Citation: Xiaoying Pan, Longkun Tang. A new model for COVID-19 in the post-pandemic era[J]. AIMS Mathematics, 2024, 9(8): 21255-21272. doi: 10.3934/math.20241032
[1] | E. F. Arruda, D. H. Pastore, C. M. Dias, S. S. Das, Modelling and optimal control of multi strain epidemics, with application to COVID-19, Plos One, 16 (2021), e0257512. https://doi.org/10.1371/journal.pone.0257512 doi: 10.1371/journal.pone.0257512 |
[2] | Q. Liu, D. Jiang, T. Hayat, B. Ahmad, Analysis of a delayed vaccinated sir epidemic model with temporary immunity and lévy jumps, Nonlinear Anal. Hybrid Syst., 27 (2018), 29–43. https://doi.org/10.1016/j.nahs.2017.08.002 doi: 10.1016/j.nahs.2017.08.002 |
[3] | W. Li, X. Xue, L. Pan, T. Lin, W. Wang, Competing spreading dynamics in simplicial complex, Appl. Math. Comput., 412 (2022), 126595. https://doi.org/10.1016/j.amc.2021.126595 doi: 10.1016/j.amc.2021.126595 |
[4] | C. Xia, Z. Wang, C. Zheng, Q. Guo, Y. Shi, M. Dehmer, et al., A new coupled disease-awareness spreading model with mass media on multiplex networks, Inf. Sci., 471 (2019), 185–200. https://doi.org/10.1016/j.ins.2018.08.050 doi: 10.1016/j.ins.2018.08.050 |
[5] | L. Tang, Y. Zhou, L. Wang, S. Purkayastha, L. Zhang, J. He, et al., A review of Multi-Compartment infectious disease models, Int. Stat. Rev., 88 (2020), 462–513. https://doi.org/10.1111/insr.12402 doi: 10.1111/insr.12402 |
[6] | H. Joshi, M. Yavuz, Transition dynamics between a novel coinfection model of fractional-order for COVID-19 and tuberculosis via a treatment mechanism, European Phys. J. Plus, 138 (2023), 468. https://doi.org/10.1140/epjp/s13360-023-04095-x doi: 10.1140/epjp/s13360-023-04095-x |
[7] | M. A. Achterberg, B. Prasse, L. Ma, S. Trajanovski, M. Kitsak, P. Van Mieghem, Comparing the accuracy of several network-based COVID-19 prediction algorithms, Int. J. Forecast., 38 (2020), 489–504. https://doi.org/10.1016/j.ijforecast.2020.10.001 doi: 10.1016/j.ijforecast.2020.10.001 |
[8] | F. Petropoulos, S. Makridakis, N. Stylianou, COVID-19: Forecasting confirmed cases and deaths with a simple time series model, Int. J. Forecast., 38 (2022), 439–452. https://doi.org/10.1016/j.ijforecast.2020.11.010 doi: 10.1016/j.ijforecast.2020.11.010 |
[9] | S. Lalmuanawma, J. Hussain, L. Chhakchhuak, Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review, Chaos Solit. Fract., 139 (2020), 110059. https://doi.org/10.1016/j.chaos.2020.110059 doi: 10.1016/j.chaos.2020.110059 |
[10] | P. Wang, X. Zheng, J. Li, B. Zhu, Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics, Chaos Solit. Fract., 139 (2020), 110058. https://doi.org/10.1016/j.chaos.2020.110058 doi: 10.1016/j.chaos.2020.110058 |
[11] | S. Rezapour, S. Etemad, R. P. Agarwal, K. Nonlaopon, On a Lyapunov-Type inequality for control of a si-Model thermostat and the existence of its solutions, Mathematics, 10 (2022), 4023. https://doi.org/10.3390/math10214023 doi: 10.3390/math10214023 |
[12] | K. Shah, A. Ali, S. Zeb, A. Khan, M. A. Alqudah, T. Abdeljawad, Study of fractional order dynamics of nonlinear mathematical model, Alex. Eng. J., 61 (2022), 11211–11224. https://doi.org/10.1016/j.aej.2022.04.039 doi: 10.1016/j.aej.2022.04.039 |
[13] | A. Turab, W. Sintunavarat, A unique solution of the iterative boundary value problem for a second-order differential equation approached by fixed point results, Alex. Eng. J., 60 (2021), 5797–5802. https://doi.org/10.1016/j.aej.2021.04.031 doi: 10.1016/j.aej.2021.04.031 |
[14] | H. Hethcote, Z. E. Ma, S. B. Liao, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci., 180 (2002), 141–160. https://doi.org/10.1016/S0025-5564(02)00111-6 doi: 10.1016/S0025-5564(02)00111-6 |
[15] | W. O. Kermack, A. G. Mckendrick, A contribution to the mathematical theory of epidemics, Proc. Royal Society A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118 |
[16] | S. Kim, Y. J. Kim, K. R. Peck, E. Jung, School opening delay effect on transmission dynamics of coronavirus disease 2019 in Korea: Based on mathematical modeling and simulation study, J. Korean medical sci., 35 (2020), e143. https://doi.org/10.3346/jkms.2020.35.e143 doi: 10.3346/jkms.2020.35.e143 |
[17] | T. Fayeldi, R. Dinnullah, Covid-19 sir model with nonlinear incidence rate, J. Phys. Conf. Series, 1869 (2021), 012113. https://doi.org/10.1088/1742-6596/1869/1/012113 doi: 10.1088/1742-6596/1869/1/012113 |
[18] | D. Efimov, R. Ushirobira, On an interval prediction of COVID-19 development based on a SEIR epidemic model, Annual Rev. Contr., 51 (2021), 477–487. https://doi.org/10.1016/j.arcontrol.2021.01.006 doi: 10.1016/j.arcontrol.2021.01.006 |
[19] | M. K. Arti, Mathematical modeling of covid-19 and prediction of upcoming wave, IEEE J. Selected Top. Signal Proc., 16 (2022), 300–306. https://doi.org/10.1109/JSTSP.2022.3152674 doi: 10.1109/JSTSP.2022.3152674 |
[20] | I. Cooper, A. Mondal, C. G. Antonopoulos, A SIR model assumption for the spread of COVID-19 in different communities, Chaos Solit. Fract., 139 (2020), 110057. https://doi.org/10.1016/j.chaos.2020.110057 doi: 10.1016/j.chaos.2020.110057 |
[21] | N. Piovella, Analytical solution of seir model describing the free spread of the covid-19 pandemic, Chaos Solit. Fract., 140 (2020), 110243. https://doi.org/10.1016/j.chaos.2020.110243 doi: 10.1016/j.chaos.2020.110243 |
[22] | B. Ivorra, M. Ferrandez, M. Vela-Pérez, A. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Commun. Nonlinear Sci. Numer. Simu., 88 (2020), 105303. https://doi.org/10.1016/j.cnsns.2020.105303 doi: 10.1016/j.cnsns.2020.105303 |
[23] | F. Yin, J. Lü, X. J. Zhang, X. Xia, J. H. Wu, COVID-19 information propagation dynamics in the Chinese Sina-microblog, Math. Biosci. Eng., 17 (2020), 2676–2692. https://doi.org/10.3934/mbe.2020146 doi: 10.3934/mbe.2020146 |
[24] | W. Sintunavarat, A. Turab, Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator, Math. Comput. Simul., 198 (2022), 65–84. https://doi.org/10.1016/j.matcom.2022.02.009 doi: 10.1016/j.matcom.2022.02.009 |
[25] | A. F. Rihan, M. Q. Al-Mdallal, J. H. AlSakaji, A. Hashish, A fractional-order epidemic model with time-delay and nonlinear incidence rate, Chaos Solit. Fract., 126 (2019), 97–105. https://doi.org/10.1016/j.chaos.2019.05.039 doi: 10.1016/j.chaos.2019.05.039 |
[26] | L. Padilla, R. Fygenson, S. C. Castro, E. Bertini, Multiple forecast visualizations (MFVs): Trade-offs in trust and performance in multiple COVID-19 forecast visualizations, IEEE T. Visualiz. Comput. Graph., 29 (2023), 12–22. https://doi.org/10.1109/TVCG.2022.3209457 doi: 10.1109/TVCG.2022.3209457 |
[27] | S. He, Y. Peng, K. Sun, SEIR modeling of the COVID-19 and its dynamics, Nonlinear Dyn., 101 (2020), 1667–1680. https://doi.org/10.1007/s11071-020-05743-y doi: 10.1007/s11071-020-05743-y |
[28] | S. Annas, M. I. Pratama, M. Rifandi, W. Sanusi, S. Side, Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia, Chaos Solit. Fract., 139 (2020), 110072. https://doi.org/10.1016/j.chaos.2020.110072 doi: 10.1016/j.chaos.2020.110072 |
[29] | S. Zhao, H. Chen, Modeling the epidemic dynamics and control of covid-19 outbreak in china, Quant. Bio., 8 (2020), 11–19. https://doi.org/10.1007/s40484-020-0199-0 doi: 10.1007/s40484-020-0199-0 |
[30] | W. Raslan, Fractional mathematical modeling for epidemic prediction of covid-19 in egypt, Ain Shams Eng. J., 12 (2021), 3057–3062. https://doi.org/10.1016/j.asej.2020.10.027 doi: 10.1016/j.asej.2020.10.027 |
[31] | F. A. Rihan, H. J. Alsakaji, Dynamics of a stochastic delay differential model for COVID-19 infection with asymptomatic infected and interacting peoples: Case study in the UAE, Resul. Phys., 28 (2021), 104658. https://doi.org/10.1016/j.rinp.2021.104658 doi: 10.1016/j.rinp.2021.104658 |
[32] | P. V. D. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6 |
[33] | Online content: The Global Change Data Lab, Our World in Data, 2024. Available from: https://ourworldindata.org/ |