Research article Special Issues

A modified inertial proximal gradient method for minimization problems and applications

  • Received: 17 November 2021 Revised: 20 January 2022 Accepted: 08 February 2022 Published: 24 February 2022
  • MSC : 65K05, 90C25, 90C30

  • In this paper, the aim is to design a new proximal gradient algorithm by using the inertial technique with adaptive stepsize for solving convex minimization problems and prove convergence of the iterates under some suitable assumptions. Some numerical implementations of image deblurring are performed to show the efficiency of the proposed methods.

    Citation: Suparat Kesornprom, Prasit Cholamjiak. A modified inertial proximal gradient method for minimization problems and applications[J]. AIMS Mathematics, 2022, 7(5): 8147-8161. doi: 10.3934/math.2022453

    Related Papers:

  • In this paper, the aim is to design a new proximal gradient algorithm by using the inertial technique with adaptive stepsize for solving convex minimization problems and prove convergence of the iterates under some suitable assumptions. Some numerical implementations of image deblurring are performed to show the efficiency of the proposed methods.



    加载中


    [1] Q. Ansari, A. Rehan, Split feasibility and fixed point problems, In: Nonlinear analysis, New Delhi: Birkhäuser, 2014,281–322. http://dx.doi.org/10.1007/978-81-322-1883-8_9
    [2] H. Bauschke, P. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2011. http://dx.doi.org/10.1007/978-1-4419-9467-7
    [3] H. Bauschke, M. Bui, X. Wang, Applying FISTA to optimization problems (with or) without minimizers, Math. Program., 184 (2020), 349–381. http://dx.doi.org/10.1007/s10107-019-01415-x doi: 10.1007/s10107-019-01415-x
    [4] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183–202. http://dx.doi.org/10.1137/080716542 doi: 10.1137/080716542
    [5] J. Bello Cruz, T. Nghia, On the convergence of the forward-backward splitting method with linesearches, Optim. Method. Softw., 31 (2016), 1209–1238. http://dx.doi.org/10.1080/10556788.2016.1214959 doi: 10.1080/10556788.2016.1214959
    [6] R. Burachik, A. Iusem, Enlargements of monotone operators, In: Set-valued mappings and enlargements of monotone operators, Boston: Springer, 2008,161–220. http://dx.doi.org/10.1007/978-0-387-69757-4_5
    [7] W. Cholamjiak, P. Cholamjiak, S. Suantai, An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces, J. Fixed Point Theory Appl., 20 (2018), 42. http://dx.doi.org/10.1007/s11784-018-0526-5 doi: 10.1007/s11784-018-0526-5
    [8] P. Cholamjiak, Y. Shehu, Inertial forward-backward splitting method in Banach spaces with application to compressed sensing, Appl. Math., 64 (2019), 409–435. http://dx.doi.org/10.21136/AM.2019.0323-18 doi: 10.21136/AM.2019.0323-18
    [9] F. Cui, Y. Tang, C. Zhu, Convergence analysis of a variable metric forward–backward splitting algorithm with applications, J. Inequal. Appl., 2019 (2019), 141. http://dx.doi.org/10.1186/s13660-019-2097-4 doi: 10.1186/s13660-019-2097-4
    [10] M. Farid, R. Ali, W. Cholamjiak, An inertial iterative algorithm to find common solution of a split generalized equilibrium and a variational inequality problem in hilbert spaces, J. Math., 2021 (2021), 3653807. http://dx.doi.org/10.1155/2021/3653807 doi: 10.1155/2021/3653807
    [11] R. Gu, A. Dogandžić, Projected nesterov's proximal-gradient algorithm for sparse signal recovery, IEEE T. Signal Proces., 65 (2017), 3510–3525. http://dx.doi.org/10.1109/TSP.2017.2691661 doi: 10.1109/TSP.2017.2691661
    [12] A. Hanjing, S. Suantai, A fast image restoration algorithm based on a fixed point and optimization method, Mathematics, 8 (2020), 378. http://dx.doi.org/10.3390/math8030378 doi: 10.3390/math8030378
    [13] D. Hieu Van, P. Anh, L. Muu, Modified forward-backward splitting method for variational inclusions, 4OR-Q. J. Oper. Res., 19 (2021), 127–151. http://dx.doi.org/10.1007/s10288-020-00440-3 doi: 10.1007/s10288-020-00440-3
    [14] A. Iusem, B. Svaiter, M. Teboulle, Entropy-like proximal methods in convex programming, Math. Oper. Res., 19 (1994), 790–814. http://dx.doi.org/10.1287/moor.19.4.790 doi: 10.1287/moor.19.4.790
    [15] S. Khan, W. Cholamjiak, K. Kazmi, An inertial forward-backward splitting method for solving combination of equilibrium problems and inclusion problems, Comp. Appl. Math., 37 (2018), 6283–6307. http://dx.doi.org/10.1007/s40314-018-0684-5 doi: 10.1007/s40314-018-0684-5
    [16] J. Liang, T. Luo, C. Schönlieb, Improving "fast iterative shrinkage-thresholding algorithm": faster, smarter and greedier, arXiv: 1811.01430.
    [17] Y. Malitsky, M. Tam, A forward-backward splitting method for monotone inclusions without cocoercivity, SIAM J. Optimiz., 30 (2020), 1451–1472. http://dx.doi.org/10.1137/18M1207260 doi: 10.1137/18M1207260
    [18] A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003), 447–454. http://dx.doi.org/10.1016/S0377-0427(02)00906-8 doi: 10.1016/S0377-0427(02)00906-8
    [19] M. Osilike, S. Aniagbosor, G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, Panamerican Mathematical Journal, 12 (2002), 77–88.
    [20] A. Padcharoen, D. Kitkuan, W. Kumam, P. Kumam, Tseng methods with inertial for solving inclusion problems and application to image deblurring and image recovery problems, Comput. Math. Method., 3 (2021), 1088. http://dx.doi.org/10.1002/cmm4.1088 doi: 10.1002/cmm4.1088
    [21] B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comp. Math. Math. Phys., 4 (1964), 1–17. http://dx.doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
    [22] D. Reem, S. Reich, A. De Pierro, A telescopic Bregmanian proximal gradient method without the global Lipschitz continuity assumption, J. Optim. Theory Appl., 182 (2019), 851–884. http://dx.doi.org/10.1007/s10957-019-01509-8 doi: 10.1007/s10957-019-01509-8
    [23] Y. Shehu, P. Cholamjiak, Iterative method with inertial for variational inequalities in Hilbert spaces, Calcolo, 56 (2019), 4. http://dx.doi.org/10.1007/s10092-018-0300-5 doi: 10.1007/s10092-018-0300-5
    [24] Y. Shehu, G. Cai, O. Iyiola, Iterative approximation of solutions for proximal split feasibility problems, Fixed Point Theory Appl., 2015 (2015), 123. http://dx.doi.org/10.1186/s13663-015-0375-5 doi: 10.1186/s13663-015-0375-5
    [25] S. Suantai, N. Pholasa, P. Cholamjiak, The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Ind. Manag. Optim., 14 (2018), 1595–1615. http://dx.doi.org/10.3934/jimo.2018023 doi: 10.3934/jimo.2018023
    [26] R. Suparatulatorn, W. Cholamjiak, S. Suantai, Existence and convergence theorems for global minimization of best proximity points in Hilbert spaces, Acta Appl. Math., 165 (2020), 81–90. http://dx.doi.org/10.1007/s10440-019-00242-8 doi: 10.1007/s10440-019-00242-8
    [27] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. B, 58 (1996), 267–288. http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x doi: 10.1111/j.2517-6161.1996.tb02080.x
    [28] K. H. Thung, P. Raveendran, A survey of image quality measures, Proceeding of International Conference for Technical Postgraduates, 2009, 1–4. http://dx.doi.org/10.1109/TECHPOS.2009.5412098 doi: 10.1109/TECHPOS.2009.5412098
    [29] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2020), 431–446. http://dx.doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806
    [30] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600–612. http://dx.doi.org/10.1109/tip.2003.819861 doi: 10.1109/tip.2003.819861
    [31] F. Wang, H. Xu, Weak and strong convergence of two algorithms for the split fixed point problem, Numer. Math. Theor. Meth. Appl., 11 (2018), 770–781. http://dx.doi.org/10.4208/nmtma.2018.s05 doi: 10.4208/nmtma.2018.s05
    [32] D. Yambangwai, S. Khan, H. Dutta, W. Cholamjiak, Image restoration by advanced parallel inertial forward–backward splitting methods, Soft Comput., 25 (2021), 6029–6042. http://dx.doi.org/10.1007/s00500-021-05596-6 doi: 10.1007/s00500-021-05596-6
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1736) PDF downloads(122) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog