Research article Special Issues

A note on equivalent conditions for majorization

  • Received: 04 December 2023 Revised: 19 February 2024 Accepted: 20 February 2024 Published: 29 February 2024
  • MSC : 94A17, 15A45, 39B62, 47A63

  • In this paper, we introduced novel characterizations of the classical concept of majorization in terms of upper triangular (resp., lower triangular) row-stochastic matrices, and in terms of sequences of linear transforms on vectors. We use our new characterizations of majorization to derive an improved entropy inequality.

    Citation: Roberto Bruno, Ugo Vaccaro. A note on equivalent conditions for majorization[J]. AIMS Mathematics, 2024, 9(4): 8641-8660. doi: 10.3934/math.2024419

    Related Papers:

  • In this paper, we introduced novel characterizations of the classical concept of majorization in terms of upper triangular (resp., lower triangular) row-stochastic matrices, and in terms of sequences of linear transforms on vectors. We use our new characterizations of majorization to derive an improved entropy inequality.



    加载中


    [1] B. C. Arnold, J. M. Sarabia, Majorization and the Lorenz Order with Applications in Applied Mathematics and Economics, Berlin: Springer, 2018.
    [2] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of Majorization and its Applications, $2^{nd}$ edition, Berlin: Springer, 2010.
    [3] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge: Cambridge University Press, 1934.
    [4] M. Madiman, L. Wang, J. O. Woo, Majorization and Rényi entropy inequalities via Sperner theory, Discrete Math., 342 (2019), 2911–2923. https://doi.org/10.1016/j.disc.2019.03.002 doi: 10.1016/j.disc.2019.03.002
    [5] M. Adil Khan, S. I. Bradanovic, N. Latif, D. Pecaric, J. Pecaric, Majorization Inequality and Information Theory, Zagreb: Element, 2019.
    [6] M. P. Mueller, M. Pastena, A generalization of majorization that characterizes Shannon entropy, IEEE Trans. Inf. Theory, 62 (2016), 1711–1720. https://doi.org/10.1109/TIT.2016.2528285 doi: 10.1109/TIT.2016.2528285
    [7] I. Sason, Tight bounds on the Rényi entropy via majorization with applications to guessing and compression, Entropy, 20 (2018), 896. https://doi.org/10.3390/e20120896 doi: 10.3390/e20120896
    [8] I. Sason, On data-processing and majorization inequalities for $f$-divergences with applications, Entropy, 21 (2019), 1022. https://doi.org/10.3390/e21101022 doi: 10.3390/e21101022
    [9] F. Cicalese, U. Vaccaro, Supermodularity and subadditivity properties of the entropy on the majorization lattice, IEEE T. Inform. Theory, 48 (2002), 933–938. https://doi.org/10.1109/18.992785 doi: 10.1109/18.992785
    [10] H. Witsenhausen, Some aspects of convexity useful in information theory, IEEE T. Inform. Theory, 26 (1980), 265–271.
    [11] D. P. Palomar, Y. Jiang, MIMO Transceiver Design via Majorization Theory, New York: Now Publishers, 2007.
    [12] E. Jorswieck, H. Boche, Majorization and matrix-monotone functions in wireless communications, Foundat. Trends Commun. Inform. Theory, 3 (2007), 553–701. http://dx.doi.org/10.1561/0100000026 doi: 10.1561/0100000026
    [13] J. Wang, D. P. Palomar, Majorization theory with applications in signal processing and communication systems, In: Mathematical Foundations for Signal Processing, Communications and Networking, 2011. https://doi.org/10.1201/9781351105668
    [14] G. Bellomo, G. Bosyk, Majorization, Across the (Quantum) Universe, Cambridge: Cambridge University Press, 2019. https://doi.org/10.1017/9781108562218.018
    [15] T. Sagawa, Entropy, Divergence, and Majorization in Classical and Quantum Thermodynamics, Berlin: Springer, 2022.
    [16] M. Bianchi, G. P. Clemente, A. Cornaro, J. L. Palacios, A. Torreiro, New trends in majorization techniques for bounding topological indices, In: Bounds in Chemical Graph Theory-Basics, 2017, 3–66.
    [17] G. Dahl, Principal majorization ideals and optimization, Linear Algebra Appl., 331 (2001), 113–130. https://doi.org/10.1016/S0024-3795(01)00268-3 doi: 10.1016/S0024-3795(01)00268-3
    [18] C. Li, Efficient approximate minimum entropy coupling of multiple probability distributions, IEEE T. Inform. Theory, 67 (2021), 5259–5268. https://doi.org/10.1109/TIT.2021.3076986 doi: 10.1109/TIT.2021.3076986
    [19] F. Cicalese, L. Gargano, U. Vaccaro, Minimum-entropy couplings and their applications, IEEE T. Inform. Theory, 65 (2019), 3436–3451. https://doi.org/10.1109/TIT.2019.2894519 doi: 10.1109/TIT.2019.2894519
    [20] S. W. Ho, S. Verdú, On the interplay between conditional entropy and error probability, IEEE T. Inform. Theory, 56 (2010), 5930–5942. https://doi.org/10.1109/TIT.2010.2080891 doi: 10.1109/TIT.2010.2080891
    [21] J. Cohen, Y. Derriennic, G. Zbaganu, Majorization, monotonicity of relative entropy, and stochastic matrices, Contemp. Math., 149 (1993), 251–259.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1003) PDF downloads(135) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog