Research article Special Issues

An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method

  • Received: 01 December 2023 Revised: 18 February 2024 Accepted: 23 February 2024 Published: 29 February 2024
  • MSC : 35C08, 65M06, 65T50

  • In this article, the generalized Rosenau-Korteweg-de Vries-regularized long wave (GR–KDV–RLW) equation was numerically studied by employing the Fourier spectral collection method to discretize the space variable, while the central finite difference method was utilized for the time dependency. The efficiency, accuracy, and simplicity of the employed methodology were tested by solving eight different cases involving four examples of the single solitary wave with different parameter values, interactions between two solitary waves, interactions between three solitary waves, and evolution of solitons with Gaussian and undular bore initial conditions. The error norms were evaluated for the motion of the single solitary wave. The conservation properties of the GR–KDV–RLW equation were studied by computing the momentum and energy. Additionally, the numerical results were compared with the previous studies in the literature.

    Citation: Shumoua F. Alrzqi, Fatimah A. Alrawajeh, Hany N. Hassan. An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method[J]. AIMS Mathematics, 2024, 9(4): 8661-8688. doi: 10.3934/math.2024420

    Related Papers:

  • In this article, the generalized Rosenau-Korteweg-de Vries-regularized long wave (GR–KDV–RLW) equation was numerically studied by employing the Fourier spectral collection method to discretize the space variable, while the central finite difference method was utilized for the time dependency. The efficiency, accuracy, and simplicity of the employed methodology were tested by solving eight different cases involving four examples of the single solitary wave with different parameter values, interactions between two solitary waves, interactions between three solitary waves, and evolution of solitons with Gaussian and undular bore initial conditions. The error norms were evaluated for the motion of the single solitary wave. The conservation properties of the GR–KDV–RLW equation were studied by computing the momentum and energy. Additionally, the numerical results were compared with the previous studies in the literature.



    加载中


    [1] T. R. Marchant, Asymptotic Solitons for a Higher-Order Modified Korteweg–de Vries Equation, Phys. Rev. E, 66 (2002), 046623. https://doi.org/10.1103/PhysRevE.66.046623 doi: 10.1103/PhysRevE.66.046623
    [2] D. Kordeweg, G. de Vries, On the Change of Form of Long Waves Advancing in a Rectangular Channel, and a New Type of Long Stationary Wave, Philos. Mag., 39 (1895), 422–443. https://doi.org/10.1080/14786449508620739 doi: 10.1080/14786449508620739
    [3] Z. Feng, On Travelling Wave Solutions of the Burgers–Korteweg–de Vries Equation, Nonlinearity, 20 (2007), 343. http://doi.org/10.1088/0951-7715/20/2/006 doi: 10.1088/0951-7715/20/2/006
    [4] T. Ak, S. B. G. Karakoc, H. Triki, Numerical Simulation for Treatment of Dispersive Shallow Water Waves with Rosenau-KdV Equation, Eur. Phys. J. Plus, 131 (2016), 356. https://doi.org/10.1140/epjp/i2016-16356-3 doi: 10.1140/epjp/i2016-16356-3
    [5] P. Rosenau, Dynamics of Dense Discrete Systems: High Order Effects, Prog. Theor. Phys., 79 (1988), 1028–1042. http://doi.org/10.1143/PTP.79.1028 doi: 10.1143/PTP.79.1028
    [6] P. Rosenau, A Quasi-continuous Description of a Nonlinear Transmission Line, Phys. Scr., 34 (1986), 827. http://doi.org/10.1088/0031-8949/34/6B/020 doi: 10.1088/0031-8949/34/6B/020
    [7] J.-M. Zuo, Solitons and Periodic Solutions for the Rosenau–KdV and Rosenau–Kawahara Equations, Appl. Math. Comput., 215 (2009), 835–840. http://doi.org/10.1016/j.amc.2009.06.011 doi: 10.1016/j.amc.2009.06.011
    [8] J. Hu, Y. Xu, B. Hu, Conservative Linear Difference Scheme for Rosenau-KdV Equation, Adv. Math. Phys., 2013 (2013), 423718. https://doi.org/10.1155/2013/423718 doi: 10.1155/2013/423718
    [9] H. Ahmad, T. A. Khan, S.-W. Yao, An Efficient Approach for the Numerical Solution of Fifth-Order KdV Equations, Open Math., 18 (2020), 738–748. https://doi.org/10.1515/math-2020-0036 doi: 10.1515/math-2020-0036
    [10] A. Esfahani, Solitary Wave Solutions for Generalized Rosenau-KdV Equation, Commun. Theor. Phys., 55 (2011), 396–398. https://doi.org/10.3390/math8091601 doi: 10.3390/math8091601
    [11] A. Ghiloufi, K. Omrani, New Conservative Difference Schemes with Fourth-Order Accuracy for Some Model Equation for Nonlinear Dispersive Waves, Numer. Meth. Part. D. E., 34 (2018), 451–500. http://doi.org/10.1002/num.22208 doi: 10.1002/num.22208
    [12] P. Razborova, L. Moraru, A. Biswas, Perturbation of Dispersive Shallow Water Waves with Rosenau-KdV-RLW Equation and Power Law Nonlinearity, Rom. J. Phys, 59 (2014), 658–676.
    [13] A. K. Verma, M. K. Rawani, Numerical Solutions of Generalized Rosenau–KDV–RLW Equation by Using Haar Wavelet Collocation Approach Coupled with Nonstandard Finite Difference Scheme and Quasilinearization, Numer. Meth. Part. D. E., 39 (2023), 1085–1107. http://doi.org/10.1002/num.22925 doi: 10.1002/num.22925
    [14] W. Zhao, G.-R. Piao, A Reduced Galerkin Finite Element Formulation Based on Proper Orthogonal Decomposition for the Generalized KDV-RLW-Rosenau Equation, J. Inequal. Appl., 2023 (2023), 104. http://doi.org/10.1186/s13660-023-03012-1 doi: 10.1186/s13660-023-03012-1
    [15] M. Ahmat, J. Qiu, SSP IMEX Runge-Kutta WENO Scheme for Generalized Rosenau-KdV-RLW Equation, J. Math. Study, 55 (2022), 1–21. http://doi.org/10.4208/jms.v55n1.22.01 doi: 10.4208/jms.v55n1.22.01
    [16] S. Özer, Two Efficient Numerical Methods for Solving Rosenau-KdV-RLW Equation, Kuwait J. Sci., 48 (2021), 14–24. https://doi.org/10.48129/kjs.v48i1.8610 doi: 10.48129/kjs.v48i1.8610
    [17] Z. Avazzadeh, O. Nikan, J. A. T. Machado, Solitary Wave Solutions of the Generalized Rosenau-KdV-RLW Equation, Mathematics, 8 (2020), 1601. http://doi.org/10.3390/math8091601 doi: 10.3390/math8091601
    [18] Shallu, V. Kukreja, An Efficient Collocation Algorithm with SSP-RK43 to Solve Rosenau-KdV-RLW Equation, Int. J. Appl. Comput. Math., 7 (2021), 161. http://doi.org/10.1007/s40819-021-01095-2 doi: 10.1007/s40819-021-01095-2
    [19] S. B. G. Karakoç, A New Numerical Application of the Generalized Rosenau-RLW Equation, Sci. Iran., 27 (2020), 772–783. http://doi.org/10.24200/sci.2018.50490.1721 doi: 10.24200/sci.2018.50490.1721
    [20] C. Guo, F. Li, W. Zhang, Y. Luo, A Conservative Numerical Scheme for Rosenau-RLW Equation Based on Multiple Integral Finite Volume Method, Bound. Value Probl., 2019 (2019), 168. http://doi.org/10.1186/s13661-019-1273-2 doi: 10.1186/s13661-019-1273-2
    [21] S. Özer, Numerical Solution of the Rosenau–KdV–RLW Equation by Operator Splitting Techniques Based on B-spline Collocation Method, Numer. Meth. Part. D. E., 35 (2019), 1928–1943. https://doi.org/10.1002/num.22387 doi: 10.1002/num.22387
    [22] S. Özer, An Effective Numerical Technique for the Rosenau-KdV-RLW Equation, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20 (2018), 1–14. http://doi.org/10.25092/baunfbed.475968 doi: 10.25092/baunfbed.475968
    [23] X. Wang, W. Dai, A Three-Level Linear Implicit Conservative Scheme for the Rosenau–KdV–RLW Equation, J. Comput. Appl. Math., 330 (2018), 295–306. https://doi.org/10.1016/j.cam.2017.09.009 doi: 10.1016/j.cam.2017.09.009
    [24] Y. Gong, Q. Wang, Y. Wang, J. Cai, A Conservative Fourier Pseudo-Spectral Method for the Nonlinear Schrödinger Equation, J. Comput. Phys., 328 (2017), 354–370. https://doi.org/10.1016/j.jcp.2016.10.022 doi: 10.1016/j.jcp.2016.10.022
    [25] S. Akter, M. S. Mahmud, M. Kamrujjaman, H. Ali, Spectral Collocation Method with Fourier Transform to Solve Differential Equations, GANIT J. Bangladesh Math. Soc., 40 (2020), 28–42. https://doi.org/10.3329/ganit.v40i1.48193 doi: 10.3329/ganit.v40i1.48193
    [26] L. Zhang, W. Yang, X. Liu, H. Qu, Fourier Spectral Method for a Class of Nonlinear Schrödinger Models, Adv. Math. Phys., 2021 (2021), 9934858. https://doi.org/10.1155/2021/9934858 doi: 10.1155/2021/9934858
    [27] R. Zheng, X. Jiang, Spectral Methods for the Time-Fractional Navier–Stokes Equation, Appl. Math. Lett., 91 (2019), 194–200. https://doi.org/10.1016/j.aml.2018.12.018 doi: 10.1016/j.aml.2018.12.018
    [28] H. N. Hassan, An Efficient Numerical Method for the Modified Regularized Long Wave Equation Using Fourier Spectral Method, J. Assoc. Arab Univ. Basic Appl. Sci., 24 (2017), 198–205. http://doi.org/10.1016/j.jaubas.2016.10.002 doi: 10.1016/j.jaubas.2016.10.002
    [29] Z. Cai, B. Lin, M. Lin, A Positive and Moment-Preserving Fourier Spectral Method, 2023, arXiv: 2304.11847. https://doi.org/10.48550/arXiv.2304.11847
    [30] R. Zheng, X. Jiang, H. Zhang, L1 Fourier Spectral Methods for a Class of Generalized Two-Dimensional Time Fractional Nonlinear Anomalous Diffusion Equations, Comput. Math. Appl., 75 (2018), 1515–1530. https://doi.org/10.1016/j.camwa.2017.11.017 doi: 10.1016/j.camwa.2017.11.017
    [31] H. N. Hassan, Numerical Solution of a Boussinesq Type Equation Using Fourier Spectral Methods, Zeitschrift für Naturforschung A, 65 (2010), 305–314. http://dx.doi.org/10.1515/zna-2010-0407 doi: 10.1515/zna-2010-0407
    [32] H. N. Hassan, H. K. Saleh, The Solution of the Regularized Long Wave Equation Using the Fourier Leap-Frog Method, Zeitschrift für Naturforschung A, 65 (2010), 268–276. https://doi.org/10.1515/zna-2010-0402 doi: 10.1515/zna-2010-0402
    [33] H. N. Hassan, An Accurate Numerical Solution for the Modified Equal Width Wave Equation Using the Fourier Pseudo-Spectral Method, J. Appl. Math. Phys., 4 (2016), 1054–1067. https://doi.org/10.4236/jamp.2016.46110 doi: 10.4236/jamp.2016.46110
    [34] A. P. Harris, T. A. Biala, A. Q. M. Khaliq, Fourier Spectral Methods with Exponential Time Differencing for Space-Fractional Partial Differential Equations in Population Dynamics, 2022, arXiv: 2212.03345. https://doi.org/10.48550/arXiv.2212.03345
    [35] N. Yizengaw, Convergence Analysis of Finite Difference Method for Differential Equation, J. Phys. Math., 8 (2017), 240. https://doi.org/10.4172/2090-0902.1000240 doi: 10.4172/2090-0902.1000240
    [36] H. N. Hassan, H. K. Saleh, Fourier Spectral Methods for Solving Some Nonlinear Partial Differential Equations, Int. J. Open Problems Compt. Math, 6 (2013), 2. https://doi.org/10.12816/0006177 doi: 10.12816/0006177
    [37] B. Karakoc, T. Ak, Numerical Simulation of Dispersive Shallow Water Waves with Rosenau-KdV Equation, Int. J. Adv. Appl. Math. Mech., 3 (2016), 32–40.
    [38] X. Wang, W. Dai, A Conservative Fourth-Order Stable Finite Difference Scheme for the Generalized Rosenau–KdV Equation in Both 1D and 2D, J. Comput. Appl. Math., 355 (2019), 310–331. http://doi.org/10.1016/j.cam.2019.01.041 doi: 10.1016/j.cam.2019.01.041
    [39] B. Wongsaijai, K. Poochinapan, A Three-Level Average Implicit Finite Difference Scheme to Solve Equation Obtained by Coupling the Rosenau–KdV Equation and the Rosenau–RLW Equation, Appl. Math. Comput., 245 (2014), 289–304. http://doi.org/10.1016/j.amc.2014.07.075 doi: 10.1016/j.amc.2014.07.075
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1062) PDF downloads(108) Cited by(1)

Article outline

Figures and Tables

Figures(14)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog