Granular computing is a novel method to solve complex tasks in the context of big data by simulating human problem-solving thinking, abstracting complex problems and dividing them into several simpler problems (i.e., granulation), which helps to better analyze and solve problems. In order to improve the accuracy of forecasting unemployment rates, this paper introduces the granulation idea of granular computing into the time series analysis of unemployment rates. Therefore, a novel method based on fuzzy information granules (FIGs) and grey system theory, namely FIG-GM(1,1) model, is proposed. This method not only reduces the dimensionality of the problem and computational complexity but also effectively reduces cumulative errors. In empirical analysis, three different performance indicators, mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE), and seven comparative models are used to evaluate the forecasting performance of our proposed model. The empirical results indicate that the MAE, MAPE, and RMSE values of the FIG-GM(1,1) model are significantly lower than those of other models, indicating that the FIG-GM(1,1) model has better forecasting performance compared to other models.
Citation: Hong Yang, Jiangli Liu. A novel unemployment rate forecasting method based on fuzzy information granules and GM(1,1) model[J]. AIMS Mathematics, 2024, 9(4): 8689-8711. doi: 10.3934/math.2024421
Granular computing is a novel method to solve complex tasks in the context of big data by simulating human problem-solving thinking, abstracting complex problems and dividing them into several simpler problems (i.e., granulation), which helps to better analyze and solve problems. In order to improve the accuracy of forecasting unemployment rates, this paper introduces the granulation idea of granular computing into the time series analysis of unemployment rates. Therefore, a novel method based on fuzzy information granules (FIGs) and grey system theory, namely FIG-GM(1,1) model, is proposed. This method not only reduces the dimensionality of the problem and computational complexity but also effectively reduces cumulative errors. In empirical analysis, three different performance indicators, mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE), and seven comparative models are used to evaluate the forecasting performance of our proposed model. The empirical results indicate that the MAE, MAPE, and RMSE values of the FIG-GM(1,1) model are significantly lower than those of other models, indicating that the FIG-GM(1,1) model has better forecasting performance compared to other models.
[1] | A. Badulescu, Unemployment in Romania. A retrospective study, Theor. Appl. Econ., 2 (2006), 71–76. |
[2] | F. Botha, V. H. Nguyen, Opposite nonlinear effects of unemployment and sentiment on male and female suicide rates: Evidence from Australia, Soc. Sci. Med., 292 (2022), 114536. http://dx.doi.org/10.1016/j.socscimed.2021.114536 doi: 10.1016/j.socscimed.2021.114536 |
[3] | K. A. Bender, I. Theodossiou, A reappraisal of the unemployment-mortality relationship: Transitory and permanent effects, J. Public Health Pol., 36 (2015), 81–94. http://dx.doi.org/10.1057/jphp.2014.40 doi: 10.1057/jphp.2014.40 |
[4] | M. Bussiere, M. Fratzscher, Towards a new early warning system of financial crises, J. Int. Money Financ., 25 (2006), 953–973. http://dx.doi.org/10.1016/j.jimonfin.2006.07.007 doi: 10.1016/j.jimonfin.2006.07.007 |
[5] | F. Cai, M. Wang, Growth and structural changes in employment in transition China, J. Comp. Econ., 38 (2010), 71–81. http://dx.doi.org/10.1016/j.jce.2009.10.006 doi: 10.1016/j.jce.2009.10.006 |
[6] | T. Chakraborty, A. K. Chakraborty, M. Biswas, S. Banerjee, S. Bhattacharya, Unemployment rate forecasting: A hybrid approach, Comput. Econ., 57 (2021), 183–201. http://dx.doi.org/10.1007/s10614-020-10040-2 doi: 10.1007/s10614-020-10040-2 |
[7] | A. A. Davidescu, S. A. Apostu, L. A. Stoica, Socioeconomic effects of COVID-19 pandemic: Exploring uncertainty in the forecast of the romanian unemployment rate for the period 2020–2023, Sustainability, 13 (2021), 7078. http://dx.doi.org/10.3390/su13137078 doi: 10.3390/su13137078 |
[8] | T. Ikeda, K. Sugiyama, J. Aida, T. Tsuboya, K. Osaka, The contextual effect of Area-Level unemployment rate on lower back pain: A multilevel analysis of three consecutive surveys of 962,586 workers in Japan, Int. J. Env. Res. Pub. He., 16 (2019), 4016. http://dx.doi.org/10.3390/ijerph16204016 doi: 10.3390/ijerph16204016 |
[9] | A. Kavkler, D. E. Dncic, A. G. Babucea, I. Bicanic, B. Bohm, D. Tevdovski, et al., Cox regression models for unemployment duration in Romania, Austria, Slovenia, Croatia and Macedonia, Rom. J. Econ. Forecast., 10 (2009), 81–104. |
[10] | C. Katris, Prediction of unemployment rates with time series and machine learning techniques, Comput. Econ., 55 (2019), 1–34. http://dx.doi.org/10.1007/s10614-019-09908-9 doi: 10.1007/s10614-019-09908-9 |
[11] | S. Kim, K. Koh, S. Boyd, D. Gorinevsky, $\ell_{1}$ trend filtering, SIAM Rev., 51 (2009), 339–360. |
[12] | B. Seetanah, N. U. H. Sookia, P. N. Gonpot, B. Seetanah, Out-of-sample forecasting of the Canadian unemployment rates using univariate models, Appl. Econ. Lett., 24 (2017), 1097–1101. http://dx.doi.org/10.1080/13504851.2016.1257208 doi: 10.1080/13504851.2016.1257208 |
[13] | A. Lahiani, O. Scaillet, Testing for threshold effect in ARFIMA models: Application to US unemployment rate data, Int. J. Forecast., 25 (2009), 418–428. http://dx.doi.org/10.1016/j.ijforecast.2009.01.004 doi: 10.1016/j.ijforecast.2009.01.004 |
[14] | B. J. Loboa, M. R. Alama, B. E. Whitacreb, Broadband speed and unemployment rates: Data and measurementissues, Telecommun. Policy, 44 (2020), 101829. |
[15] | F. Li, C. F. Wang, Develop a multi-linear-trend fuzzy information granule based short-term time series forecasting model with k-medoids clustering, Inform. Sciences, 629 (2023), 358–375. http://dx.doi.org/10.1016/j.ins.2023.01.122 doi: 10.1016/j.ins.2023.01.122 |
[16] | H. Lai, Y. A. Khan, A. Thaljaoui, W. Chammam, S. Z. Abbas, COVID-19 pandemic and unemployment rate: A hybrid unemployment rate prediction approach for developed and developing countries of Asia, Soft Comput., 27 (2023), 615. http://dx.doi.org/10.1007/s00500-021-05871-6 doi: 10.1007/s00500-021-05871-6 |
[17] | T. Y. Lin, Granular computing on binary relations Ⅰ: datamining and neighborhood systems, Ⅱ: Rough setrepresentations and belief functions, rough sets in knowledge discovery, Heidelberg: Physica-Verlag, 1998,107. |
[18] | T. Y. Lin, Granular computing rough set perspective, Newsl. IEEE Comput. Intell. Soc., 2 (2005), 1543. |
[19] | Z. Li, W. Xu, L. Zhang, R. Y. K. Lau, An ontology-based Web mining method for unemployment rate prediction, Decis. Support Syst., 66 (2014), 114–122. http://dx.doi.org/10.1016/j.dss.2014.06.007 doi: 10.1016/j.dss.2014.06.007 |
[20] | A. Milner, A. Kavanagh, L. Krnjacki, R. Bentley, A. D. LaMontagne, Area-level unemployment and perceived job insecurity: Evidence from a longitudinal survey conducted in the Australian working-age population, Ann. Occupat. Hyg., 58 (2014), 171–181. http://dx.doi.org/10.1093/annhyg/met066 doi: 10.1093/annhyg/met066 |
[21] | E. Olmedo, Forecasting spanish unemployment using near neighbour and neural net techniques, Comput. Econ., 43 (2014), 183–197. http://dx.doi.org/10.1007/s10614-013-9371-1 doi: 10.1007/s10614-013-9371-1 |
[22] | Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci., 11 (1982), 341. |
[23] | D. J. Roelfs, E. Shor, A. Blank, J. E. Schwartz, Misery loves company? A meta-regression examining aggregate unemployment rates and the unemployment-mortality association, Ann. Epidemiol., 25 (2015), 312–322. http://dx.doi.org/10.1016/j.annepidem.2015.02.005 doi: 10.1016/j.annepidem.2015.02.005 |
[24] | N. I. Sapankevych, R. Sankar, Time series prediction using support vector machines: A survey, IEEE Comput. Intell. M., 4 (2009), 24–38. http://dx.doi.org/10.1109/MCI.2009.932254 doi: 10.1109/MCI.2009.932254 |
[25] | T. Sun, Y. Liu, Chaotic time series prediction based on fuzzy information granulation and hybrid neural networks, Inform. Control, 2022, 1–8. |
[26] | S. J. Taylor, B. Letham, Forecasting at scale, Am. Stat., 72 (2018), 37–45. http://dx.doi.org/10.1080/00031305.2017.1380080 doi: 10.1080/00031305.2017.1380080 |
[27] | Y. Tang, F. Yu, W. Pedrycz, X. Yang, J. Wang, S. Liu, Building trend fuzzy granulation based LSTM recurrent neural network for long-term time series forecasting, IEEE T. Fuzzy Syst., 30 (2022), 1599–1613. http://dx.doi.org/10.1109/TFUZZ.2021.3062723 doi: 10.1109/TFUZZ.2021.3062723 |
[28] | F. Wang, H. Yang, Expansion of the existence range of the difference between two fuzzy numbers, Pure Math., 11 (2021), 1451–1463. http://dx.doi.org/10.12677/PM.2021.118163 doi: 10.12677/PM.2021.118163 |
[29] | M. C. Wang, F. L. Lin, H. H. Su, P. L. Kuo, Revisiting the relationship between suicide and unemployment in Mexico: Evidence from linear and nonlinear Co-integration, Front. Public Health, 8 (2020), 60. |
[30] | Q. Wang, The effects of unemployment rate on health status of Chinese people, Iran. J. Public Health, 44 (2015), 28–35. |
[31] | Q. Wang, J. J. Shen, C. Cochran, Unemployment rate, smoking in China: Are they related, Env. Res. Pub. He., 13 (2016), 113. http://dx.doi.org/10.3390/ijerph13010113 doi: 10.3390/ijerph13010113 |
[32] | G. X. Xu, Statistical prediction and decision, Shanghai: Shanghai University of Finance and Economics Press, 2008. |
[33] | D. S. Yamacli, S. Yamacli, Estimation of the unemployment rate in Turkey: A comparison of the ARIMA and machine learning models including Covid-19 pandemic periods, Heliyon, 9 (2023), e12796. http://dx.doi.org/10.1016/j.heliyon.2023.e12796 doi: 10.1016/j.heliyon.2023.e12796 |
[34] | X. Yang, F. Yu, W. Pedrycz, Long-term forecasting of time series based on linear fuzzy information granules and fuzzy inference system, Int. J. Approx. Reason., 81 (2017), 1–27. http://dx.doi.org/10.1016/j.ijar.2016.10.010 doi: 10.1016/j.ijar.2016.10.010 |
[35] | L. Zhang, B. Zhang, A quotient space approximationmodel of multiresolution signal analysis, J. Comput. Sci. Technol., 2015, 90. |
[36] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338. |
[37] | L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE T. Syst., 3 (1973), 28–44. http://dx.doi.org/10.1109/TSMC.1973.5408575 doi: 10.1109/TSMC.1973.5408575 |
[38] | L. A. Zadeh, Concept of a linguistic variable and itsapplication to approximate reasoning—Ⅱ, Inform. Sciences, 8 (1975), 301–357. http://dx.doi.org/10.1016/0020-0255(75)90046-8 doi: 10.1016/0020-0255(75)90046-8 |
[39] | L. A. Zadeh, Fuzzy sets and information granularity, Adv. Fuzzy Set Th. Appl., 1979, 3–18. |
[40] | L. A. Zadeh, Fuzzy logic = computing with words, IEEE T. Fuzzy Syst., 4 (1996), 103–111. http://dx.doi.org/10.1109/91.493904 doi: 10.1109/91.493904 |
[41] | L. A. Zadeh, Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzylogic, Fuzzy Set. Syst., 90 (1997), 111–127. |
[42] | L. A. Zadeh, Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems, Soft Comput., 2 (1998), 23–25. http://dx.doi.org/10.1007/s005000050030 doi: 10.1007/s005000050030 |
[43] | Y. Q. Zhang, Constructive granular systems with universal approximation and fast knowledge discovery, IEEE T. Fuzzy Syst., 13 (2005), 48–57. http://dx.doi.org/10.1109/TFUZZ.2004.839657 doi: 10.1109/TFUZZ.2004.839657 |