Research article

On the approximation of analytic functions by infinite series of fractional Ruscheweyh derivatives bases

  • Received: 03 November 2023 Revised: 04 December 2023 Accepted: 11 December 2023 Published: 29 February 2024
  • MSC : 30E10, 30D10, 41A10, 26A33

  • This paper presented a new Ruscheweyh fractional derivative of fractional order in the complex conformable calculus sense. We applied the constructed complex conformable Ruscheweyh derivative (CCRD) on a certain base of polynomials (BPs) in different regions of convergence in Fréchet spaces (F-spaces). Accordingly, we investigated the relation between the approximation properties of the resulting base and the original one. Moreover, we deduced the mode of increase (the order and type) and the $ \mathbb{T}_{\rho} $-property of the polynomial bases defined by the CCRD. Some bases of special polynomials, such as Bessel, Chebyshev, Bernoulli, and Euler polynomials, have been discussed to ensure the validity of the obtained results.

    Citation: Mohra Zayed, Gamal Hassan. On the approximation of analytic functions by infinite series of fractional Ruscheweyh derivatives bases[J]. AIMS Mathematics, 2024, 9(4): 8712-8731. doi: 10.3934/math.2024422

    Related Papers:

  • This paper presented a new Ruscheweyh fractional derivative of fractional order in the complex conformable calculus sense. We applied the constructed complex conformable Ruscheweyh derivative (CCRD) on a certain base of polynomials (BPs) in different regions of convergence in Fréchet spaces (F-spaces). Accordingly, we investigated the relation between the approximation properties of the resulting base and the original one. Moreover, we deduced the mode of increase (the order and type) and the $ \mathbb{T}_{\rho} $-property of the polynomial bases defined by the CCRD. Some bases of special polynomials, such as Bessel, Chebyshev, Bernoulli, and Euler polynomials, have been discussed to ensure the validity of the obtained results.



    加载中


    [1] G. F. Hassan, E. Abdel-Salam, R. Rashwan, Approximation of functions by complex conformable derivative bases in Fréchet spaces, Math. Method. Appl. Sci., 46 (2022), 2636–2650. https://doi.org/10.1002/mma.8664 doi: 10.1002/mma.8664
    [2] B. Cannon, On the convergence of series of polynomials, P. London Math. Soc., 43 (1937), 348–364. https://doi.org/10.1112/plms/s2-43.5.348 doi: 10.1112/plms/s2-43.5.348
    [3] B. Cannon, On the convergence of integral functions by general basic series, Math. Z., 45 (1939), 158–205.
    [4] J. M. Whittaker, On series of poynomials, Q. J. Math., 5 (1934), 224–239. https://doi.org/10.1093/qmath/os-5.1.224 doi: 10.1093/qmath/os-5.1.224
    [5] J. M. Whittaker, Collection de monographies sur la theorie des fonctions, Paris: Gauthier-Villars, 1949.
    [6] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [7] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51 (2006), 1367–1376. https://doi.org/10.1016/j.camwa.2006.02.001 doi: 10.1016/j.camwa.2006.02.001
    [8] G. Jumarie, New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations, Math. Comput. Model., 44 (2006), 231–254. https://doi.org/10.1016/j.mcm.2005.10.003 doi: 10.1016/j.mcm.2005.10.003
    [9] G. Jumarie, Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative, Appl. Math. Lett., 22 (2009), 1659–1664. https://doi.org/10.1016/j.aml.2009.05.011 doi: 10.1016/j.aml.2009.05.011
    [10] A. Kilbas, H. Srivastasa, J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier, 2006.
    [11] G. F. Hassan, M. Zayed, Approximation of monogenic functions by hypercomplex Ruscheweyh derivative bases, Complex Var. Elliptic, 86 (2022), 2073–2092. https://doi.org/10.1080/17476933.2022.2098279 doi: 10.1080/17476933.2022.2098279
    [12] M. Zayed, G. Hassan, Equivalent base expansions in the space of Cliffodian functions, Axioms, 12 (2023), 544. https://doi.org/10.3390/axioms12060544 doi: 10.3390/axioms12060544
    [13] G. F. Hassan, L. Aloui, Bernoulli and Euler polynomials in Clifford analysis, Adv. Appl. Clifford Al., 25 (2015), 351–376. https://doi.org/10.1007/s00006-014-0511-z doi: 10.1007/s00006-014-0511-z
    [14] M. A. Abul-Ez, Bessel polynomial expansions in spaces of holomorphic functions, J. Math. Anal. Appl., 221 (1998), 177–190. https://doi.org/10.1006/jmaa.1997.5840 doi: 10.1006/jmaa.1997.5840
    [15] M. Abdalla, M. A. Abul-Ez, J Morais, On the construction of generalized monogenic Bessel polynomials, Math. Method. Appl. Sci., 41 (2018), 9335–9348. https://doi.org/10.1002/mma.5274 doi: 10.1002/mma.5274
    [16] M. A. Abul-Ez, M. Zayed, Criteria in Nuclear Fréchet spaces and Silva spaces with refinement of the Cannon-Whittaker theory, J. Funct. Space., 2020 (2020). https://doi.org/10.1155/2020/8817877 doi: 10.1155/2020/8817877
    [17] S. Ruscheweyh, New criteria for univalent functions, P. Am. Math. Soch., 49 (1975), 109–115. https://doi.org/10.2307/2039801 doi: 10.2307/2039801
    [18] S. P. Goyal, R. Goyal, On a class of multivalent functions defined by generalized Ruscheweyh derivatives involving a general fractional derivative operator, J. Indian Acad. Math., 27 (2005), 439–456. http://dx.doi.org/10.4067/S0716-09172014000200005 doi: 10.4067/S0716-09172014000200005
    [19] R. Agarwal, G. S. Paliwal, G. S. Paliwal, Ruscheweyh-Goyal derivative of fractional order, its properties pertaining to pre-starlike type functions and applications, Appl. Appl. Math., 15 (2020), 103–121.
    [20] W. G. Atshan, S. R. Kulkarni, A generalized Ruscheweyh derivatives involving a general fractional derivative operator defined on a class of multivalent functions Ⅱ, Int. J. Math. Anal., 2 (2008), 97–109.
    [21] S. Ucar, N. Özgür, Complex conformable derivative, Arab. J. Geosci., 12 (2019), 1–6. https://doi.org/10.1007/s12517-019-4396-y doi: 10.1007/s12517-019-4396-y
    [22] G. F. Hassan, L. Aloui, L. Bakali, Basic sets of special monogenic polynomials in Fréchet modules, J. Complex Anal., 2017 (2017), 2075938. https://doi.org/10.1155/2017/2075938 doi: 10.1155/2017/2075938
    [23] M. A. Abul-Ez, D. Constales, Basic sets of polynomials in Clifford analysis, Complex Var. Elliptic, 14 (1990), 177–185. https://doi.org/10.1080/17476939008814416 doi: 10.1080/17476939008814416
    [24] R. Khalil, M. Al-Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [25] E. A. B. Abdel-Salam, M. S. Jazmati, H. Ahmad, Geometrical study and solutions for family of burgers-like equation with fractional order space time, Alex. Eng. J., 61 (2022), 511–521. https://doi.org/10.1016/j.aej.2021.06.032 doi: 10.1016/j.aej.2021.06.032
    [26] E. A. B. Abdel-Salam, M. F. Mourad, Fractional quasi AKNS-technique for nonlinear space-time fractional evolution equations, Math. Method. Appl. Sci., 42 (2018), 5953–5968. https://doi.org/10.1002/mma.5633 doi: 10.1002/mma.5633
    [27] S. M. Abo-Dahab, A. A. Kilany, E. A. B. Abdel-Salam, A. Hatem, Fractional derivative order analysis and temperature-dependent properties on p- and SV-waves reflection under initial stress and three-phase-lag model, Results Phys., 18 (2020). https://doi.org/10.1016/j.rinp.2020.103270 doi: 10.1016/j.rinp.2020.103270
    [28] Y. A. Azzam, E. A. B. Abdel-Salam, {M. I. Nouh}, Artificial neural network modeling of the conformable fractional isothermal gas spheres, Rev. Mex. Astrono. Astr., 57 (2021), 189–198. https://doi.org/10.22201/ia.01851101p.2021.57.01.14 doi: 10.22201/ia.01851101p.2021.57.01.14
    [29] M. I. Nouh, Y. A. Azzam, E. A. B. Abdel-Salam, Modeling fractional polytropic gas spheres using artificial neural network, Neural Comput. Appl., 33 (2021), 4533–4546.
    [30] E. A. B. Abdel-Salam, M. I. Nouh, Conformable fractional polytropic gas spheres, New Astron., 76 (2020), 101322. https://doi.org/10.1016/j.newast.2019.101322 doi: 10.1016/j.newast.2019.101322
    [31] R. Khalil, A. Yousef, A. M. Al Horani, M. Sababheh, Fractional analysis functions, Far East J. Math. Sci., 103 (2018), 113–123. http://dx.doi.org/10.17654/MS103010113 doi: 10.17654/MS103010113
    [32] F. Martínez, I. Martínez, M. K. A. Kaabar, S. Paredes, New results on complex conformable integral, AIMS Math., 5 (2020), 7695–7710. http://dx.doi.org/10.3934/math.2020492 doi: 10.3934/math.2020492
    [33] F. Martínez, I. Martínez, M. K. A. Kaabar, Note on the conformable fractional derivatives and integrals of complex-valued functions of a real variable, IAENG Int. J. Appl. Math., 50 (2020), 609–615.
    [34] S. Ucar, N. Özgür, Complex conformable Rolle's and mean value theorems, Math. Sci., 14 (2020), 215–218. https://doi.org/10.1007/s40096-020-00332-x doi: 10.1007/s40096-020-00332-x
    [35] K. S. Miller, B. Ross, An introduction to fractional calculus and fractional differential equations, New York: Willy, 1993.
    [36] M. A. Abul-Ez, D. Constales, On the order of basic series representing Clifford valued functions, Appl. Math. Comput., 142 (2003), 575–584. https://doi.org/10.1016/S0096-3003(02)00350-8 doi: 10.1016/S0096-3003(02)00350-8
    [37] R. H. Makar, On derived and integral basic sets of polynomials, P. Am. Math. Soc., 5 (1954), 218–225. https://doi.org/10.2307/2032227 doi: 10.2307/2032227
    [38] M. N. Mikhail, Derived and integral sets of basic sets of polynomials, P. Am. Math. Soc., 4 (1953), 251–259. https://doi.org/10.2307/2031801 doi: 10.2307/2031801
    [39] M. A. Newns, On the representation of analytic functions by infinite series, Philos. T. Roy. Soc. A, 245 (1953), 429–468. https://doi.org/10.1098/rsta.1953.0003 doi: 10.1098/rsta.1953.0003
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(788) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog