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Abstract: Coronavirus disease 2019 (COVID-19) in the early days of the pandemic had significant
differences in propagation and contact modes from those in the post-pandemic era. In order to capture
the real dynamic behavior of COVID-19 propagation in the post-pandemic era, this study takes into
account groups with the awareness of self-protection (including taking self-quarantine measures), as
well as with loss of immunity, and establishes a new SLEIRS (Susceptible, Low-risk, Asymptomatic
infected, Infected and Recovered) epidemic model with births and deaths on the basis of an SEIR
model through adding compartment for low-risk groups. For the proposed model, we proved the
existence of equilibrium points, identified the stability condition of equilibrium points as well as the
basic regeneration number, and verified the proposed theoretical results with numerical simulations.
Furthermore, the analysis of the impact of parameters on disease transmission has revealed that
detecting the asymptomatic infected is a good measure to prevent and control the disease transmission.
More practically, we used the particle swarm optimization (PSO) algorithm to estimate the model
parameters based on the real epidemic data, and we then applied the model with estimated parameters
to make predictions for the half-a-month epidemic in 2022. Results show the prediction and the
estimated parameters are basically consistent with the practical situation, indicating that the proposed
model has good capability in short-term prediction for COVID-19 in the post-pandemic.
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1. Introduction

It is well known that coronavirus disease 2019 (COVID-19) has swept all over the world,
and has resulted in immeasurable losses in social and economic development as well as in
human life and health. So, it is of extremely great significance to prevent and control the
epidemic spread. This stimulates numerous investigations and studies on the COVID-19 epidemic,
including the immunology [1, 2], the propagation mechanism [3–6], and the epidemic prediction and
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prevention [7–10] of COVID-19.
Among these, studies in the area of disease propagation mechanisms are mainly analyzed

qualitatively through the development of differential equations. As a fundamental tool in the study
of diverse dynamics, research on the theoretical aspects of differential equations has consistently
been a subject of great interest. In the study conducted by Rezapour et al. [11], a new structure of
an applied model of a thermostat is defined using generalized ψ-operators, and based on functional
analysis techniques, the non-existence and existence of mild solutions for such a generalized ψ-system
are established. Shah et al. [12] established some theoretical and numerical results for a nonlinear
dynamical system under Caputo fractional order derivative, and the system addresses an infectious
disease like COVID-19. Turab et al. [13] studied a particular type of iterative second-order differential
equation and used the Banach fixed point theorem to find the existence and uniqueness of a solution to
the proposed differential equation.

For model-based investigations, some classical epidemic models developed early, such as
SIS [14], SIR [15], and SEIR [16], are improved to better describe and study the dynamical behavior
of COVID-19 [17–19]. For example, Cooper et al. [20] proposed an SIR model with the feature
of communities and provided a theoretical framework for studying the epidemic spread within the
community. Piovella [21] simplified the SEIR epidemic model and gave the analytic peak value
of infected COVID-19 population as well as the asymptotic value. Ivorra et al. [22] proposed a θ-
SEIHRD model where θ is the rate of detected cases to the actual total infected COVID-19 cases and
investigated the impact of the detected rate θ on the size of COVID-19 in China. [23] proposed an
information dissemination model, the M-SDI (Multiple-Information Susceptible-Discussing-Immune)
model, to describe the dissemination of public opinion caused by COVID-19 data on China’s
Sina Weibo. Sintunavarat et al. [24] proposed a time-fractional (S pEpIA

P IS P
P HPRP) model of the

COVID-19 pandemic disease in the sense of the ABC-fractional operator. Furthermore, a stability
analysis in the context of Ulam-Hyers and the generalized Ulam-Hyers criterion was also discussed.
Rihan et al. [25] provided an epidemic SIR model with long-range temporal memory and formulated a
new set of sufficient conditions that guarantee the global stability of the steady states.

For the investigations on the basis of models combined with the real epidemic data, some
researchers improved the infectious disease model and estimated and predicted the epidemic spread
based on the real COVID-19 epidemic data [26]. Among them, He et al. [27] presented an SEIR
model with control strategies (such as hospitals, quarantine, and external inputs) and used the measured
COVID-19 data in Hubei Province of China to estimat the model parameters via the particle swarm
optimization (PSO) algorithm. According to the epidemic situation in Indonesia, Annas et al. [28]
improved the SEIR model by imbedding vaccination and isolation factors into model parameters. [29]
proposed an SUQC model to characterize the dynamics of COVID-19 and predicted and showed the
intervention effects of parametric control measures, based on the daily published data of confirmed
cases in several cities in China. Raslan [30] proposed an SEQIHR model, and based on that they
analyzed the effect of precautionary measures on the dynamical behaviors, as well as predicted
COVID-19 in Egypt, showing the prediction result is basically consistent with actual reported data,
and a long enough quarantine period can control the outbreak effectively. Rihan et al. [31] proposed
a stochastic epidemic model, with time-delays, Susceptible-Infected-Asymptomatic-Quarantined-
Recovered (SIAQR). Numerical simulations show that the proposed stochastic delay differential model
is consistent with the physical sensitivity and fluctuation of the real observations.
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However, the vast majority of models in the abovementioned works ignore the group with self-
protection consciousness, the asymptomatic infected group, and those losing immunity. It is confirmed
that these groups are ubiquitous in the post-pandemic era, and the natural births and deaths of the
population is a non-negligible factor in the long-term epidemic. So far, the propagation mechanism of
COVID-19 and its variants are still unclear especially in the post-pandemic era.

Motivated by the abovementioned information, in view of the characteristics of epidemic
propagation in the post-pandemic era, this paper introduces a low-risk compartment with self-
protection consciousness, considers the case of the lost-immunity individuals in the recovered, on the
basis of an SEIR model, and proposes a new SLEIRS model with the birth-death rate. Compared with
the SEIR model, the SLIERS model is more suitable for characterizing the state feature of COVID-19
propagation. Further, we theoretically and numerically analyze the stability of equilibrium points
on the proposed model, as well as the influence of model parameters on the epidemic dynamics,
showing that the enhanced detection of the asymptomatic infected can effectively prevent and control
the epidemic spread. Also, the real COVID-19 data in China is used to estimate the model parameters
and predict the epidemic.

The rest of this paper is organized as follows. In Section 2, a new SLEIRS model with birth-
death rates is proposed. The dynamical behavior analysis of the proposed model is given in Section 3,
including the existence and the stability of equilibrium points and the influence of model parameters
on the basic regeneration number. In Section 4, numerical simulations are provided to validate the
theoretical result, and the real epidemic data in the post-pandemic is used to estimate the model
parameters via the PSO algorithm and then make predictions based on the proposed model with
estimated parameters. Finally, the conclusion and discussion are given in Section 5.

2. SLEIRS model

In consideration of the transmission characteristics of COVID-19, the paper introduces a
low-risk compartment (denoted “L”) based on the traditional SEIR model and develops a new
COVID-19 epidemic model with birth and death rates, namely the SLEIRS model, which has
five compartments: Susceptible (S), low-risk (L), asymptomatic infected (E), infected (I), and
recovered (R). The proposed SLEIRS model is constructed based on the following basic assumptions:

(1) The total population N always keeps constant, i.e., S (t) + L (t) + E (t) + I (t) + R (t) = N.

(2) The birth rate into and death rate from the susceptible and low-risk compartments are assumed to
be identical for keeping the constant total population.

(3) The infected probability of susceptible individuals is assumed to be greater than that of low-risk
individuals, namely, α > β, due to the stronger protection awareness of low-risk individuals.

(4) Recovered individuals may be turned into susceptible and low-risk individuals with the loss of
immunity probability of σ.

Under the above assumptions, the propagation process of states in the SLEIRS model is described
by Figure 1, and the parameters and state variables are illustrated in Table 1.
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Figure 1. The propagation diagram of SLEIRS model.

Table 1. The list of model variables and parameters.

Variables/Parameters Definitions

N Total population
S Susceptible population
L Low-risk population
E Asymptomatic infected population
I Infected population
R Recovered population
µ The rate of natural births or deaths
ρ The rate that the recovered transfer to the susceptible
α The infected rate of the susceptible
β The infected rate of the low-risk
δ The rate that the asymptomatic infected break out into the infected
γ The recovered rate of infected individuals
σ The rate that the recovered lose immunity

According to the propagation diagram shown in Figure 1, it is easy to obtain the following
dynamics equation describing the propagation behavior of the SLEIR model. The model (2.1)
depicts the process of birth, natural death, infection, outbreak, recovery, and loss of immunity in
each compartment. The number of people in each compartment is transferred from the remaining
compartments with varying probability, and also removed with a certain probability. This results in a
change in the number of people in the compartments, which is abstracted into mathematical expressions
as the kinetic equations shown in model (2.1).
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dS
dt

=µρN + σρR −
αS (E + I)

N
− µS ,

dL
dt

=µ(1 − ρ)N + σ(1 − ρ)R −
βL(E + I)

N
− µL,

dE
dt

=
αS (E + I)

N
+
βL(E + I)

N
− δE − µE,

dI
dt

=δE − γI − µI,

dR
dt

=γI − σR − µR.

(2.1)

Divided by the total population at each equality of model (2.1), it is rewritten as

dS
dt

=µρ + σρR − αS (E + I) − µS ,

dL
dt

=µ (1 − ρ) + σ (1 − ρ) R − βL(E + I) − µL,

dE
dt

=αS (E + I) + βL(E + I) − δE − µE,

dI
dt

=δE − γI − µI,

dR
dt

=γI − σR − µR,

(2.2)

where 0 ≤ S , L, E, I,R ≤ 1, S + L + E + I + R = 1, and it is not difficult to prove the positive invariant
set Ω = {(S , L, E, I,R) ∈ R5

+|0 ≤ S , L, E, I,R ≤ 1, S + L + E + I + R = 1}.

3. Dynamics analysis of SLEIRS model

3.1. Equilibrium and the basic reproduction number

Let the right-hand sides in system (2.2) equal 0, i.e.,



µρ + σρR − αS (E + I) − µS = 0, 
µ (1 − ρ) + σ (1 − ρ) R − βL(E + I) − µL = 0, 
αS (E + I) + βL(E + I) − δE − µE = 0, (3.1c)
δE − γI − µI = 0, (3.1d)
γI − σR − µR = 0. (3.1e)

The disease-free equilibrium point represents the state in which the system eventually converges
to a disease-free state. Therefore, the disease-free equilibrium point E0 = (ρ, 1 − ρ, 0, 0, 0) can be
solved immediately by letting E = 0, I = 0, on the basis of Eq (3.1). In addition, the unique endemic
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equilibrium E∗ = (S ∗, L∗, E∗, I∗,R∗) where

S ∗ =

µρ + σρ
γ

σ + µ
I∗

α
γ + µ

δ
I∗ + αI∗ + µ

,

L∗ =

µ(1 − ρ) + σ(1 − ρ)
γ

σ + µ
I∗

β
γ + µ

δ
I∗ + βI∗ + µ

,

E∗ =
γ + µ

δ
I∗,

R∗ =
γ

σ + µ
I∗,

(3.2)

and
I∗ = −

δ

K

(
Qα + βµ3 + β (σ + δ + γ) µ2 + Cβµ + βσδργ +

√
U

)
,

A = (((α − µ) β − αµ) (α − β) ρ − α ((α + µ) β − αµ))σ
+ 2 (αβρ + (−α/2 − µ/2) β + 1/2αµ) µ (α − β) ,

B = 4αβµ (α − β) ρ + ((α + µ) β − αµ)2,

C = (γ + δ)σ + δγ,

D = ((α − β) ρ − α)2σ2 − 2 ((α + β) ρ − α) µ (α − β)σ + µ2(α − β)2,

K = 2 (γ + µ + δ)α
(
µ2 + (σ + δ + γ) µ + C

)
β,

Q = µ3 + (−β + σ + δ + γ) µ2 + ((−σ − δ − γ) β + C) µ − σ ((γ + δ) β + δγ (−1 + ρ)) ,

U =
(
Dγ2 + 2 (σ + µ) Aγ + B(σ + µ)2

)
δ2

+ 2 (Aγ + B (σ + µ)) (γ + µ) (σ + µ) δ + B(γ + µ)2(σ + µ)2.

As a key index to measure the disease epidemic, the basic reproduction number can be calculated
by the next generation matrix method [32]. Here, the next generation matrix

P = FV−1 =

(
αρ + β(1 − ρ) αρ + β(1 − ρ)

0 0

)  1
δ+µ

0
δ

(δ+µ)(γ+µ)
1
γ+µ


=

(αρ+β(1−ρ)
δ+µ

+
δ(αρ+β(1−ρ))

(δ+µ)(γ+µ)
αρ+β(1−ρ)

γ+µ

0 0

)
,

(3.3)

where F =

(
αρ + β(1 − ρ) αρ + β(1 − ρ)

0 0

)
and V =

(
δ + µ 0
−δ γ + µ

)
are the infection matrix and transfer

matrix, respectively.
So, the basic reproduction number of system (2.2) is

R0 =

(
1

δ + µ
+

δ

(δ + µ)(γ + µ)

)
(αρ + β(1 − ρ)) . (3.4)
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From (3.4), it is easy to get that R0 is an increasing function of α, β, and ρ and a decreasing
function of δ, γ, and µ. Further, the correlation between R0 and parameters is listed in Table 2, which
is easily explained from the propagation diagram shown in Figure 1. To be specific, a higher infected
rate leads to the larger basic regeneration number, and thus accelerates the propagation of disease. A
higher recovery rate or outbreak rate will reduce the basic regeneration number and thereby controls
the spread of disease. These are consistent with the intuitive perception in reality.

Interestingly, the promotion of detecting the asymptomatic infected, equivalently the increase
of parameter δ, may prevent the disease propagation. In fact, it has been used to conduct COVID-19
prevention and control as a policy in China. In addition, counter-intuitively, the loss rate σ of immunity
does nothing on the basic regeneration number, that is to say, the loss rate of immunity has no influence
on the disease propagation.

Table 2. Correlation of parameters with disease controllability (R0).

Parameters Relevance

α Positive correlation
β Positive correlation
δ Negative correlation
γ Negative correlation
µ Negative correlation
ρ Positive correlation at the assumption of α > β

3.2. Stability analysis of SLEIRS model

Theorem 1. If R0 < 1, system (2.2) is globally asymptotically stable at the disease-free equilibrium
point. If R0 > 1, system (2.2) is unstable at the disease-free equilibrium point.
Proof. It is easy to get the Jacobian matrix of system (2.2)

J =


−α(E + I) − µ 0 −αS −αS σρ

0 −β(E + I) − µ −βL −βL σ(1 − ρ)
α(E + I) β(E + I) αS + βL − δ − µ αS + βL 0

0 0 δ −γ − µ 0
0 0 0 γ −σ − µ


,

and then the Jacobian matrix at the disease-free equilibrium is

J(E0) =


−µ 0 −αρ −αρ σρ

0 −µ −β(1 − ρ) −β(1 − ρ) σ(1 − ρ)
0 0 αρ + β(1 − ρ) − δ − µ αρ + β(1 − ρ) 0
0 0 δ −γ − µ 0
0 0 0 γ −σ − µ


.

Obviously, λ1 = λ2 = −µ are two eigenvalues of J(E0), and the other eigenvalues are determined
by the eigenequation as below:

|λE − J∗| =

∣∣∣∣∣∣∣∣∣
λ − αρ − β(1 − ρ) + δ + µ −αρ − β(1 − ρ) 0

−δ λ + γ + µ 0
0 −γ λ + σ + µ

∣∣∣∣∣∣∣∣∣ = 0. (3.5)
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Obviously, λ3 = −σ − µ is an eigenvalue, and the other two are the two roots of the
following equation:

λ2 + [γ + µ − αρ − β(1 − ρ) + δ + µ]λ
+ (γ + µ)[−αρ − β(1 − ρ) + δ + µ] − δ[αρ + β(1 − ρ)] = 0.

Consider λ4, λ5 as the roots, and by using the condition of R0 < 1, it follows that

λ4 + λ5 = −[γ + 2µ − αρ − β(1 − ρ) + δ]

< − (γ + 2µ + δ) +
(δ + µ)(γ + µ)
γ + µ + δ

=
(δ + µ)(γ + µ) − (γ + µ + δ) (γ + 2µ + δ)

γ + µ + δ

< 0,

λ4 · λ5 = (γ + µ)
[
−αρ − β(1 − ρ) + δ + µ

]
− δ

[
−αρ − β(1 − ρ)

]
> − (δ + µ) (γ + µ) + δ

[
αρ + β(1 − ρ)

]
+ (δ + µ) (γ + µ) − δ

[
−αρ − β(1 − ρ)

]
= 0.

So, both λ4 and λ5 are less than 0, and thus all eigenvalues of the Jacobian at the disease-free
equilibrium point are negative. According to the Lyapunov stability criterion, system (2.2) is locally
asymptotically stable at the disease-free equilibrium point when R0 < 1.

One the other hand, let y = (E, I)T, and it is easy from system (2.2) to get that

dy
dt

=

(
αS + βL − δ − µ αS + βL

δ −γ − µ

) (
E
I

)
≤

(
αρ + β (1 − ρ) − δ − µ αρ + β (1 − p)

δ −γ − µ

)
y = (F − V) y.

(3.6)
Select the Lyapunov candidate function

M = αTV−1y, (3.7)

where α is the left eigenvector of nonnegative matrix P = V−1F associated with its spectral radius
R0, i.e., αTV−1F = R0α

T, and it is a positive vector according to the property of Perron theory. Then,
one has

dM
dt

= αTV−1 dy
dt
≤ αTV−1(F − V)y

= αTV−1Fy − αTy
≤ (R0 − 1)αTy.

(3.8)

Thus, dM
dt ≤ 0 when R0 < 1, and the equality holds if and only if y = 0 (E = 0, I = 0). According to

the LaSalle invariance principle, the state of system (2.2) starting from the point in the positive invariant
set Ω will tend to the disease-free equilibrium point, namely, system (2.2) is globally asymptotically
stable at the disease-free equilibrium point.
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4. Numerical simulations of SLEIRS model

4.1. Simulations for dynamical behaviors

In this section, we will verify the above theoretical results and analyze the influence of parameters
on the disease propagation dynamics. Here, initial populations of compartments in system (2.1) are
set as N = 1000, I = 100, R = 0, L = 300, S = 500, and E = 100, which is easily rewritten into
the normalized form for system (2.2). For the asymptotically stable case of R0 < 1, we take two sets
of parameters: (a) α = 0.2, β = 0.1, (b) α = 0.08, β = 0.06, and γ = 0.8, δ = 0.15, ρ = 0.3,
µ = 0.005, σ = 0.1. Then, R0 = 0.995, and R0 = 0.505, respectively, according to the equality (3.4).
The evolution curves for each compartment are obtained based on the aforementioned parameters,
following the numerical solution of system (2.2) using the ODE method. As shown in Figure 2, the
infected state I(t), as well as the asymptomatic infected state E(t), gradually converges to zero as time
goes on, and the state of system (2.1) tends to the disease-free equilibrium point. Furthermore, a
comparison of (a) and (b) demonstrates that both I(t) and E(t) exhibit a faster convergence to 0 in the
plot of (b) than in (a), corresponding to the smaller R0, thereby corroborating the theoretical results.
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Figure 2. Evolution curves of all states in system (2.2) with R0 < 1. Two sets of parameters:
(a) α = 0.2, β = 0.1, (b) α = 0.08, β = 0.06, and γ = 0.8, δ = 0.15, ρ = 0.3, µ = 0.005,
σ = 0.1. Then, R0 = 0.995, and R0 = 0.505, respectively.

On the other hand, for the unstable case of R0 > 1, we also take two sets of parameters: (a)
α = 0.2, β = 0.1, (b) α = 0.5, β = 0.4, and γ = 0.3, δ = 0.15, ρ = 0.3, µ = 0.005, σ = 0.1. Then,
R0 = 1.251, and R0 = 4.139, respectively. From simulation results shown in Figure 3, it is clear that the
state finally tends to the endemic equilibrium point determined by (3.6), and the larger R0 is represented
by the (b) plot, where both I(t) and E(t) stabilize to higher values and converge more rapidly than in
(a). This demonstrates that the larger R0 speeds up the disease propagation and causes the system to
ultimately converge to a larger endemic equilibrium point.
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(b)

Figure 3. Evolution curves of all states in system (2.2) with R0 > 1. Two sets of parameters:
(a) α = 0.2, β = 0.1, (b) α = 0.5, β = 0.4, and γ = 0.3, δ = 0.15, ρ = 0.3, µ = 0.005, σ = 0.1.
Then, R0 = 1.251, and R0 = 4.139, respectively.

Next, for analyzing the influence of parameters on the disease transmission, we take the underlying
setting of parameters: α = 0.2, β = 0.1, γ = 0.8, δ = 0.1, ρ = 0.3, µ = 0.005, and σ = 0.1. On that
basis let one parameter therein vary in the interval [0, 1] while fixing other parameters. A numerical
simulation is conducted using ODE, with the resulting images plotted by taking the number of E, I after
stabilization of each set of parameters as vertical coordinates and the controlled variables as horizontal
coordinates. Simulation results shown Figure 4 are well consistent with those in Table 2, where the
equilibrium state of E + I increases with the increase of α, β, and ρ (see Figure 4(a,b,f)), respectively,
and the equilibrium state decreases with the increase of δ, γ, and µ (see Figure 4(c,d,e), respectively.
By the way, for the cases of α, β, δ, and µ, it takes R0 = 1 at α = 0.078, β = 0.048, δ = 0.149, and
µ = 0.045 (marked in the big dot in the curves), respectively, and it does not take R0 = 1 at the interval
of [0, 1] for the cases of γ and ρ.

From Figure 4 (c,d,e), it is evident that the equilibrium state of E + I decreases quickly as the
outbreak rate δ and the recovered rate γ rise, respectively, whereas the infected amount increases
slightly at the beginning and then decreases as the outbreak rate δ rises. This implies that a small
outbreak rate can facilitate the disease transmission, and more asymptomatic individuals are transferred
into the infected and subsequently into the recovered when the outbreak rate is larger than an
appropriate value, thereby preventing the disease propagation. Based on the theoretical and numerical
analysis, it shows that detecting the asymptomatic infected is a good measure to prevent and control
the disease transmission.
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Figure 4. Effects of the parameters (a) α, (b) β, (c) δ, (d) γ, (e) µ and (f) ρ on the number of
infected individuals (I) and the number of asymptomatic infections (E).

4.2. Prediction and parameter estimation of model based on the real epidemic data

In this section, we use the real epidemic data released by the National Health Commission
from 2021 to 2022, as well as the vaccination data provided by Our World in Data [33], to
estimate the parameters in the SLEIRS model, and we make the prediction based on the model with
estimated parameters.

To begin with, we normalize the data for better model training and optimization at the same
scale and determine two uncertain compartments (the low-risk amount and the asymptomatic infected
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amount), as well as the easily-estimated parameters (the birth-death rate and the loss rate of immunity).
Here, the number of vaccinated individuals is taken as the low-risk population, since COVID-19
epidemic investigations show that the vaccinated population may be infected with lower rate in general.
According to the relevant information that the individual has about a half-one-year immunization
period after being cured, the newly-increased asymptomatic infected amount accumulated for the last
180 days is taken as the existing asymptomatic infected amount. On the other hand, the birth-death
rate µ is set at between 6.77‰ and 7.52‰ according to the 6.77‰ death rate and the 7.52‰ birth
rate in 2021 and 2022 released by the National Bureau of Statistics of China. Furthermore, the “Our
World in Data” report [33] indicates that the immunization rate is approximately 0.6. Consequently,
the distribution of susceptible and low-risk individuals within the population is constrained to the
range [0.5, 0.69].

System (2.2) comprises 7 parameters. In order to identify the parameters in the model using real
epidemic data, we employ a process of minimizing the error between the real data and the numerical
solution of the model with the given parameters. This is essentially an optimization problem. The error
function is defined as follows:

arg min
P

N∑
i=1

∥∥∥ fi(t) − f s
i (t, P)

∥∥∥
‖ fi(t)‖

,

where fi(t) is the real epidemic data, f s
i (t, P) is the numerical solution of the ith variable when the

parameter set is P, N is the number of variables, and ‖·‖ is the norm (here a vector 2-norm) The
numerical solution of the ODEs is solved by ode15s. The optimization problem is solved using the
particle swarm optimisation (PSO) algorithm.

The PSO algorithm comprises a population of particles, each of which possesses two attributes:
Velocity and displacement. During the search process, each particle navigates in the direction of its
own judgement, and at the conclusion of the search, it records the optimal position.

Assume a total of M particles, each representing a solution.
The velocity update formula is as follows:

vk+1
id = ωvk

id + c1r1

(
pk

id,pbest − xk
id

)
+ c2r2

(
pk

d,gbest − xk
id

)
.

The position update formula is as follows:

xk+1
id = xk

id + vk+1
id ,

where vk+1
id denotes the velocity vector of particle i in the d-dimension in the kth iteration; xk

id denotes the
position vector of particle i in the d-dimension in the kth iteration; ω denotes inertia weight; c1 denotes
individual learning factor; c2 denotes the population learning factor; r1 and r2 are random numbers.
The variable pk

id,pbest represents the historically optimal position of particle i in the dth dimension in the
kth iteration, while pk

d,pbest denotes the historical optimal position of the population in the kth iteration.
In light of the preceding discussion of the parameters, the initial values of the parameters are set

as follows: µ is a random number within the interval [0.068, 0.0075], ρ is a random number within
the interval [0.5, 0.69], and the remaining parameters are taken to be random numbers within the
interval [0, 1]. The parameter boundary conditions are identical to those previously described for the
generation of the initial random numbers. The algorithm is implemented in Matlab.
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Next, we divide the data into two segments in consideration of the singular property. We use the
PSO algorithm to estimate the parameters in the SLEIRS model based on each segment data and then
apply the model with estimated parameters to predict the epidemic. Here the first-two-months data is
used to train, and the last half-one-month data is used to make the prediction. The parametric results
are presented in Table 3.

4.2.1. Estimation and prediction based on the first segment data

The first-two-months data (from December 15, 2021, to February 15, 2022) in the first segment
data (from December 15, 2021, to March 1, 2022) is used as the training set, and the PSO algorithm
is applied to estimate the parameters in the model. The fitting curves are shown in Figure 5, and the
estimated parameters are shown in Table 3, where the estimated µ = 0.0075 is basically consistent with
the birth rate in 2021, and the estimated parameters, α > β, meet the assumption in the SLEIRS model.

With the estimated parameters, the SELIRS model (2.2) is used to predict the state of each
compartment in the subsequent half one month (from February 15 to March 1, 2022). As shown
in Figure 5, the prediction curves are well consistent with the real data in the first week, and the mean
square error of prediction in all states in the half-one-month data is 0.0275%. More importantly, the
basic regeneration number in the model with estimated parameters, R0 = 1.104282, implies the mild
spread of epidemic, which is basically consistent with the epidemic at that time in China.

Table 3. Lists of estimated parameters in the model.

Parameters Estimated values (the 1st segment) Estimated values (the 2nd segment)

α 0.16982 0.10362
β 0.15000 0.07625
γ 0.16552 0.13381
δ 0.99998 0.23227
σ 0.08684 1.446e-09
ρ 0.71169 0.69000
µ 0.00750 0.00680

4.2.2. Estimation and prediction based on the second segment data

Similarly, the first-two-months data (from May 15 to July 15, 2022) in the second segment data
(from May 15 to August 1, 2022) is used to fit the model via the PSO algorithm, and the fitting
result is shown in Figure 6. Also, the estimated parameters are shown in Table 3, where the estimated
µ = 0.0068 is basically consistent with the birth rate in 2022, and the estimated parameters, α > β,
meet the assumption in the SLEIRS model.

Compared with the estimated value of ρ in the first segment data, the estimated value in the second
segment data is smaller, implying the population that the recovered transfers to the susceptible becomes
less, perhaps due to the fact that more people take the vaccine booster. Also, the estimated values of
other parameters in the second segment data are less than those in the first segment data. In particular,
the estimated values of both the outbreak rate (δ) and the loss rate of immunity (σ) have sharp declines,
showing that the epidemic goes into a good situation.
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Figure 5. Forecast curve for December 2021 to March 2022 in China.

With the estimated parameters, the SELIRS model (2.2) is used to predict the state of each
compartment in the subsequent half one month (from July 15 to August 1, 2022). As shown in Figure 6,
the prediction curves are well consistent with the real data in the first week, and the mean square error
of prediction in all states in the half-one-month datais 0.0581%. Meanwhile, the basic regeneration
number in the model with estimated parameters, R0 = 1.055275, is less than that in the first segment
data, implying the epidemic spread is slower than that in the first segment data, which is basically
consistent with the fact that the epidemic in 2022 is better than that in 2021.
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Figure 6. Forecast curve for May to August 2022 in China.
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5. Conclusions

In summary, we have developed a new SLEIRS model with the birth-death mechanism for
COVID-19 in the post-pandemic era, and we have derived the stability conditions for the disease-
free equilibrium, as well as the basic regeneration number. Numerical simulations have validated the
theoretical results and have shown that the higher outbreak rate δ is more conducive to prevent the
disease propagation, indicating that enhanced detection of the asymptomatic infected is an effective
measure to prevent and control the epidemic.

Compared with the SEIR model, the SLIERS model is more suitable for characterizing the state
feature of COVID-19 propagation, where the recovered are not permanently immune to COVID-19.
Further, some rational cases, such as the birth-death rate, low-risk individuals with self-protection
awareness, and the loss of immunity, are integrated into the model.

In a more practical sense, the proposed model has been applied to the real COVID-19 data
from 2021 to 2022 in China, and investigations on the parameter estimation and prediction have shown
that the results are basically consistent with the epidemic situation at that time in China, to some
extent implying the SLEIRS model has good capability in describing the propagation of COVID-19
in the post-pandemic era. Our theoretical and numerical analysis of the proposed may strengthen
understanding of the dynamical behavior of epidemic propagation in the post-pandemic era, and
provide theoretical support in policy-making for preventing and controlling the epidemic.

Furthermore, the advantages and disadvantages of various algorithms for predicting
COVID-19 can be further explored from a data-driven perspective. It would be beneficial
to include control variables in the model in order to determine the most effective strategy for eliminating
the infection, which will be considered in future work.
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