Citation: Xiao-Wei Ye, Xiao-Peng Zhang, Feng Liu. CSB modulates the competition between HIF-1 and p53 upon hypoxia[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5274-5262. doi: 10.3934/mbe.2019262
[1] | G. L. Semenza, Hypoxia-inducible factors in physiology and medicine, Cell, 148(2012), 399–408. |
[2] | C. J. Schofield and P. J. Ratcliffe, Oxygen sensing by HIF hydroxylases, Nat. Rev. Mol. Cell Biol., 5 (2004), 343–354. |
[3] | M. Ivan, K. Kondo, H. F. Yang, et al., HIF targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing, Science, 292 (2001), 464–468. |
[4] | D. Lando, D. J. Peet, J. J. Gorman, et al., FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor, Genes Dev., 16 (2002), 1466–1471. |
[5] | F. Dayan, D. Roux, M. C. Brahimi-Horn, et al., The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-alpha, Cancer Res., 66 (2006), 3688–3698. |
[6] | K. T. Bieging, S. S. Mello and L. D. Attardi, Unravelling mechanisms of p53-mediated tumour suppression, Nat. Rev. Cancer, 14 (2014), 359–370. |
[7] | X.-P. Zhang, F. Liu, Z. Cheng, et al., Cell fate decision mediated by p53 pulses, Proc. Natl. Acad. Sci. USA, 106 (2009), 12245–12250. |
[8] | X.-P. Zhang, F. Liu and W. Wang, Two-phase dynamics of p53 in the DNA damage response, Proc. Natl. Acad. Sci. USA, 108 (2011), 8990–8995. |
[9] | C. H. Zhou, X. P. Zhang, F. Liu, et al., Modeling the interplay between the HIF-1 and p53 pathways in hypoxia, Sci. Rep., 5 (2015), 13834. |
[10] | S. Filippi, P. Latini, M. Frontini, et al., CSB protein is (a direct target of HIF-1 and) a critical mediator of the hypoxic response, EMBO J., 27 (2008), 2545–2556. |
[11] | T. Schmid, J. Zhou, R. Kohl, et al., p300 relieves p53-evoked transcriptional repression of hypoxia-inducible factor-1 (HIF-1), Biochem. J., 380 (2004), 289–295. |
[12] | M. Frontini and L. Proietti-De-Santis, Cockayne syndrome B protein (CSB) linking p53, HIF-1 and p300 to robustness, lifespan, cancer and cell fate decisions, Cell Cycle, 8 (2009), 693–696. |
[13] | R. Vélez-Cruz and J. M. Egly, Cockayne syndrome group B (CSB) protein: At the crossroads of transcriptional networks, Mech. Ageing Dev., 134 (2013), 234–242. |
[14] | W. G. An, M. Kanekal, M. C. Simon, et al., Stabilization of wild-type p53 by hypoxia-inducible factor 1a, Nature, 392 (1998), 405–408. |
[15] | D. Chen, M. Li, J. Luo, et al., Direct interactions between HIF-1α and Mdm2 modulate p53 function, J. Biol. Chem., 278 (2003), 13595–13598. |
[16] | E. M. Hammond, N. C. Denko, M. J. Dorie, et al., Hypoxia links ATR and p53 through replication arrest, Mol. Cell Biol., 22 (2002), 1834–1843. |
[17] | A. Sermeus and C. Michiels, Reciprocal influence of the p53 and the hypoxic pathways, Cell Death Dis., 2 (2011), e164. |
[18] | J. S. Fridman and S. W. Lowe, Control of apoptosis by p53, Oncogene, 22 (2003), 9030–9040. |
[19] | Z. Fábián, C. T. Taylor and L. K. Nguyen, Understanding complexity in the HIF signaling pathway using systems biology and mathematical modeling, J. Mol. Med., 94 (2016), 377–390. |
[20] | A. A. Qutub and A. S. Popel, A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1α, J. Cell Sci., 119 (2006), 3467–3480. |
[21] | L. K. Nguyen, M. A. S. Cavadas, C. C. Scholz, et al., A dynamic model of the hypoxia-inducible factor 1α (HIF-1α) network, J. Cell Sci., 126 (2013), 1454–1463. |
[22] | J. Bagnall, J. Leedale, S. E. Taylor, et al., Tight control of hypoxia-inducible factor-α transient dynamics is essential for cell survival in hypoxia, J. Biol. Chem., 289 (2014), 5549–5564. |
[23] | P. Koivunen, M. Hirsilä, V. Günzler, et al., Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases, J. Biol. Chem., 279 (2004), 9899–9904. |
[24] | Y. Tian, K. K. Yeoh, M. K. Lee, et al., Differential sensitivity of HIF hydroxylation sites to hypoxia and hydroxylase inhibitors, J. Biol. Chem., 286 (2011), 13041–13051. |
[25] | R. Ravi, B. Mookerjee, Z. M. Bhujwalla, et al., Regulation of tumor angiogenesis by p53-induced ubiquitin-mediated degradation of hypoxia-inducible factor-1α, Genes Dev., 14 (2000), 34–44. |
[26] | S. J. Lee, C. J. Lim, J. K. Min, et al., Protein phosphatase 1 nuclear targeting subunit is a hypoxia inducible gene: its role in post-translational modification of p53 and MDM2, Cell Death. Differ., 14 (2007), 1106–1116. |
[27] | G. L. Semenza, P. H. Roth, H. M. Fang, et al., Transcriptional regulation of genes encoding glycolytic-enzymes by hypoxia-inducible factor-1, J. Biol. Chem., 269 (1994), 23757–23763. |
[28] | J. A. Forsythe, B. H. Jiang, N. V. Iyer, et al., Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1, Mol. Cell Biol., 16 (1996), 4604–4613. |
[29] | S. Z. Liu, B. Shiotani, M. Lahiri, et al., ATR autophosphorylation as a molecular switch for checkpoint activation, Mol. Cell, 43 (2011), 192–202. |
[30] | B. D. Manning and L. C. Cantley, AKT/PKB signaling: Navigating downstream, Cell, 129 (2007), 1261–1274. |
[31] | A. J. Levine and M. Oren, The first 30 years of p53: growing ever more complex, Nat. Rev. Cancer, 9 (2009), 749–758. |
[32] | Y. Yu, G. Wang, R. Simha, et al., Pathway switching explains the sharp response characteristic of hypoxia response network, PLoS Comput. Biol., 3 (2007), e171. |
[33] | R. L. Weinberg, D. B. Veprintsev, M. Bycroft, et al., Comparative binding of p53 to its promoter and DNA recognition elements, J. Mol. Biol., 348 (2005), 589–596. |
[34] | M. Y. Koh and G. Powis, Passing the baton: the HIF switch, Trends Biochem. Sci., 37 (2012), 364–372. |
[35] | M. Caputo, M. Frontini, R. Velez-Cruz, et al., The CSB repair factor is overexpressed in cancer cells, increases apoptotic resistance, and promotes tumor growth, DNA Rep., 12 (2013), 293–299. |
[36] | J. A. Bertout, S. A. Patel and M. C. Simon, The impact of O2 availability on human cancer, Nat. Rev. Cancer, 8 (2008), 967–975. |
[37] | Y. M. Lee, J. H. Lim, Y. S. Chun, et al., Nutlin-3, an Hdm2 antagonist, inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated inactivation of HIF-1α, Carcinogenesis, 30 (2009), 1768–1775. |
[38] | S. Bhattacharya, C. L. Michels, M. K. Leung, et al., Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1, Genes Dev., 13 (1999), 64–75. |
[39] | D. H. Shin, S. H. Li, Y. S. Chun, et al., CITED2 mediates the paradoxical responses of HIF-1α to proteasome inhibition, Oncogene, 27 (2008), 1939–1944. |
[40] | K. Mattes, G. Berger, M. Geugien, et al., CITED2 affects leukemic cell survival by interfering with p53 activation, Cell Death Dis., 8 (2017), e3132. |