Research article Special Issues

On the number of integers which form perfect powers in the way of $ x(y_1^2+y_2^2+y_3^2+y_4^2) = z^k $

  • Received: 11 January 2024 Revised: 22 February 2024 Accepted: 26 February 2024 Published: 29 February 2024
  • MSC : 11D45, 11N37

  • Let $ k \geqslant 2 $ be an integer. We studied the number of integers which form perfect $ k $-th powers in the way of

    $ x(y_1^2+y_2^2+y_3^2+y_4^2) = z^k. $

    For $ k \geqslant4 $, we established a unified asymptotic formula with a power-saving error term for the number of such integers of bounded size under Lindelöf hypothesis, and we also gave an unconditional result for $ k = 2 $.

    Citation: Tingting Wen. On the number of integers which form perfect powers in the way of $ x(y_1^2+y_2^2+y_3^2+y_4^2) = z^k $[J]. AIMS Mathematics, 2024, 9(4): 8732-8748. doi: 10.3934/math.2024423

    Related Papers:

  • Let $ k \geqslant 2 $ be an integer. We studied the number of integers which form perfect $ k $-th powers in the way of

    $ x(y_1^2+y_2^2+y_3^2+y_4^2) = z^k. $

    For $ k \geqslant4 $, we established a unified asymptotic formula with a power-saving error term for the number of such integers of bounded size under Lindelöf hypothesis, and we also gave an unconditional result for $ k = 2 $.



    加载中


    [1] D. I. Tolev, On the number of pairs of positive integers $x_1, x_2 \leqslant H$ such that $x_1x_2$ is a $k$-th power, Pacific J. Math., 249 (2011), 495–507. https://doi.org/10.2140/pjm.2011.249.495 doi: 10.2140/pjm.2011.249.495
    [2] D. R. Heath-Brown, B. Z. Moroz, The density of rational points on the cubic surface $X_0^3 = X_1X_2X_3$, Math. Proc. Cambridge Philos. Soc., 125 (1999), 385–395. https://doi.org/10.1017/S0305004198003089 doi: 10.1017/S0305004198003089
    [3] R. de la Bretèche, P. Kurlberg, I. E. Shparlinski, On the number of products which form perfect powers and discriminants of multiquadratic extensions, Int. Math. Res. Not., 22 (2021), 17140–17169. https://doi.org/10.1093/imrn/rnz316 doi: 10.1093/imrn/rnz316
    [4] K. Liu, W. Niu, Counting pairs of polynomials whose product is a cube, J. Number Theory, 256 (2024), 170–194. https://doi.org/10.1016/j.jnt.2023.09.009 doi: 10.1016/j.jnt.2023.09.009
    [5] R. de la Bretèche, Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière, Astérisque, 1998, 51–77. https://doi.org/10.24033/ast.410
    [6] É. Fouvry, Sur la hauteur des points d'une certaine surface cubique singulière, Astérisque, 1998, 31–49. https://doi.org/10.24033/ast.409
    [7] P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Astérisque, 1998, 91–258. https://doi.org/10.24033/ast.412
    [8] R. de la Bretèche, K. Destagnol, J. Liu, J. Wu, Y. Zhao, On a certain non-split cubic surface, Sci. China Math., 62 (2019), 2435–2446. https://doi.org/10.1007/s11425-018-9543-8 doi: 10.1007/s11425-018-9543-8
    [9] J. Liu, J. Wu, Y. Zhao, Manin's conjecture for a class of singular cubic hypersurfaces, Int. Math. Res. Not., 2019 (2019), 2008–2043. https://doi.org/10.1093/imrn/rnx179 doi: 10.1093/imrn/rnx179
    [10] W. Zhai, Manin's conjecture for a class of singular cubic hypersurfaces, Front. Math., 17 (2022), 1089–1132. https://doi.org/10.1007/s11464-021-0945-2 doi: 10.1007/s11464-021-0945-2
    [11] J. Liu, J. Wu, Y. Zhao, On a senary quartic form, Period. Math. Hungar., 80 (2020), 237–248. https://doi.org/10.1007/s10998-019-00308-y doi: 10.1007/s10998-019-00308-y
    [12] T. Wen, On the number of rational points on a class of singular hypersurfaces, Period. Math. Hungar., 86 (2023), 621–636. https://doi.org/10.1007/s10998-022-00495-1 doi: 10.1007/s10998-022-00495-1
    [13] G. Tenenbaum, Introduction to analytic and probabilistic number theory, 3 Eds., American Mathematical Society, 2015. https://doi.org/10.1090/gsm/163
    [14] A. Ivić, The Riemann zeta-function: the theory of Riemann zeta-function with applications, New York: John Wiley & Sons, Inc., 1985.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(629) PDF downloads(86) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog