Research article Special Issues

Estimation of monotone bivariate quantile inactivity time with medical applications

  • Received: 06 August 2024 Revised: 13 September 2024 Accepted: 20 September 2024 Published: 08 October 2024
  • MSC : 62N01, 62N05

  • In most lifetime models, the bivariate $ \alpha $-quantile inactivity time is a vector of increasing functions. A novel estimator of this vector was created and investigated under this assumption. It was expected that the application of this knowledge would improve the efficiency of the estimator. It was proven that the proposed estimator is consistent and converges weakly to a bivariate Gaussian process under a suitable transformation. A simulation study was conducted to compare the performance of the proposed estimator with that of the usual estimator. Finally, the application of the proposed estimator is illustrated by analyzing a dataset comprising the time to blindness in patients with diabetic retinopathy.

    Citation: Mohamed Kayid. Estimation of monotone bivariate quantile inactivity time with medical applications[J]. AIMS Mathematics, 2024, 9(10): 28472-28486. doi: 10.3934/math.20241381

    Related Papers:

  • In most lifetime models, the bivariate $ \alpha $-quantile inactivity time is a vector of increasing functions. A novel estimator of this vector was created and investigated under this assumption. It was expected that the application of this knowledge would improve the efficiency of the estimator. It was proven that the proposed estimator is consistent and converges weakly to a bivariate Gaussian process under a suitable transformation. A simulation study was conducted to compare the performance of the proposed estimator with that of the usual estimator. Finally, the application of the proposed estimator is illustrated by analyzing a dataset comprising the time to blindness in patients with diabetic retinopathy.



    加载中


    [1] M. S. Finkelstein, On the reversed hazard rate, Reliab. Eng. Syst. Safe., 78 (2002), 71–75. https://doi.org/10.1016/S0951-8320(02)00113-8 doi: 10.1016/S0951-8320(02)00113-8
    [2] M. Kayid, S. Izadkhah. Mean inactivity time function, associated orderings, and classes of life distributions, IEEE T. Reliab., 63 (2014), 593–602. https://doi.org/10.1109/TR.2014.2315954 doi: 10.1109/TR.2014.2315954
    [3] D. C. Schmittlein, D. G. Morrison, The median residual lifetime: A characterization theorem and an application, Oper. Res., 29 (1981), 392–399. https://doi.org/10.1287/opre.29.2.392 doi: 10.1287/opre.29.2.392
    [4] N. Unnikrishnan, B. Vineshkumar, Reversed percentile residual life and related concepts, J. Korean Stat. Soc., 40 (2011), 85–92. https://doi.org/10.1016/j.jkss.2010.06.001 doi: 10.1016/j.jkss.2010.06.001
    [5] M. Shafaei Noughabi, Solving a functional equation and characterizing distributions by quantile past lifetime functions, Econ. Qual. Control, 31 (2016), 55–58. https://doi.org/10.1515/eqc-2015-0017 doi: 10.1515/eqc-2015-0017
    [6] M. Shafaei Noughabi, S. Izadkhah, On the quantile past lifetime of the components of the parallel systems, Commun. Stat.-Theor. M., 45 (2016), 2130–2136. https://doi.org/10.1080/03610926.2013.875573 doi: 10.1080/03610926.2013.875573
    [7] M. Mahdy, Further results involving percentile inactivity time order and its inference, METRON, 72 (2014), 269–282. https://doi.org/10.1007/s40300-013-0017-9 doi: 10.1007/s40300-013-0017-9
    [8] L. Balmert, J. H. Jeong, Nonparametric inference on quantile lost lifespan, Biometrics, 73 (2017), 252–259. https://doi.org/10.1111/biom.12555 doi: 10.1111/biom.12555
    [9] L. C. Balmert, R. Li, L. Peng, J. H. Jeong, Quantile regression on inactivity time, Stat. Methods Med. Res., 30 (2021), 1332–1346. https://doi.org/10.1177/0962280221995977 doi: 10.1177/0962280221995977
    [10] M. Kayid, Statistical inference of an α-quantile past lifetime function with applications, AIMS Math., 9 (2024), 15346–15360. https://doi.org/10.3934/math.2024745 doi: 10.3934/math.2024745
    [11] A. P. Basu, Bivariate failure rate, J. Am. Stat. Assoc., 66 (1971), 103–104. http://www.jstor.org/stable/2284857
    [12] N. L. Johnson, S. Kotz, A vector multivariate hazard rate, J. Multivar. Anal., 5 (1975), 53–66. https://doi.org/10.1016/0047-259X(75)90055-X doi: 10.1016/0047-259X(75)90055-X
    [13] K. R. Nair, N. U. Nair, Bivariate mean residual life, IEEE T. Reliab., 38 (1989), 362–364. https://doi.org/10.1109/24.44183 doi: 10.1109/24.44183
    [14] M. Shaked, J. Shanthikumar, Dynamic multivariate mean residual life functions, J. Appl. Probab., 28 (1991), 613–629. https://doi.org/10.2307/3214496 doi: 10.2307/3214496
    [15] M. Kayid, Multivariate mean inactivity time functions with reliability applications, Int. J. Reliab. Appl., 7 (2006), 127–140.
    [16] J. Navarro, Characterizations using the bivariate failure rate function, Stat. Probab. Lett., 78 (2008), 1349–1354. https://doi.org/10.1016/j.spl.2007.12.004 doi: 10.1016/j.spl.2007.12.004
    [17] M. Shafaei Noughabi, M. Kayid, Bivariate quantile residual life: a characterization theorem and statistical properties, Stat. Papers, 60 (2019), 1–12. https://doi.org/10.1007/s00362-017-0905-9 doi: 10.1007/s00362-017-0905-9
    [18] M. Shafaei Noughabi, M. Kayid, A. M. Abouammoh, Dynamic multivariate quantile residual life in reliability theory, Math. Probl. Eng., 2018 (2018), 1245656. https://doi.org/10.1155/2018/1245656 doi: 10.1155/2018/1245656
    [19] F. Buono, E. De Santis, M. Longobardi, F. Spizzichino, Multivariate reversed hazard rates and inactivity times of systems, Methodol. Comput. Appl. Probab., 24 (2022), 1987–2008. https://doi.org/10.1007/s11009-021-09905-2 doi: 10.1007/s11009-021-09905-2
    [20] M. Kayid, Multivariate quantiles inactivity time with medical application, Submitted.
    [21] S. C. Kochar, H. Mukerjee, F. J. Samaniego, Estimation of a monotone mean residual life, Ann. Statist., 28 (2000), 905–921. https://doi.org/10.1214/aos/1015952004 doi: 10.1214/aos/1015952004
    [22] A. M. Franco-Pereira, J. de Una-Alvarez, Estimation of a monotone percentile residual life function under random censorship, Biom J., 55 (2013), 52–67. https://doi.org/10.1002/bimj.201100199 doi: 10.1002/bimj.201100199
    [23] M. Shafaei Noughabi, A. M. Franco-Pereira, Estimation of monotone bivariate quantile residual life, Statistics, 52 (2018), 919–933. https://doi.org/10.1080/02331888.2018.1470180 doi: 10.1080/02331888.2018.1470180
    [24] M. Kayid, Estimation of monotone α-quantile of past lifetime function with application, Open Phys., 22 (2024), 20240035. https://doi.org/10.1515/phys-2024-0035 doi: 10.1515/phys-2024-0035
    [25] A. W. Van der Vaart, Asymptotic statistics, London: Cambridge University Press, 1998.
    [26] D. Y. Lin, Z. Ying, A simple nonparametric estimator of the bivariate survival function under univariate censoring, Biometrika, 80 (1993), 573–581. https://doi.org/10.2307/2337178 doi: 10.2307/2337178
    [27] E. J. Gumbel, The return period of flood flows, Ann. Math. Statist., 12 (1941), 163–190. https://doi.org/10.1214/aoms/1177731747 doi: 10.1214/aoms/1177731747
    [28] P. E. Jupp, K. V. Mardia, A characterization of the multivariate Pareto distribution, Ann. Statist., 10 (1982), 1021–1024. https://doi.org/10.1214/aos/1176345894 doi: 10.1214/aos/1176345894
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(188) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog