Let $ k \geqslant 2 $ be an integer. We studied the number of integers which form perfect $ k $-th powers in the way of
$ x(y_1^2+y_2^2+y_3^2+y_4^2) = z^k. $
For $ k \geqslant4 $, we established a unified asymptotic formula with a power-saving error term for the number of such integers of bounded size under Lindelöf hypothesis, and we also gave an unconditional result for $ k = 2 $.
Citation: Tingting Wen. On the number of integers which form perfect powers in the way of $ x(y_1^2+y_2^2+y_3^2+y_4^2) = z^k $[J]. AIMS Mathematics, 2024, 9(4): 8732-8748. doi: 10.3934/math.2024423
Let $ k \geqslant 2 $ be an integer. We studied the number of integers which form perfect $ k $-th powers in the way of
$ x(y_1^2+y_2^2+y_3^2+y_4^2) = z^k. $
For $ k \geqslant4 $, we established a unified asymptotic formula with a power-saving error term for the number of such integers of bounded size under Lindelöf hypothesis, and we also gave an unconditional result for $ k = 2 $.
[1] | D. I. Tolev, On the number of pairs of positive integers $x_1, x_2 \leqslant H$ such that $x_1x_2$ is a $k$-th power, Pacific J. Math., 249 (2011), 495–507. https://doi.org/10.2140/pjm.2011.249.495 doi: 10.2140/pjm.2011.249.495 |
[2] | D. R. Heath-Brown, B. Z. Moroz, The density of rational points on the cubic surface $X_0^3 = X_1X_2X_3$, Math. Proc. Cambridge Philos. Soc., 125 (1999), 385–395. https://doi.org/10.1017/S0305004198003089 doi: 10.1017/S0305004198003089 |
[3] | R. de la Bretèche, P. Kurlberg, I. E. Shparlinski, On the number of products which form perfect powers and discriminants of multiquadratic extensions, Int. Math. Res. Not., 22 (2021), 17140–17169. https://doi.org/10.1093/imrn/rnz316 doi: 10.1093/imrn/rnz316 |
[4] | K. Liu, W. Niu, Counting pairs of polynomials whose product is a cube, J. Number Theory, 256 (2024), 170–194. https://doi.org/10.1016/j.jnt.2023.09.009 doi: 10.1016/j.jnt.2023.09.009 |
[5] | R. de la Bretèche, Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière, Astérisque, 1998, 51–77. https://doi.org/10.24033/ast.410 |
[6] | É. Fouvry, Sur la hauteur des points d'une certaine surface cubique singulière, Astérisque, 1998, 31–49. https://doi.org/10.24033/ast.409 |
[7] | P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Astérisque, 1998, 91–258. https://doi.org/10.24033/ast.412 |
[8] | R. de la Bretèche, K. Destagnol, J. Liu, J. Wu, Y. Zhao, On a certain non-split cubic surface, Sci. China Math., 62 (2019), 2435–2446. https://doi.org/10.1007/s11425-018-9543-8 doi: 10.1007/s11425-018-9543-8 |
[9] | J. Liu, J. Wu, Y. Zhao, Manin's conjecture for a class of singular cubic hypersurfaces, Int. Math. Res. Not., 2019 (2019), 2008–2043. https://doi.org/10.1093/imrn/rnx179 doi: 10.1093/imrn/rnx179 |
[10] | W. Zhai, Manin's conjecture for a class of singular cubic hypersurfaces, Front. Math., 17 (2022), 1089–1132. https://doi.org/10.1007/s11464-021-0945-2 doi: 10.1007/s11464-021-0945-2 |
[11] | J. Liu, J. Wu, Y. Zhao, On a senary quartic form, Period. Math. Hungar., 80 (2020), 237–248. https://doi.org/10.1007/s10998-019-00308-y doi: 10.1007/s10998-019-00308-y |
[12] | T. Wen, On the number of rational points on a class of singular hypersurfaces, Period. Math. Hungar., 86 (2023), 621–636. https://doi.org/10.1007/s10998-022-00495-1 doi: 10.1007/s10998-022-00495-1 |
[13] | G. Tenenbaum, Introduction to analytic and probabilistic number theory, 3 Eds., American Mathematical Society, 2015. https://doi.org/10.1090/gsm/163 |
[14] | A. Ivić, The Riemann zeta-function: the theory of Riemann zeta-function with applications, New York: John Wiley & Sons, Inc., 1985. |