Research article

Robust and efficient estimation for nonlinear model based on composite quantile regression with missing covariates

  • Received: 16 November 2021 Revised: 22 January 2022 Accepted: 09 February 2022 Published: 24 February 2022
  • MSC : 62F12, 62G08

  • In this article, two types of weighted quantile estimators were proposed for nonlinear models with missing covariates. The asymptotic normality of the proposed weighted quantile average estimators was established. We further calculated the optimal weights and derived the asymptotic distributions of the correspondingly resulted optimal weighted quantile estimators. Numerical simulations and a real data analysis were conducted to examine the finite sample performance of the proposed estimators compared with other competitors.

    Citation: Qiang Zhao, Chao Zhang, Jingjing Wu, Xiuli Wang. Robust and efficient estimation for nonlinear model based on composite quantile regression with missing covariates[J]. AIMS Mathematics, 2022, 7(5): 8127-8146. doi: 10.3934/math.2022452

    Related Papers:

  • In this article, two types of weighted quantile estimators were proposed for nonlinear models with missing covariates. The asymptotic normality of the proposed weighted quantile average estimators was established. We further calculated the optimal weights and derived the asymptotic distributions of the correspondingly resulted optimal weighted quantile estimators. Numerical simulations and a real data analysis were conducted to examine the finite sample performance of the proposed estimators compared with other competitors.



    加载中


    [1] D. L. Wang, H. L. Xu, Q. Wu, Averaging versus voting: A comparative study of strategies for distributed classification, Math. Found. Comput., 3 (2020), 185–193. http://dx.doi.org/10.3934/mfc.2020017 doi: 10.3934/mfc.2020017
    [2] W. Zhao, H. Lian, S. Ma, Robust reduced-rank modeling via rank regression, J. Stat. Plan. Infer., 180 (2017), 1–12. http://dx.doi.org/10.1016/j.jspi.2016.08.009 doi: 10.1016/j.jspi.2016.08.009
    [3] F. Zhang, R. Li, H. Lian, D. Bandyopadhyay, Sparse reduced-rank regression for multivariate varying-coefficient models, J. Stat. Comput. Simul., 91 (2021), 752–767. http://dx.doi.org/10.1080/00949655.2020.1829622 doi: 10.1080/00949655.2020.1829622
    [4] T. L. Gong, C. Xu, H. Chen, Modal additive models with data-driven structure identification., Math. Found. Comput., 3 (2020), 165–183. http://dx.doi.org/10.3934/mfc.2020016 doi: 10.3934/mfc.2020016
    [5] R. Koenker, G. W. Bassett, Regression quantiles, Econometrica, 46 (1978), 33–50. http://dx.doi.org/10.2307/1913643 doi: 10.2307/1913643
    [6] H. Zou, M. Yuan, Composite quantile regression and the oracle model selection theory, Ann. Stat., 36 (2008), 1108–1126. http://dx.doi.org/10.1214/07-AOS507 doi: 10.1214/07-AOS507
    [7] Z. Zhao, Z. Xiao, Efficient regressions via optimally combining quantile information, Economet. Theory, 30 (2014), 1272–1314. http://dx.doi.org/10.1017/S0266466614000176 doi: 10.1017/S0266466614000176
    [8] R. Koenker, A note on L-estimates for linear models, Statist. Probab. Lett., 2 (1984), 323–325. http://dx.doi.org/10.1016/0167-7152(84)90040-3 doi: 10.1016/0167-7152(84)90040-3
    [9] R. Koenker, Quantile regression, Cambridge: Cambridge University Press, 2005. http://dx.doi.org/10.1017/CBO9780511754098
    [10] X. J. Jiang, J. Jiang, X. Song, Oracle model selection for nonlinear models based on weighted composite quantile regression, Stat. Sin., 22 (2012), 1479–1506. http://dx.doi.org/10.5705/ss.2010.203 doi: 10.5705/ss.2010.203
    [11] D. Bloznelis, G. Claeskens, J. Zhou, Composite versus model-averaged quantile regression, J. Stat. Plan. Infer., 200 (2019), 32–46. http://dx.doi.org/10.1016/j.jspi.2018.09.003 doi: 10.1016/j.jspi.2018.09.003
    [12] F. Yates, The analysis of replicated experiments when the field results are incomplete, Emprie Jour. Exp. Agric., 1 (1933), 129–142.
    [13] L. Q. Xia, X. L. Wang, P. X. Zhao, Y. Q. Song, Empirical likelihood for varying coefficient partially nonlinear model with missing responses, AIMS Mathematics, 6 (2021), 7125–7152. http://dx.doi.org/10.3934/math.2021418 doi: 10.3934/math.2021418
    [14] D. G. Horvitz, D. J. Thompson, A generalization of sampling without replacement from a finite universe, J. Am. Stat. Assoc., 47 (1952), 663–685. http://dx.doi.org/10.1080/01621459.1952.10483446 doi: 10.1080/01621459.1952.10483446
    [15] D. B. Rubin, Inference and missing data, Biometrika, 63 (1976), 581–592. http://dx.doi.org/10.1093/biomet/63.3.581 doi: 10.1093/biomet/63.3.581
    [16] R. J. A. Little, D. B. Rubin, Statistical analysis with missing data, 2 Eds., New York: Wiley, 2002. http://dx.doi.org/10.1002/9781119013563
    [17] J. M. Robins, A. Rotnitzky, L. P. Zhao, Estimation of regression coefficients when some of regression coefficients estimation regressors are not always observed, J. Am. Stat. Assoc., 89 (1994), 846–866. http://dx.doi.org/10.2307/2290910 doi: 10.2307/2290910
    [18] J. G. Ibrahim, H. T. Zhu, N. S. Tang, Model selection criteria for missing data problems via the EM algorithm, J. Am. Stat. Assoc., 103 (2008), 1648–1658. http://dx.doi.org/10.1198/016214508000001057 doi: 10.1198/016214508000001057
    [19] J. Qin, J. Shao, B. Zhang, Efficient and doubly robust imputation for covariate-dependent missing responses, J. Am. Stat. Assoc., 103 (2008), 797–810. http://dx.doi.org/10.1198/016214508000000238 doi: 10.1198/016214508000000238
    [20] B. Sherwood, L. Wang, X. H. Zhou, Weighted quantile regression for analyzing health care cost data with missing covariates, Stat. Med., 32 (2013), 4967–4979. http://dx.doi.org/10.1002/sim.5883 doi: 10.1002/sim.5883
    [21] X. R. Chen, A. T. Wan, Y. Zhou, Efficient quantile regression analysis with missing observations, J. Am. Stat. Assoc., 110 (2015), 723–741. http://dx.doi.org/10.1080/01621459.2014.928219 doi: 10.1080/01621459.2014.928219
    [22] H. Yang, H. L. Liu, Penalized weighted composite quantile estimators with missing covariates, Stat. Papers, 57 (2014), 69–88. http://dx.doi.org/10.1007/s00362-014-0642-2 doi: 10.1007/s00362-014-0642-2
    [23] X. L. Wang, Y. Q. Song, S. X. Zhang, An efficient estimation for the parameter in additive partially linear models with missing covariates, J. Korean Stat. Soc., 49 (2020), 779–801. http://dx.doi.org/10.1007/s42952-019-00036-6 doi: 10.1007/s42952-019-00036-6
    [24] X. J. Jiang, J. Z. Li, T. Xia, W. F. Yan, Robust and efficient estimation with weighted composite quantile regression, Physica A, 457 (2016), 413–423. http://dx.doi.org/10.1016/j.physa.2016.03.056 doi: 10.1016/j.physa.2016.03.056
    [25] K. Zhao, H. Lian, A note on the efficiency of composite quantile regression, J. Stat. Comput. Simul., 86 (2016), 1334–1341. http://dx.doi.org/10.1080/00949655.2015.1062096 doi: 10.1080/00949655.2015.1062096
    [26] W. Zhao, H. Lian, M. Chen, X. Song, Composite quantile regression for correlated data, Comput. Stat. Data Anal., 109 (2009), 15–33. http://dx.doi.org/10.1016/j.csda.2016.11.015 doi: 10.1016/j.csda.2016.11.015
    [27] X. L. Wang, F. Chen, L. Lin, Empirical likelihood inference for estimating equation with missing data, Sci. China. Math., 56 (2013), 1233–1245. http://dx.doi.org/10.1007/s11425-012-4504-x doi: 10.1007/s11425-012-4504-x
    [28] D. Ruppert, S. J. Sheather, M. P. Wand, An effective bandwidth selector for local least squares regression, J. Am. Stat. Assoc., 90 (1995), 1257–1270. http://dx.doi.org/10.1080/01621459.1995.10476630 doi: 10.1080/01621459.1995.10476630
    [29] C. F. Baum, An introduction to modern econometrics using Stata, Texas: Stata Press, 2006.
    [30] Y. Li, J. Ding, Weighted composite quantile regression method via empirical likelihood for non linear models, Commun. Stat.-Theor. M., 47 (2018), 4286–4296. http://dx.doi.org/10.1080/03610926.2017.1373816 doi: 10.1080/03610926.2017.1373816
    [31] J. Sun, Q. H. Sun, An improved and efficient estimation method for varying-coefficient model with missing covariates, Statist. Probab. Lett., 105 (2015), 296–303. http://dx.doi.org/10.1016/j.spl.2015.09.009 doi: 10.1016/j.spl.2015.09.009
    [32] E. Altun, M. Korkmaz, M. Elmorshedy, M. S. Eliwa, The extended gamma distribution with regression model and applications, AIMS Mathematics, 6 (2021), 2418–2439. http://dx.doi.org/10.3934/math.2021147 doi: 10.3934/math.2021147
    [33] Y. Fang, G. Cheng, Z. F. Qu, Optimal reinsurance for both an insurer and a reinsurer under general premium principles, AIMS Mathematics, 5 (2020), 3231–3255. http://dx.doi.org/10.3934/math.2020208 doi: 10.3934/math.2020208
    [34] K. Knight, Limiting distributions for L1 regression estimators under general conditions, Ann. Statist., 26 (1998), 755–770. http://dx.doi.org/10.1214/aos/1028144858 doi: 10.1214/aos/1028144858
    [35] H. Wong, S. Guo, M. Chen, W. C. Ip, On locally weighted estimation and hypothesis testing of varyingcoefficient models with missing covariates, J. Stat. Plan. Infer., 139 (2009), 2933–2951. http://dx.doi.org/10.1016/j.jspi.2009.01.016 doi: 10.1016/j.jspi.2009.01.016
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1761) PDF downloads(84) Cited by(3)

Article outline

Figures and Tables

Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog