We extend some theorems for the infinity-ground state and for the infinity-potential, known for convex polygons, to other domains in the plane, by applying Alexandroff's method to the curved boundary. A recent explicit solution disproves a conjecture.
Citation: Karl K. Brustad, Erik Lindgren, Peter Lindqvist. The infinity-Laplacian in smooth convex domains and in a square[J]. Mathematics in Engineering, 2023, 5(4): 1-16. doi: 10.3934/mine.2023080
We extend some theorems for the infinity-ground state and for the infinity-potential, known for convex polygons, to other domains in the plane, by applying Alexandroff's method to the curved boundary. A recent explicit solution disproves a conjecture.
[1] | G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551–561. http://doi.org/10.1007/BF02591928 doi: 10.1007/BF02591928 |
[2] | G. Aronsson, On the partial differential equation $u_x^2u_xx + 2 u_xu_y u_xy + u_y^2u_yy = 0$, Ark. Mat., 7 (1968), 397–425. http://doi.org/10.1007/BF02590989 doi: 10.1007/BF02590989 |
[3] | T. Bhattacharya, E. DiBenedetto, J. Manfredi, Limits as $p \to \infty$ of $\Delta_{p} u = f$ and related extremal problems, Rend. Semin. Mat., Univ. Politec. Torino, 47 (1989), 15–68. |
[4] | F. Bozorgnia, L. Bungert, D. Tenbrinck, The infinity Laplacian eigenvalue problem: reformulation and a numerical scheme, arXiv: 2004.08127. |
[5] | K. K. Brustad, The infinity-potential in the square, arXiv: 2210.03447v2. |
[6] | L. Caffarelli, A. Friedman, G. Pozzi, Reflection methods in the elastic-plastic torsion problem, Indiana Univ. Math. J., 29 (1980), 205–228. http://doi.org/10.1512/iumj.1980.29.29014 doi: 10.1512/iumj.1980.29.29014 |
[7] | M. G. Crandall, H. Ishii, P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1–67. http://doi.org/10.1090/S0273-0979-1992-00266-5 doi: 10.1090/S0273-0979-1992-00266-5 |
[8] | L. C. Evans, O. Savin, $C^{1, \alpha}$ Regularity for infinity harmonic functions in two dimensions, Calc. Var., 32 (2008), 325–347. https://doi.org/10.1007/s00526-007-0143-4 doi: 10.1007/s00526-007-0143-4 |
[9] | D. Gilbarg, N. S. Trudinger. Elliptic partial differential equations of second order, 2 Eds., Berlin: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0 |
[10] | R. Hynd, C. K. Smart, Y. Yu, Nonuniqueness of infinity ground states, Calc. Var., 48 (2013), 545–554. http://doi.org/10.1007/s00526-012-0561-9 doi: 10.1007/s00526-012-0561-9 |
[11] | U. Janfalk, Behaviour in the limit, as $p \to \infty$, of minimizers of functionals involving $p$-Dirichlet integrals, SIAM J. Math. Anal., 27 (1996), 341–360. http://doi.org/10.1137/S0036141093252619 doi: 10.1137/S0036141093252619 |
[12] | R. Jensen, Uniqueness of Lipschitz extension minimizing the sup-norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51–74. http://doi.org/10.1007/BF00386368 doi: 10.1007/BF00386368 |
[13] | P. Juutinen, P. Lindqvist, J. Manfredi, The $\infty$-eigenvalue problem, Arch. Rational Mech. Anal., 148 (1999), 89–105. http://doi.org/10.1007/s002050050157 doi: 10.1007/s002050050157 |
[14] | P. Juutinen, P. Lindqvist, J. Manfredi, The infinity-Laplacian: examples and observations, In: Papers on analysis: A volume dedicated to Olli Martio on the occasion of his 60th birthday, University of Jyväskylä: Report. Univ. Jyväskylä, 2001,207–217. |
[15] | B. Kawohl, On the location of maxima of the gradient for solutions to quasilinear elliptic problems and a problem raised by Saint Venant, J. Elasticity, 17 (1987), 195–206. http://doi.org/10.1007/BF00049452 doi: 10.1007/BF00049452 |
[16] | H. Koch, Y. Zhang, Y. Zhou, An asymptotic sharp Sobolev regularity for planar infinity harmonic functions, J. Math. Pure. Appl. (9), 132 (2019), 457–482. http://doi.org/10.1016/j.matpur.2019.02.008 doi: 10.1016/j.matpur.2019.02.008 |
[17] | S. Koike, A Beginner's guide to the theory of viscosity solutions, Tokyo: Mathematical Society of Japan, 2004. http://doi.org/10.2969/msjmemoirs/013020000 |
[18] | J. L. Lewis, Capacitary functions in convex rings, Arch. Rational Mech. Anal., 66 (1977), 201–224. http://doi.org/10.1007/BF00250671 doi: 10.1007/BF00250671 |
[19] | E. Lindgren, P. Lindqvist, Infinity-harmonic potentials and their streamlines, Discrete Cont. Dyn. Syst. A, 39 (2019), 4731–4746. http://doi.org/10.3934/dcds.2019192 doi: 10.3934/dcds.2019192 |
[20] | E. Lindgren, P. Lindqvist, The gradient flow of infinity-harmonic potentials, Adv. Math., 378 (2021), 107526. http://doi.org/10.1016/j.aim.2020.107526 doi: 10.1016/j.aim.2020.107526 |
[21] | E. Lindgren, P. Lindqvist, On $\infty$ - Ground States in the plane, arXiv: 2102.08869. |
[22] | P. Lindqvist, On the equation $\mathrm{div}(|\nabla u|^{p-2}\nabla u) + \lambda|u|^{p-2}u = 0$, Proc. Amer. Math. Soc., 109 (1990), 157–164. https://doi.org/10.1090/S0002-9939-1990-1007505-7 doi: 10.1090/S0002-9939-1990-1007505-7 |
[23] | Y. Peres, O. Schramm, S. Sheffield, D. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167–210. https://doi.org/10.1090/S0894-0347-08-00606-1 doi: 10.1090/S0894-0347-08-00606-1 |
[24] | O. Savin, $C^1$ Regularity for infinity harmonic functions in two dimensions, Arch. Rational Mech. Anal., 176 (2005), 351–361. http://doi.org/10.1007/s00205-005-0355-8 doi: 10.1007/s00205-005-0355-8 |
[25] | J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304–318. http://doi.org/10.1007/BF00250468 doi: 10.1007/BF00250468 |
[26] | R. Sperb, Maximum principles and their applications, New York: Academic Press, 1981. |
[27] | C. Wang, Y. Yu, $C^1$-Boundary regularity of planar infinity-harmonic functions, Math. Res. Lett., 19 (2012), 823–835. http://doi.org/10.4310/MRL.2012.v19.n4.a7 doi: 10.4310/MRL.2012.v19.n4.a7 |
[28] | Y. Yu, Some properties of the ground state of the infinity Laplacian, Indiana Univ. Math. J., 56 (2007), 947–964. http://doi.org/10.1512/iumj.2007.56.2935 doi: 10.1512/iumj.2007.56.2935 |