In this paper, we introduced novel characterizations of the classical concept of majorization in terms of upper triangular (resp., lower triangular) row-stochastic matrices, and in terms of sequences of linear transforms on vectors. We use our new characterizations of majorization to derive an improved entropy inequality.
Citation: Roberto Bruno, Ugo Vaccaro. A note on equivalent conditions for majorization[J]. AIMS Mathematics, 2024, 9(4): 8641-8660. doi: 10.3934/math.2024419
In this paper, we introduced novel characterizations of the classical concept of majorization in terms of upper triangular (resp., lower triangular) row-stochastic matrices, and in terms of sequences of linear transforms on vectors. We use our new characterizations of majorization to derive an improved entropy inequality.
[1] | B. C. Arnold, J. M. Sarabia, Majorization and the Lorenz Order with Applications in Applied Mathematics and Economics, Berlin: Springer, 2018. |
[2] | A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of Majorization and its Applications, $2^{nd}$ edition, Berlin: Springer, 2010. |
[3] | G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge: Cambridge University Press, 1934. |
[4] | M. Madiman, L. Wang, J. O. Woo, Majorization and Rényi entropy inequalities via Sperner theory, Discrete Math., 342 (2019), 2911–2923. https://doi.org/10.1016/j.disc.2019.03.002 doi: 10.1016/j.disc.2019.03.002 |
[5] | M. Adil Khan, S. I. Bradanovic, N. Latif, D. Pecaric, J. Pecaric, Majorization Inequality and Information Theory, Zagreb: Element, 2019. |
[6] | M. P. Mueller, M. Pastena, A generalization of majorization that characterizes Shannon entropy, IEEE Trans. Inf. Theory, 62 (2016), 1711–1720. https://doi.org/10.1109/TIT.2016.2528285 doi: 10.1109/TIT.2016.2528285 |
[7] | I. Sason, Tight bounds on the Rényi entropy via majorization with applications to guessing and compression, Entropy, 20 (2018), 896. https://doi.org/10.3390/e20120896 doi: 10.3390/e20120896 |
[8] | I. Sason, On data-processing and majorization inequalities for $f$-divergences with applications, Entropy, 21 (2019), 1022. https://doi.org/10.3390/e21101022 doi: 10.3390/e21101022 |
[9] | F. Cicalese, U. Vaccaro, Supermodularity and subadditivity properties of the entropy on the majorization lattice, IEEE T. Inform. Theory, 48 (2002), 933–938. https://doi.org/10.1109/18.992785 doi: 10.1109/18.992785 |
[10] | H. Witsenhausen, Some aspects of convexity useful in information theory, IEEE T. Inform. Theory, 26 (1980), 265–271. |
[11] | D. P. Palomar, Y. Jiang, MIMO Transceiver Design via Majorization Theory, New York: Now Publishers, 2007. |
[12] | E. Jorswieck, H. Boche, Majorization and matrix-monotone functions in wireless communications, Foundat. Trends Commun. Inform. Theory, 3 (2007), 553–701. http://dx.doi.org/10.1561/0100000026 doi: 10.1561/0100000026 |
[13] | J. Wang, D. P. Palomar, Majorization theory with applications in signal processing and communication systems, In: Mathematical Foundations for Signal Processing, Communications and Networking, 2011. https://doi.org/10.1201/9781351105668 |
[14] | G. Bellomo, G. Bosyk, Majorization, Across the (Quantum) Universe, Cambridge: Cambridge University Press, 2019. https://doi.org/10.1017/9781108562218.018 |
[15] | T. Sagawa, Entropy, Divergence, and Majorization in Classical and Quantum Thermodynamics, Berlin: Springer, 2022. |
[16] | M. Bianchi, G. P. Clemente, A. Cornaro, J. L. Palacios, A. Torreiro, New trends in majorization techniques for bounding topological indices, In: Bounds in Chemical Graph Theory-Basics, 2017, 3–66. |
[17] | G. Dahl, Principal majorization ideals and optimization, Linear Algebra Appl., 331 (2001), 113–130. https://doi.org/10.1016/S0024-3795(01)00268-3 doi: 10.1016/S0024-3795(01)00268-3 |
[18] | C. Li, Efficient approximate minimum entropy coupling of multiple probability distributions, IEEE T. Inform. Theory, 67 (2021), 5259–5268. https://doi.org/10.1109/TIT.2021.3076986 doi: 10.1109/TIT.2021.3076986 |
[19] | F. Cicalese, L. Gargano, U. Vaccaro, Minimum-entropy couplings and their applications, IEEE T. Inform. Theory, 65 (2019), 3436–3451. https://doi.org/10.1109/TIT.2019.2894519 doi: 10.1109/TIT.2019.2894519 |
[20] | S. W. Ho, S. Verdú, On the interplay between conditional entropy and error probability, IEEE T. Inform. Theory, 56 (2010), 5930–5942. https://doi.org/10.1109/TIT.2010.2080891 doi: 10.1109/TIT.2010.2080891 |
[21] | J. Cohen, Y. Derriennic, G. Zbaganu, Majorization, monotonicity of relative entropy, and stochastic matrices, Contemp. Math., 149 (1993), 251–259. |