Research article Special Issues

Approximation of elliptic and parabolic equations with Dirichlet boundary conditions

  • Received: 22 August 2022 Revised: 08 January 2023 Accepted: 08 March 2023 Published: 20 March 2023
  • We obtain an approximation result of the weak solutions to elliptic and parabolic equations with Dirichlet boundary conditions. We show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and approximating the domains.

    Citation: Youchan Kim, Seungjin Ryu, Pilsoo Shin. Approximation of elliptic and parabolic equations with Dirichlet boundary conditions[J]. Mathematics in Engineering, 2023, 5(4): 1-43. doi: 10.3934/mine.2023079

    Related Papers:

  • We obtain an approximation result of the weak solutions to elliptic and parabolic equations with Dirichlet boundary conditions. We show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and approximating the domains.



    加载中


    [1] E. Acerbi, N. Fusco, Regularity for minimizers of nonquadratic functionals: the case $1 < p < 2$, J. Math. Anal. Appl., 140 (1989), 115–135. https://doi.org/10.1016/0022-247X(89)90098-X doi: 10.1016/0022-247X(89)90098-X
    [2] E. Acerbi, G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Rational Mech. Anal., 156 (2001), 121–140. https://doi.org/10.1007/s002050100117 doi: 10.1007/s002050100117
    [3] E. Acerbi, G. Mingione, Gradient estimates for the $p(x)$-Laplacean system, J. Reine Angew. Math., 584 (2005), 117–148. https://doi.org/10.1515/crll.2005.2005.584.117 doi: 10.1515/crll.2005.2005.584.117
    [4] E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2007), 285–320. https://doi.org/10.1215/S0012-7094-07-13623-8 doi: 10.1215/S0012-7094-07-13623-8
    [5] R. A. Adams, J. J. F. Fournier, Sobolev spaces, Amsterdam: Elsevier/Academic Press, 2003.
    [6] P. Baroni, Lorentz estimates for degenerate and singular evolutionary systems, J. Differ. Equations, 255 (2013), 2927–2951. https://doi.org/10.1016/j.jde.2013.07.024 doi: 10.1016/j.jde.2013.07.024
    [7] P. Baroni, Riesz potential estimates for a general class of quasilinear equations, Calc. Var., 53 (2015), 803–846. https://doi.org/10.1007/s00526-014-0768-z doi: 10.1007/s00526-014-0768-z
    [8] P. Baroni, V. Bögelein, Calderón-Zygmund estimates for parabolic $p(x, t)$-Laplacian systems, Rev. Mat. Iberoam., 30 (2014), 1355–1386. https://doi.org/10.4171/RMI/817 doi: 10.4171/RMI/817
    [9] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
    [10] L. Beck, G. Mingione, Lipschitz bounds and nonuniform ellipticity, Commun. Pure Appl. Math., 73 (2020), 944–1034. https://doi.org/10.1002/cpa.21880 doi: 10.1002/cpa.21880
    [11] V. Bögelein, Global Calderón-Zygmund theory for nonlinear parabolic systems, Calc. Var., 51 (2014), 555–596. https://doi.org/10.1007/s00526-013-0687-4 doi: 10.1007/s00526-013-0687-4
    [12] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7
    [13] M. Bulíček, S.-S. Byun, P. Kaplický, J. Oh, S. Schwarzacher, On global $L^{q}$-estimates for systems with p-growth in rough domains, Calc. Var., 58 (2019), 185. https://doi.org/10.1007/s00526-019-1621-1 doi: 10.1007/s00526-019-1621-1
    [14] S.-S. Byun, Y. Kim, Elliptic equations with measurable nonlinearities in nonsmooth domains, Adv. Math., 288 (2016), 152–200. https://doi.org/10.1016/j.aim.2015.10.015 doi: 10.1016/j.aim.2015.10.015
    [15] S.-S. Byun, J. Ok, S. Ryu, Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains, J. Differ. Equations, 254 (2013), 4290–4326. https://doi.org/10.1016/j.jde.2013.03.004 doi: 10.1016/j.jde.2013.03.004
    [16] S.-S. Byun, J. Ok, S. Ryu, Global gradient estimates for elliptic equations of $p(x)$-Laplacian type with BMO nonlinearity, J. Reine Angew. Math., 715 (2016), 1–38. https://doi.org/10.1515/crelle-2014-0004 doi: 10.1515/crelle-2014-0004
    [17] S.-S. Byun, L. Wang, Parabolic equations in time dependent Reifenberg domains, Adv. Math., 212 (2007), 797–818. https://doi.org/10.1016/j.aim.2006.12.002 doi: 10.1016/j.aim.2006.12.002
    [18] I. Chlebicka, A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces, Nonlinear Anal., 175 (2018), 1–27. https://doi.org/10.1016/j.na.2018.05.003 doi: 10.1016/j.na.2018.05.003
    [19] A. Cianchi, V. G. Maz'ya, Global Lipschitz regularity for a class of quasilinear elliptic equations, Commun. Part. Diff. Eq., 36 (2011), 100–133. https://doi.org/10.1080/03605301003657843 doi: 10.1080/03605301003657843
    [20] A. Cianchi, V. G. Maz'ya, Global boundedness of the gradient for a class of nonlinear elliptic systems, Arch. Rational Mech. Anal., 212 (2014), 129–177. https://doi.org/10.1007/s00205-013-0705-x doi: 10.1007/s00205-013-0705-x
    [21] M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Rational Mech. Anal., 218 (2015), 219–273. https://doi.org/10.1007/s00205-015-0859-9 doi: 10.1007/s00205-015-0859-9
    [22] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Rational Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2
    [23] M. Colombo, G. Mingione, Calderón–Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416–1478. https://doi.org/10.1016/j.jfa.2015.06.022 doi: 10.1016/j.jfa.2015.06.022
    [24] C. De Filippis, G. Mingione, On the regularity of minima of non-autonomous functionals, J. Geom. Anal., 30 (2020), 1584–1626. https://doi.org/10.1007/s12220-019-00225-z doi: 10.1007/s12220-019-00225-z
    [25] C. De Filippis, G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differ. Equations, 267 (2019), 547–586. https://doi.org/10.1016/j.jde.2019.01.017 doi: 10.1016/j.jde.2019.01.017
    [26] E. DiBenedetto, Degenerate parabolic equations, New York: Springer, 1993. https://doi.org/10.1007/978-1-4612-0895-2
    [27] L. Diening, B. Stroffolini, A. Verde, Everywhere regularity of functionals with $\varphi$-growth, Manuscripta Math., 129 (2009), 449–481. https://doi.org/10.1007/s00229-009-0277-0 doi: 10.1007/s00229-009-0277-0
    [28] F. Duzaar, G. Mingione, Local Lipschitz regularity for degenerate elliptic systems, Ann. Inst. H. Poincaré (C) Anal. Non Linéaire, 27 (2010), 1361–1396. https://doi.org/10.1016/J.ANIHPC.2010.07.002 doi: 10.1016/J.ANIHPC.2010.07.002
    [29] F. Duzaar, G. Mingione, Gradient estimates via non-linear potentials, Amer. J. Math., 133 (2011), 1093–1149. https://doi.org/10.1353/ajm.2011.0023 doi: 10.1353/ajm.2011.0023
    [30] A. H. Erhardt, Existence of solutions to parabolic problems with nonstandard growth and irregular obstacles, Adv. Differential Equations, 21 (2016), 463–504. https://doi.org/10.57262/ade/1457536498 doi: 10.57262/ade/1457536498
    [31] L. Esposito, G. Mingione, Some remarks on the regularity of weak solutions of degenerate elliptic systems, Rev. Mat. Complut., 11 (1998), 203–219. https://doi.org/10.5209/rev_REMA.1998.v11.n1.17325 doi: 10.5209/rev_REMA.1998.v11.n1.17325
    [32] L. Esposito, F. Leonetti, G. Mingione, Regularity results for minimizers of irregular integrals with $(p, q)$ growth, Forum Math., 14 (2002), 245–272. https://doi.org/10.1515/form.2002.011 doi: 10.1515/form.2002.011
    [33] L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with $(p, q)$ growth, J. Differ. Equations, 204 (2004), 5–55. https://doi.org/10.1016/j.jde.2003.11.007 doi: 10.1016/j.jde.2003.11.007
    [34] L. Evans, Partial differential equations, 2 Eds., Providence, RI: American Mathematical Society, 2010.
    [35] M. Giaquinta, G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math., 57 (1986), 55–99. https://doi.org/10.1007/BF01172492 doi: 10.1007/BF01172492
    [36] C. Hamburger, Regularity of differential forms minimizing degenerate elliptic functionals, J. Reine Angew. Math., 431 (1992), 7–64. https://doi.org/10.1515/crll.1992.431.7 doi: 10.1515/crll.1992.431.7
    [37] P. Hästö, J. Ok, Maximal regularity for local minimizers of non-autonomous functionals, J. Eur. Math. Soc., 24 (2022), 1285–1334. https://doi.org/10.4171/JEMS/1118 doi: 10.4171/JEMS/1118
    [38] Y. Kim, Gradient estimates for elliptic equations with measurable nonlinearities, J. Math. Pure. Appl. (9), 114 (2018), 118–145. https://doi.org/10.1016/j.matpur.2017.11.003 doi: 10.1016/j.matpur.2017.11.003
    [39] T. Kuusi, G. Mingione, Universal potential estimates, J. Funct. Anal., 262 (2012), 4205–4269. https://doi.org/10.1016/j.jfa.2012.02.018 doi: 10.1016/j.jfa.2012.02.018
    [40] T. Kuusi, G. Mingione, New perturbation methods for nonlinear parabolic problems, J. Math. Pure Appl. (9), 98 (2012), 390–427. https://doi.org/10.1016/j.matpur.2012.02.004 doi: 10.1016/j.matpur.2012.02.004
    [41] T. Kuusi, G. Mingione, Linear potentials in nonlinear potential theory, Arch. Rational Mech. Anal., 207 (2013), 215–246. https://doi.org/10.1007/s00205-012-0562-z doi: 10.1007/s00205-012-0562-z
    [42] T. Kuusi, G. Mingione, Riesz potentials and nonlinear parabolic equations, Arch. Rational Mech. Anal., 212 (2014), 727–780. https://doi.org/10.1007/s00205-013-0695-8 doi: 10.1007/s00205-013-0695-8
    [43] T. Kuusi, G. Mingione, Guide to nonlinear potential estimates, Bull. Math. Sci., 4 (2014), 1–82. https://doi.org/10.1007/s13373-013-0048-9 doi: 10.1007/s13373-013-0048-9
    [44] T. Kuusi, G. Mingione, Vectorial nonlinear potential theory, J. Eur. Math. Soc., 20 (2018), 929–1004. https://doi.org/10.4171/JEMS/780 doi: 10.4171/JEMS/780
    [45] G. Leoni, A first course in Sobolev spaces, Providence, RI: American Mathematical Society, 2009.
    [46] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267–284. https://doi.org/10.1007/BF00251503 doi: 10.1007/BF00251503
    [47] P. Marcellini, Regularity and existence of solutions of elliptic equations with $p$, $q$-growth conditions, J. Differ. Equations, 90 (1991), 1–30. https://doi.org/10.1016/0022-0396(91)90158-6 doi: 10.1016/0022-0396(91)90158-6
    [48] G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6 (2007), 195–261.
    [49] G. Mingione, Gradient potential estimates, J. Eur. Math. Soc., 13 (2011), 459–486. https://doi.org/10.4171/JEMS/258 doi: 10.4171/JEMS/258
    [50] C. Scheven, Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles, Manuscripta Math., 146 (2015), 7–63. https://doi.org/10.1007/s00229-014-0684-8 doi: 10.1007/s00229-014-0684-8
    [51] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Providence, RI: American Mathematical Society, 1997.
    [52] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equations, 51 (1984), 126–150. https://doi.org/10.1016/0022-0396(84)90105-0 doi: 10.1016/0022-0396(84)90105-0
    [53] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219–240. https://doi.org/10.1007/BF02392316 doi: 10.1007/BF02392316
    [54] V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105–116.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1185) PDF downloads(133) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog