Research article

Post-quantum Ostrowski type integral inequalities for functions of two variables

  • Received: 07 August 2021 Revised: 03 January 2022 Accepted: 10 January 2022 Published: 23 February 2022
  • MSC : 26D07, 26D10, 26D15

  • In this study, we give the notions about some new post-quantum partial derivatives and then use these derivatives to prove an integral equality via post-quantum double integrals. We establish some new post-quantum Ostrowski type inequalities for differentiable coordinated functions using the newly established equality. We also show that the results presented in this paper are the extensions of some existing results.

    Citation: Miguel Vivas-Cortez, Muhammad Aamir Ali, Hüseyin Budak, Ifra Bashir Sial. Post-quantum Ostrowski type integral inequalities for functions of two variables[J]. AIMS Mathematics, 2022, 7(5): 8035-8063. doi: 10.3934/math.2022448

    Related Papers:

  • In this study, we give the notions about some new post-quantum partial derivatives and then use these derivatives to prove an integral equality via post-quantum double integrals. We establish some new post-quantum Ostrowski type inequalities for differentiable coordinated functions using the newly established equality. We also show that the results presented in this paper are the extensions of some existing results.



    加载中


    [1] T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modification of $\left(p, q\right) $-Baskakov operators, Iran. J. Sci. Technol. Trans. Sci., 42 (2018), 1459–1464. https://doi.org/10.1007/s40995-017-0154-8 doi: 10.1007/s40995-017-0154-8
    [2] M. A. Ali, H. Budak, Z. Zhang, H. Yıldırım, Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Meth. Appl. Sci., 44 (2021), 4515–4540. https://doi.org/10.1002/mma.7048 doi: 10.1002/mma.7048
    [3] M. A. Ali, H. Budak, M. Abbas, Y. M. Chu, Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second $q^{b}$-derivatives, Adv. Differ. Equ., 2021 (2021), 7. https://doi.org/10.1186/s13662-020-03163-1 doi: 10.1186/s13662-020-03163-1
    [4] M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 64. https://doi.org/10.1186/s13662-021-03226-x doi: 10.1186/s13662-021-03226-x
    [5] M. A. Ali, Y. M. Chu, H. Budak, A. Akkurt, H. Yıldırım, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Differ. Equ., 2021 (2021), 25. https://doi.org/10.1186/s13662-020-03195-7 doi: 10.1186/s13662-020-03195-7
    [6] M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 19 (2021), 427–439. https://doi.org/10.1515/math-2021-0015 doi: 10.1515/math-2021-0015
    [7] M. A. Ali, H. Budak, A. Akkurt, Y. M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19 (2021), 440–449. https://doi.org/10.1515/math-2021-0020 doi: 10.1515/math-2021-0020
    [8] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are $s$-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. https://doi.org/10.1016/j.aml.2010.04.038 doi: 10.1016/j.aml.2010.04.038
    [9] M. Alomari, M. Darus, Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Res. Rep. Coll., 13 (2010).
    [10] N. Alp, M. Z. Sarikaya, M. Kunt, İ. İșcan, $q$-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ.-Sci., 30 (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007
    [11] N. Alp, M. Z. Sarikaya, Hermite Hadamard's type inequalities for co-ordinated convex functions on quantum integral, Appl. Math. E-Notes, 20 (2020), 341–356.
    [12] W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/S0013091500011469 doi: 10.1017/S0013091500011469
    [13] S. Araci, U. Duran, M. Acikgoz, H. M. Srivastava, A certain $(p, q)$-derivative operator and associated divided differences, J. Inequal. Appl., 2016 (2016), 301. https://doi.org/10.1186/s13660-016-1240-8 doi: 10.1186/s13660-016-1240-8
    [14] S. Bermudo, P. Kórus, J. N. Valdés, On $q$-Hermite-Hadamard inequalities for general convex functions, Acta Math. Hungar., 162 (2020), 364–374. https://doi.org/10.1007/s10474-020-01025-6 doi: 10.1007/s10474-020-01025-6
    [15] N. S. Barnett, S. S. Dragomir, An Ostrowski type inequality for double integrals and applications for cubature formulae, Res. Rep. Coll., 1 (1998), 13–23.
    [16] F. Benatti, M. Fannes, R. Floreanini, D. Petritis, Quantum information, computation and cryptography: An introductory survey of theory, technology and experiments, Springer, 2010. https://doi.org/10.1007/978-3-642-11914-9
    [17] A. Bokulich, G. Jaeger, Philosophy of quantum information theory and entaglement, Cambridge Uniersity Press, 2010.
    [18] H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40 (2021), 199–215. http://dx.doi.org/10.22199/issn.0717-6279-2021-01-0013 doi: 10.22199/issn.0717-6279-2021-01-0013
    [19] H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. https://doi.org/10.1007/s10957-020-01726-6 doi: 10.1007/s10957-020-01726-6
    [20] H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci., 44 (2020), 378–390. https://doi.org/10.1002/mma.6742 doi: 10.1002/mma.6742
    [21] H. Budak, M. A. Ali, T. Tunç, Quantum Ostrowski-type integral inequalities for functions of two variables, Math. Meth. Appl. Sci., 44 (2021), 5857–5872. https://doi.org/10.1002/mma.7153 doi: 10.1002/mma.7153
    [22] I. M. Burban, A. U. Klimyk, P, Q-differentiation, P, Q-integration and P, Q-hypergeometric functions related to quantum groups, Integral Transf. Spec. F., 2 (1994), 15–36. https://doi.org/10.1080/10652469408819035 doi: 10.1080/10652469408819035
    [23] H. Budak, M. A. Ali, N. Alp, Y. M. Chu, Quantum Ostrowski type integral inequalities, J. Math. Inequal., unpublished work.
    [24] P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstratio Math., 37 (2004), 299–308. https://doi.org/10.1515/dema-2004-0208 doi: 10.1515/dema-2004-0208
    [25] Y. M. Chu, M. U. Awan, S. Talib, M. A. Noor, K. I Noor, New post quantum analogues of Ostrowski-type inequalities using new definitions of left-right $\left(p, q\right) $-derivatives and definite integrals, Adv. Differ. Equ., 2020 (2020), 634. https://doi.org/10.1186/s13662-020-03094-x doi: 10.1186/s13662-020-03094-x
    [26] S. S. Dragomir, A. Sofo, Ostrowski type inequalities for functions whose derivatives are convex, Proc. Int. Conf. Modell. Simul., Victoria University, Melbourne, Australia, 2002.
    [27] S. S. Dragomir, N. S. Barnett, P. Cerone, An $n$-dimensional version of Ostrowski's inequality for mappings of Hölder type, RGMIA Res. Pep. Coll., 2 (1999), 169–180.
    [28] U. Duran, Post quantum calculus, Master Thesis, University of Gaziantep, 2016.
    [29] U. Duran, M. Acikgoz, S. Araci, A study on some new results arising from $(p, q)$-calculus, TWMS J. Pure Appl. Math., 11 (2020), 57–71.
    [30] T. Ernst, The history of $q$-calculus and new method, Sweden: Department of Mathematics, Uppsala University, 2000.
    [31] T. Ernst, A comprehensive treatment of $q$-calculus, Springer, 2012. https://doi.org/10.1007/978-3-0348-0431-8
    [32] R. Jagannathan, K. S. Rao, Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, Proc. Int. Conf. Number Theory Math. Phys., 2005.
    [33] F. H. Jackson, On a $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [34] S. Jhanthanam, J. Tariboon, S. K. Ntouyas, K. Nonlapon, On $q$-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. https://doi.org/10.3390/math7070632 doi: 10.3390/math7070632
    [35] V. Kac, P. Cheung, Quantum calculus, Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7
    [36] H. Kalsoom, S. Rashid, M. Idrees, F. Safdar, S. Akram, D. Baleanu, et al., Post quantum inequalities of Hermite-Hadamard type associated with co-ordinated higher-order generalized strongly pre-invex and quasi-pre-invex mappings, Symmetry, 12 (2020), 443. https://doi.org/10.3390/sym12030443 doi: 10.3390/sym12030443
    [37] M. A. Khan, M. Noor, E. R. Nwaeze, Y. M. Chu, Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 99. https://doi.org/10.1186/s13662-020-02559-3 doi: 10.1186/s13662-020-02559-3
    [38] M. Kunt, İ. İșcan, N. Alp, M. Z. Sarikaya, $\left(p, q\right)$-Hermite-Hadamard inequalities and $\left(p, q\right)$-estimates for midpoint inequalities via convex quasi-convex functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 112 (2018), 969–992. http://doi.org/10.1007/s13398-017-0402-y doi: 10.1007/s13398-017-0402-y
    [39] M. A. Latif, M. Kunt, S. S. Dragomir, İ. İșcan, Post-quantum trapezoid type inequalities, AIMS Math., 5 (2020), 4011–4026. http://dx.doi.org/10.3934/math.2020258 doi: 10.3934/math.2020258
    [40] M. A. Latif, S. S. Dragomir, E. Momoniat, Some $q$-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane, J. King Saud Univ.-Sci., 29 (2017), 263–273. https://doi.org/10.1016/j.jksus.2016.07.001 doi: 10.1016/j.jksus.2016.07.001
    [41] M. A Latif, S. Hussain, S. S. Dragomir, New Ostrowski type inequalities for co-ordinated convex functions, TJMM, 4 (2012), 125–136.
    [42] M. A. Latif, S. Hussain, New inequalities of Ostowski type for co-ordinated convex functions via fractional integral, J. Fract. Calc. Appl., 2 (2012), 1–15.
    [43] W. Liu, H. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501–522. https://doi.org/10.11948/2017031 doi: 10.11948/2017031
    [44] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. https://doi.org/10.1016/j.amc.2014.11.090 doi: 10.1016/j.amc.2014.11.090
    [45] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. https://doi.org/10.1016/j.amc.2015.07.078 doi: 10.1016/j.amc.2015.07.078
    [46] E. R. Nwaeze, A. M. Tameru, New parameterized quantum integral inequalities via $\eta$-quasiconvexity, Adv. Differ. Equ., 2019 (2019), 425. https://doi.org/10.1186/s13662-019-2358-z doi: 10.1186/s13662-019-2358-z
    [47] A. M. Ostrowski, Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv., 10 (1938), 226–227. https://doi.org/10.1007/BF01214290 doi: 10.1007/BF01214290
    [48] B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249 (2000), 583–591. https://doi.org/10.1006/jmaa.2000.6913 doi: 10.1006/jmaa.2000.6913
    [49] B. G. Pachpatte, On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32 (2001), 45–49. http://dx.doi.org/10.5556/j.tkjm.32.2001.45-49 doi: 10.5556/j.tkjm.32.2001.45-49
    [50] B. G. Pachpatte, A new Ostrowski type inequality for double integrals, Soochow J. Math., 32 (2006), 317–322.
    [51] V. Sahai, S. Yadav, Representations of two parameter quantum algebras and p, q-special functions, J. Math. Anal. Appl., 335 (2007), 268–279. https://doi.org/10.1016/j.jmaa.2007.01.072 doi: 10.1016/j.jmaa.2007.01.072
    [52] M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, 79 (2010), 129–134.
    [53] M. Tunç, E. Göv, Some integral inequalities via $(p, q)$-calculus on finite intervals, Filomat, 35 (2021), 1421–1430. https://doi.org/10.2298/FIL2105421T doi: 10.2298/FIL2105421T
    [54] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282 doi: 10.1186/1687-1847-2013-282
    [55] M. Vivas-Cortez, M. A. Ali, A. Kashuri, I. B. Sial, Z. Zhang, Some new Newton's type integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12 (2020), 1476. https://doi.org/10.3390/sym12091476 doi: 10.3390/sym12091476
    [56] M. Vivas-Cortez, M. A. Ali, H. Budak, H. Kalsoom, P. Agarwal, Some new Hermite-Hadamard and related inequalities for convex functions via $(p, q)$-integral, Entropy, 23 (2021), 828. https://doi.org/10.3390/e23070828 doi: 10.3390/e23070828
    [57] M. Vivas-Cortez, M. A. Ali, H. Kalsoom, H. Budak, M. Z. Sarikaya, H. Benish, Trapezoidal type inequalities for co-ordinated convex functions via quantum calculus, Math. Probl. Eng., unpublished work.
    [58] F. Wannalookkhee, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, On Hermite-Hadamard type inequalities for coordinated convex functions via $(p, q)$-calculus, Mathematics, 9 (2021), 698. https://doi.org/10.3390/math9070698 doi: 10.3390/math9070698
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1586) PDF downloads(88) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog