In reliability engineering and survival analysis, quantile functions are fundamental and often the most natural way to represent probability distributions and data samples. In this paper, the $ \alpha $-quantile function of past lifetime was estimated for right-censored data by applying the Kaplan-Meier survival estimator. The weak convergence of the proposed estimator to a Gaussian process was investigated. A confidence interval for the $ \alpha $-quantile of the past life function that does not depend on the density function was proposed. The strong convergence of the estimator to a Gaussian process was also discussed. The properties of the estimator and the confidence interval were investigated in a simulation study. Finally, two real datasets were analyzed.
Citation: Mohamed Kayid. Statistical inference of an $ \mathit{\alpha } $-quantile past lifetime function with applications[J]. AIMS Mathematics, 2024, 9(6): 15346-15360. doi: 10.3934/math.2024745
In reliability engineering and survival analysis, quantile functions are fundamental and often the most natural way to represent probability distributions and data samples. In this paper, the $ \alpha $-quantile function of past lifetime was estimated for right-censored data by applying the Kaplan-Meier survival estimator. The weak convergence of the proposed estimator to a Gaussian process was investigated. A confidence interval for the $ \alpha $-quantile of the past life function that does not depend on the density function was proposed. The strong convergence of the estimator to a Gaussian process was also discussed. The properties of the estimator and the confidence interval were investigated in a simulation study. Finally, two real datasets were analyzed.
[1] | N. Unnikrishnan, B. Vineshkumar, Reversed percentile residual life and related concepts, J. Korean Stat. Soc., 40 (2011), 85–92. https://doi.org/10.1016/j.jkss.2010.06.001 doi: 10.1016/j.jkss.2010.06.001 |
[2] | M. Shafaei Noughabi, S. Izadkhah, On the quantile past lifetime of the components of the parallel systems, Commun. Stat. Theory Meth., 45 (2016), 2130–2136. https://doi.org/10.1080/03610926.2013.875573 doi: 10.1080/03610926.2013.875573 |
[3] | M. Shafaei Noughabi, Solving a functional equation and characterizing distributions by quantile past lifetime functions, Econ. Qual. Control, 31 (2016), 55–58. https://doi.org/10.1515/eqc-2015-0017 doi: 10.1515/eqc-2015-0017 |
[4] | M. Mahdy, M. Further results involving percentile inactivity time order and its inference, Metron, 72 (2014), 269–282. https://doi.org/10.1007/s40300-013-0017-9 doi: 10.1007/s40300-013-0017-9 |
[5] | L. Balmert, J. H. Jeong, Nonparametric inference on quantile lost lifespan, Biometrics, 73 (2017), 252–259. https://doi.org/10.1111/biom.12555 doi: 10.1111/biom.12555 |
[6] | L. C. Balmert, R. Li, L. Peng, J. H. Jeong, Quantile regression on inactivity time, Stat. Meth. Med. Res., 30 (2021), 1332–1346. https://doi.org/10.1177/0962280221995977 doi: 10.1177/0962280221995977 |
[7] | A. M. Teamah Abd-Elmonem, A. Elbanna, A. M. Gemeay, Frechet-Weibull mixture distribution: properties and applications, Appl. Math. Sci., 14 (2020), 75–86. https://doi.org/10.12988/ams.2020.912165 doi: 10.12988/ams.2020.912165 |
[8] | I. Elbatal, S. M. Alghamdi, F. Jamal, S. Khan, E. M. Almetwally, M. Elgarhy, Kavya-manoharan weibull-g family of distributions: statistical inference under progressive type-ii censoring scheme, Adv. Appl. Stat., 87 (2023), 191–223. https://doi.org/10.17654/0972361723034 doi: 10.17654/0972361723034 |
[9] | C. F. Chung, Confidence bands for percentile residual lifetime under random censorship model, J. Multivariate Anal., 29 (1989), 94–126. https://doi.org/10.1016/0047-259X(89)90079-1 doi: 10.1016/0047-259X(89)90079-1 |
[10] | M. D. Burke, S. Csorgo, L. Horvath, Strong approximations of some biometric estimates under random censorship, Z. Wahrsch. Verw. Gebiete, 56 (1981), 87–112. |
[11] | S. Csorgo, L. Horvath, The rate of strong uniform consistency for the product-limit estimator, Z. Wahrsch. Verw. Gebiete, 62 (1983), 411–426. |
[12] | E. E. Aly, M. Csorgo, L. Horvath, Strong apprroximations of the quantile process of the product-limit estimator, J. Multivariate Anal., 16 (1985), 185–210. https://doi.org/10.1016/0047-259X(85)90033-8 doi: 10.1016/0047-259X(85)90033-8 |
[13] | M. Csorgo, S. Scorgo, Estimation of percentile residual life, Oper. Res., 35 (1987), 598–606. https://doi.org/10.1287/opre.35.4.598 doi: 10.1287/opre.35.4.598 |
[14] | J. R. Blum, V. Susarla, Maximal deviation theory of density and failure rate function estimates based on censored data, Multivariate Anal., 5 (1980), 213–222. |
[15] | M. D. Burke, L. Horvath, Density and failure rate estimation in competing risks model, Sankhya A., 46 (1982), 135–154. https://doi.org/10.1016/j.ress.2010.04.006 doi: 10.1016/j.ress.2010.04.006 |
[16] | J. Mielniczuk, Some asymptotic properties of kernel estimators of a density function in case of censored data, Ann. Statist., 14 (1986), 766–773. https://doi.org/10.1214/aos/1176349954 doi: 10.1214/aos/1176349954 |
[17] | J. S. Marron, W. J. Padgett, Asymptotically optimal bandwidth selection for kernel density estimators from randomly right-censored samples, Ann. Statist., 15 (1987), 1520–1535. https://doi.org/10.1214/aos/1176350607 doi: 10.1214/aos/1176350607 |
[18] | S. H. Lo, Y. P. Mack, J. L. Wang, Density and hazard rate estimation for censored data via strong representation of the Kaplan-Meier estimator, Probab. Theory Related Fields, 80 (1989), 461–473. |
[19] | T. R. Fleming, D. P. Harrington, Counting processes and survival analysis, New York: Wiley, 1991. https://doi.org/10.1002/9781118150672 |