Research article Special Issues

The infinity-Laplacian in smooth convex domains and in a square

  • Received: 25 January 2023 Revised: 20 February 2023 Accepted: 20 February 2023 Published: 22 March 2023
  • MSC : 35J65, 35J94, 35P30, 49N60

  • We extend some theorems for the infinity-ground state and for the infinity-potential, known for convex polygons, to other domains in the plane, by applying Alexandroff's method to the curved boundary. A recent explicit solution disproves a conjecture.

    Citation: Karl K. Brustad, Erik Lindgren, Peter Lindqvist. The infinity-Laplacian in smooth convex domains and in a square[J]. Mathematics in Engineering, 2023, 5(4): 1-16. doi: 10.3934/mine.2023080

    Related Papers:

  • We extend some theorems for the infinity-ground state and for the infinity-potential, known for convex polygons, to other domains in the plane, by applying Alexandroff's method to the curved boundary. A recent explicit solution disproves a conjecture.



    加载中


    [1] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551–561. http://doi.org/10.1007/BF02591928 doi: 10.1007/BF02591928
    [2] G. Aronsson, On the partial differential equation $u_x^2u_xx + 2 u_xu_y u_xy + u_y^2u_yy = 0$, Ark. Mat., 7 (1968), 397–425. http://doi.org/10.1007/BF02590989 doi: 10.1007/BF02590989
    [3] T. Bhattacharya, E. DiBenedetto, J. Manfredi, Limits as $p \to \infty$ of $\Delta_{p} u = f$ and related extremal problems, Rend. Semin. Mat., Univ. Politec. Torino, 47 (1989), 15–68.
    [4] F. Bozorgnia, L. Bungert, D. Tenbrinck, The infinity Laplacian eigenvalue problem: reformulation and a numerical scheme, arXiv: 2004.08127.
    [5] K. K. Brustad, The infinity-potential in the square, arXiv: 2210.03447v2.
    [6] L. Caffarelli, A. Friedman, G. Pozzi, Reflection methods in the elastic-plastic torsion problem, Indiana Univ. Math. J., 29 (1980), 205–228. http://doi.org/10.1512/iumj.1980.29.29014 doi: 10.1512/iumj.1980.29.29014
    [7] M. G. Crandall, H. Ishii, P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1–67. http://doi.org/10.1090/S0273-0979-1992-00266-5 doi: 10.1090/S0273-0979-1992-00266-5
    [8] L. C. Evans, O. Savin, $C^{1, \alpha}$ Regularity for infinity harmonic functions in two dimensions, Calc. Var., 32 (2008), 325–347. https://doi.org/10.1007/s00526-007-0143-4 doi: 10.1007/s00526-007-0143-4
    [9] D. Gilbarg, N. S. Trudinger. Elliptic partial differential equations of second order, 2 Eds., Berlin: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0
    [10] R. Hynd, C. K. Smart, Y. Yu, Nonuniqueness of infinity ground states, Calc. Var., 48 (2013), 545–554. http://doi.org/10.1007/s00526-012-0561-9 doi: 10.1007/s00526-012-0561-9
    [11] U. Janfalk, Behaviour in the limit, as $p \to \infty$, of minimizers of functionals involving $p$-Dirichlet integrals, SIAM J. Math. Anal., 27 (1996), 341–360. http://doi.org/10.1137/S0036141093252619 doi: 10.1137/S0036141093252619
    [12] R. Jensen, Uniqueness of Lipschitz extension minimizing the sup-norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51–74. http://doi.org/10.1007/BF00386368 doi: 10.1007/BF00386368
    [13] P. Juutinen, P. Lindqvist, J. Manfredi, The $\infty$-eigenvalue problem, Arch. Rational Mech. Anal., 148 (1999), 89–105. http://doi.org/10.1007/s002050050157 doi: 10.1007/s002050050157
    [14] P. Juutinen, P. Lindqvist, J. Manfredi, The infinity-Laplacian: examples and observations, In: Papers on analysis: A volume dedicated to Olli Martio on the occasion of his 60th birthday, University of Jyväskylä: Report. Univ. Jyväskylä, 2001,207–217.
    [15] B. Kawohl, On the location of maxima of the gradient for solutions to quasilinear elliptic problems and a problem raised by Saint Venant, J. Elasticity, 17 (1987), 195–206. http://doi.org/10.1007/BF00049452 doi: 10.1007/BF00049452
    [16] H. Koch, Y. Zhang, Y. Zhou, An asymptotic sharp Sobolev regularity for planar infinity harmonic functions, J. Math. Pure. Appl. (9), 132 (2019), 457–482. http://doi.org/10.1016/j.matpur.2019.02.008 doi: 10.1016/j.matpur.2019.02.008
    [17] S. Koike, A Beginner's guide to the theory of viscosity solutions, Tokyo: Mathematical Society of Japan, 2004. http://doi.org/10.2969/msjmemoirs/013020000
    [18] J. L. Lewis, Capacitary functions in convex rings, Arch. Rational Mech. Anal., 66 (1977), 201–224. http://doi.org/10.1007/BF00250671 doi: 10.1007/BF00250671
    [19] E. Lindgren, P. Lindqvist, Infinity-harmonic potentials and their streamlines, Discrete Cont. Dyn. Syst. A, 39 (2019), 4731–4746. http://doi.org/10.3934/dcds.2019192 doi: 10.3934/dcds.2019192
    [20] E. Lindgren, P. Lindqvist, The gradient flow of infinity-harmonic potentials, Adv. Math., 378 (2021), 107526. http://doi.org/10.1016/j.aim.2020.107526 doi: 10.1016/j.aim.2020.107526
    [21] E. Lindgren, P. Lindqvist, On $\infty$ - Ground States in the plane, arXiv: 2102.08869.
    [22] P. Lindqvist, On the equation $\mathrm{div}(|\nabla u|^{p-2}\nabla u) + \lambda|u|^{p-2}u = 0$, Proc. Amer. Math. Soc., 109 (1990), 157–164. https://doi.org/10.1090/S0002-9939-1990-1007505-7 doi: 10.1090/S0002-9939-1990-1007505-7
    [23] Y. Peres, O. Schramm, S. Sheffield, D. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167–210. https://doi.org/10.1090/S0894-0347-08-00606-1 doi: 10.1090/S0894-0347-08-00606-1
    [24] O. Savin, $C^1$ Regularity for infinity harmonic functions in two dimensions, Arch. Rational Mech. Anal., 176 (2005), 351–361. http://doi.org/10.1007/s00205-005-0355-8 doi: 10.1007/s00205-005-0355-8
    [25] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304–318. http://doi.org/10.1007/BF00250468 doi: 10.1007/BF00250468
    [26] R. Sperb, Maximum principles and their applications, New York: Academic Press, 1981.
    [27] C. Wang, Y. Yu, $C^1$-Boundary regularity of planar infinity-harmonic functions, Math. Res. Lett., 19 (2012), 823–835. http://doi.org/10.4310/MRL.2012.v19.n4.a7 doi: 10.4310/MRL.2012.v19.n4.a7
    [28] Y. Yu, Some properties of the ground state of the infinity Laplacian, Indiana Univ. Math. J., 56 (2007), 947–964. http://doi.org/10.1512/iumj.2007.56.2935 doi: 10.1512/iumj.2007.56.2935
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1133) PDF downloads(119) Cited by(2)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog