vert \Omega \left( x, \pi _{3}\right) \right \vert ^{s} \\ +\left[ 2\right] _{p_{2}, q_{2}}\left( \left[ 3\right] _{p_{1}, q_{1}}-\left[ 2 \right] _{p_{1}, q_{1}}\right) \left \vert \Omega \left( \pi _{1}, y\right) \right \vert ^{s}+\left \vert \Omega \left( \pi _{1}, \pi _{3}\right) \right \vert ^{s} \end{array} }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}}\right) ^{\frac{1}{s}}. \end{eqnarray} | (4.21) |
If we substitute the inequalities (4.18)–(4.21) in (4.13), then we obtain the desired result.
Remark 4.15. In Theorem 4.14, if we assume p_{1} = p_{2} = 1 , then Theorem 4.14 becomes [21,Theorem 7].
Corollary 4.16. In Theorem 4.14, if we choose \left \vert \Phi (\tau, s)\right \vert, \left \vert \Theta (\tau, s)\right \vert, \left \vert\Psi (\tau, s)\right \vert , \left \vert \Omega (\tau, s)\right \vert \leq M for all \left(\tau, s\right) \in \left[\pi _{1}, \pi _{2}\right] \times \left[\pi _{3}, \pi _{4}\right], then we obtain the following post-quantumOstrowski type inequality
\begin{eqnarray*} &&\left \vert _{\pi _{1}\pi _{2}}^{\pi _{3}\pi _{4}}\mathcal{J} _{p_{1}, q_{1}, p_{2}, q_{2}}\left( F\left( \tau , s\right) \right) \right \vert \\ &\leq &\frac{Mq_{1}q_{2}}{\left( \pi _{2}-\pi _{1}\right) \left( \pi _{4}-\pi _{3}\right) }\left( \frac{\left[ 2\right] _{p_{1}, q_{1}}\left( \left[ 3\right] _{p_{2}, q_{2}}-\left[ 2\right] _{p_{2}, q_{2}}\right) +\left[ 2\right] _{p_{2}, q_{2}}\left[ 3\right] _{p_{1}, q_{1}}+1}{\left[ 3\right] _{p_{1}, q_{1}}\left[ 3\right] _{p_{2}, q_{2}}}\right) ^{\frac{1}{s}} \\ &&\times \left[ \frac{\left( \pi _{2}-x\right) ^{2}+\left( x-\pi _{1}\right) ^{2}}{\left[ 2\right] _{p_{1}, q_{1}}}\right] \left[ \frac{\left( \pi _{4}-y\right) ^{2}+\left( y-\pi _{3}\right) ^{2}}{\left[ 2\right] _{p_{2}, q_{2}}}\right] . \end{eqnarray*} |
Remark 4.17. In Corollary 4.16, if we consider p_{1} = p_{2} = 1 , then we recapture the inequality (1.9).
Remark 4.18. In Corollary 4.16, if we consider p_{1} = p_{2} = 1 and q_{1}, q_{2}\rightarrow 1^{-}, then Corollary 4.16 reduces to Theorem 1.5.
In this study, we proved some new post-quantum variants of Ostrowski type inequalities for the differentiable functions of two variables. We also proved that the results proved in this study are the refinements of some existing results in the field of integral inequalities. It is an interesting and new problem that the upcoming researchers can obtain the similar inequalities for the other kind of convexity in their future work.
We want to give thanks to the Dirección de investigación from Pontificia Universidad Católica del Ecuador for technical support to our research project entitled: "Algunas desigualdades integrales para funciones convexas generalizadas y aplicaciones".
The authors declare no conflicts of interest.
[1] |
T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modification of \left(p, q\right) -Baskakov operators, Iran. J. Sci. Technol. Trans. Sci., 42 (2018), 1459–1464. https://doi.org/10.1007/s40995-017-0154-8 doi: 10.1007/s40995-017-0154-8
![]() |
[2] |
M. A. Ali, H. Budak, Z. Zhang, H. Yıldırım, Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Meth. Appl. Sci., 44 (2021), 4515–4540. https://doi.org/10.1002/mma.7048 doi: 10.1002/mma.7048
![]() |
[3] |
M. A. Ali, H. Budak, M. Abbas, Y. M. Chu, Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second q^{b}-derivatives, Adv. Differ. Equ., 2021 (2021), 7. https://doi.org/10.1186/s13662-020-03163-1 doi: 10.1186/s13662-020-03163-1
![]() |
[4] |
M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 64. https://doi.org/10.1186/s13662-021-03226-x doi: 10.1186/s13662-021-03226-x
![]() |
[5] |
M. A. Ali, Y. M. Chu, H. Budak, A. Akkurt, H. Yıldırım, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Differ. Equ., 2021 (2021), 25. https://doi.org/10.1186/s13662-020-03195-7 doi: 10.1186/s13662-020-03195-7
![]() |
[6] |
M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 19 (2021), 427–439. https://doi.org/10.1515/math-2021-0015 doi: 10.1515/math-2021-0015
![]() |
[7] |
M. A. Ali, H. Budak, A. Akkurt, Y. M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19 (2021), 440–449. https://doi.org/10.1515/math-2021-0020 doi: 10.1515/math-2021-0020
![]() |
[8] |
M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. https://doi.org/10.1016/j.aml.2010.04.038 doi: 10.1016/j.aml.2010.04.038
![]() |
[9] | M. Alomari, M. Darus, Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Res. Rep. Coll., 13 (2010). |
[10] |
N. Alp, M. Z. Sarikaya, M. Kunt, İ. İșcan, q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ.-Sci., 30 (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007
![]() |
[11] | N. Alp, M. Z. Sarikaya, Hermite Hadamard's type inequalities for co-ordinated convex functions on quantum integral, Appl. Math. E-Notes, 20 (2020), 341–356. |
[12] |
W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/S0013091500011469 doi: 10.1017/S0013091500011469
![]() |
[13] |
S. Araci, U. Duran, M. Acikgoz, H. M. Srivastava, A certain (p, q)-derivative operator and associated divided differences, J. Inequal. Appl., 2016 (2016), 301. https://doi.org/10.1186/s13660-016-1240-8 doi: 10.1186/s13660-016-1240-8
![]() |
[14] |
S. Bermudo, P. Kórus, J. N. Valdés, On q-Hermite-Hadamard inequalities for general convex functions, Acta Math. Hungar., 162 (2020), 364–374. https://doi.org/10.1007/s10474-020-01025-6 doi: 10.1007/s10474-020-01025-6
![]() |
[15] | N. S. Barnett, S. S. Dragomir, An Ostrowski type inequality for double integrals and applications for cubature formulae, Res. Rep. Coll., 1 (1998), 13–23. |
[16] | F. Benatti, M. Fannes, R. Floreanini, D. Petritis, Quantum information, computation and cryptography: An introductory survey of theory, technology and experiments, Springer, 2010. https://doi.org/10.1007/978-3-642-11914-9 |
[17] | A. Bokulich, G. Jaeger, Philosophy of quantum information theory and entaglement, Cambridge Uniersity Press, 2010. |
[18] |
H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40 (2021), 199–215. http://dx.doi.org/10.22199/issn.0717-6279-2021-01-0013 doi: 10.22199/issn.0717-6279-2021-01-0013
![]() |
[19] |
H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. https://doi.org/10.1007/s10957-020-01726-6 doi: 10.1007/s10957-020-01726-6
![]() |
[20] |
H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci., 44 (2020), 378–390. https://doi.org/10.1002/mma.6742 doi: 10.1002/mma.6742
![]() |
[21] |
H. Budak, M. A. Ali, T. Tunç, Quantum Ostrowski-type integral inequalities for functions of two variables, Math. Meth. Appl. Sci., 44 (2021), 5857–5872. https://doi.org/10.1002/mma.7153 doi: 10.1002/mma.7153
![]() |
[22] |
I. M. Burban, A. U. Klimyk, P, Q-differentiation, P, Q-integration and P, Q-hypergeometric functions related to quantum groups, Integral Transf. Spec. F., 2 (1994), 15–36. https://doi.org/10.1080/10652469408819035 doi: 10.1080/10652469408819035
![]() |
[23] | H. Budak, M. A. Ali, N. Alp, Y. M. Chu, Quantum Ostrowski type integral inequalities, J. Math. Inequal., unpublished work. |
[24] |
P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstratio Math., 37 (2004), 299–308. https://doi.org/10.1515/dema-2004-0208 doi: 10.1515/dema-2004-0208
![]() |
[25] |
Y. M. Chu, M. U. Awan, S. Talib, M. A. Noor, K. I Noor, New post quantum analogues of Ostrowski-type inequalities using new definitions of left-right \left(p, q\right) -derivatives and definite integrals, Adv. Differ. Equ., 2020 (2020), 634. https://doi.org/10.1186/s13662-020-03094-x doi: 10.1186/s13662-020-03094-x
![]() |
[26] | S. S. Dragomir, A. Sofo, Ostrowski type inequalities for functions whose derivatives are convex, Proc. Int. Conf. Modell. Simul., Victoria University, Melbourne, Australia, 2002. |
[27] | S. S. Dragomir, N. S. Barnett, P. Cerone, An n-dimensional version of Ostrowski's inequality for mappings of Hölder type, RGMIA Res. Pep. Coll., 2 (1999), 169–180. |
[28] | U. Duran, Post quantum calculus, Master Thesis, University of Gaziantep, 2016. |
[29] | U. Duran, M. Acikgoz, S. Araci, A study on some new results arising from (p, q)-calculus, TWMS J. Pure Appl. Math., 11 (2020), 57–71. |
[30] | T. Ernst, The history of q-calculus and new method, Sweden: Department of Mathematics, Uppsala University, 2000. |
[31] | T. Ernst, A comprehensive treatment of q-calculus, Springer, 2012. https://doi.org/10.1007/978-3-0348-0431-8 |
[32] | R. Jagannathan, K. S. Rao, Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, Proc. Int. Conf. Number Theory Math. Phys., 2005. |
[33] | F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[34] |
S. Jhanthanam, J. Tariboon, S. K. Ntouyas, K. Nonlapon, On q-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. https://doi.org/10.3390/math7070632 doi: 10.3390/math7070632
![]() |
[35] | V. Kac, P. Cheung, Quantum calculus, Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
[36] |
H. Kalsoom, S. Rashid, M. Idrees, F. Safdar, S. Akram, D. Baleanu, et al., Post quantum inequalities of Hermite-Hadamard type associated with co-ordinated higher-order generalized strongly pre-invex and quasi-pre-invex mappings, Symmetry, 12 (2020), 443. https://doi.org/10.3390/sym12030443 doi: 10.3390/sym12030443
![]() |
[37] |
M. A. Khan, M. Noor, E. R. Nwaeze, Y. M. Chu, Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 99. https://doi.org/10.1186/s13662-020-02559-3 doi: 10.1186/s13662-020-02559-3
![]() |
[38] |
M. Kunt, İ. İșcan, N. Alp, M. Z. Sarikaya, \left(p, q\right)-Hermite-Hadamard inequalities and \left(p, q\right)-estimates for midpoint inequalities via convex quasi-convex functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 112 (2018), 969–992. http://doi.org/10.1007/s13398-017-0402-y doi: 10.1007/s13398-017-0402-y
![]() |
[39] |
M. A. Latif, M. Kunt, S. S. Dragomir, İ. İșcan, Post-quantum trapezoid type inequalities, AIMS Math., 5 (2020), 4011–4026. http://dx.doi.org/10.3934/math.2020258 doi: 10.3934/math.2020258
![]() |
[40] |
M. A. Latif, S. S. Dragomir, E. Momoniat, Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane, J. King Saud Univ.-Sci., 29 (2017), 263–273. https://doi.org/10.1016/j.jksus.2016.07.001 doi: 10.1016/j.jksus.2016.07.001
![]() |
[41] | M. A Latif, S. Hussain, S. S. Dragomir, New Ostrowski type inequalities for co-ordinated convex functions, TJMM, 4 (2012), 125–136. |
[42] | M. A. Latif, S. Hussain, New inequalities of Ostowski type for co-ordinated convex functions via fractional integral, J. Fract. Calc. Appl., 2 (2012), 1–15. |
[43] |
W. Liu, H. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501–522. https://doi.org/10.11948/2017031 doi: 10.11948/2017031
![]() |
[44] |
M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. https://doi.org/10.1016/j.amc.2014.11.090 doi: 10.1016/j.amc.2014.11.090
![]() |
[45] |
M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. https://doi.org/10.1016/j.amc.2015.07.078 doi: 10.1016/j.amc.2015.07.078
![]() |
[46] |
E. R. Nwaeze, A. M. Tameru, New parameterized quantum integral inequalities via \eta-quasiconvexity, Adv. Differ. Equ., 2019 (2019), 425. https://doi.org/10.1186/s13662-019-2358-z doi: 10.1186/s13662-019-2358-z
![]() |
[47] |
A. M. Ostrowski, Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv., 10 (1938), 226–227. https://doi.org/10.1007/BF01214290 doi: 10.1007/BF01214290
![]() |
[48] |
B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249 (2000), 583–591. https://doi.org/10.1006/jmaa.2000.6913 doi: 10.1006/jmaa.2000.6913
![]() |
[49] |
B. G. Pachpatte, On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32 (2001), 45–49. http://dx.doi.org/10.5556/j.tkjm.32.2001.45-49 doi: 10.5556/j.tkjm.32.2001.45-49
![]() |
[50] | B. G. Pachpatte, A new Ostrowski type inequality for double integrals, Soochow J. Math., 32 (2006), 317–322. |
[51] |
V. Sahai, S. Yadav, Representations of two parameter quantum algebras and p, q-special functions, J. Math. Anal. Appl., 335 (2007), 268–279. https://doi.org/10.1016/j.jmaa.2007.01.072 doi: 10.1016/j.jmaa.2007.01.072
![]() |
[52] | M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, 79 (2010), 129–134. |
[53] |
M. Tunç, E. Göv, Some integral inequalities via (p, q)-calculus on finite intervals, Filomat, 35 (2021), 1421–1430. https://doi.org/10.2298/FIL2105421T doi: 10.2298/FIL2105421T
![]() |
[54] |
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282 doi: 10.1186/1687-1847-2013-282
![]() |
[55] |
M. Vivas-Cortez, M. A. Ali, A. Kashuri, I. B. Sial, Z. Zhang, Some new Newton's type integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12 (2020), 1476. https://doi.org/10.3390/sym12091476 doi: 10.3390/sym12091476
![]() |
[56] |
M. Vivas-Cortez, M. A. Ali, H. Budak, H. Kalsoom, P. Agarwal, Some new Hermite-Hadamard and related inequalities for convex functions via (p, q)-integral, Entropy, 23 (2021), 828. https://doi.org/10.3390/e23070828 doi: 10.3390/e23070828
![]() |
[57] | M. Vivas-Cortez, M. A. Ali, H. Kalsoom, H. Budak, M. Z. Sarikaya, H. Benish, Trapezoidal type inequalities for co-ordinated convex functions via quantum calculus, Math. Probl. Eng., unpublished work. |
[58] |
F. Wannalookkhee, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, On Hermite-Hadamard type inequalities for coordinated convex functions via (p, q)-calculus, Mathematics, 9 (2021), 698. https://doi.org/10.3390/math9070698 doi: 10.3390/math9070698
![]() |
1. | YONGFANG QI, GUOPING LI, FRACTIONAL OSTROWSKI TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION WITH APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23501281 |