Let d3(n) denote the 3-th divisor function. In this paper, we study the asymptotic formula of the sum
∑1⩽n1,n2⩽X121⩽n3⩽X1kd3(n21+n22+nk3)
with n1,n2,n3∈Z+ and k⩾3 be an integer. Previously only the case of k=2 is studied.
Citation: Li Zhou, Liqun Hu. Sum of the triple divisor function of mixed powers[J]. AIMS Mathematics, 2022, 7(7): 12885-12896. doi: 10.3934/math.2022713
[1] | Boran Kim . Locally recoverable codes in Hermitian function fields with certain types of divisors. AIMS Mathematics, 2022, 7(6): 9656-9667. doi: 10.3934/math.2022537 |
[2] | Zhen Guo . On mean square of the error term of a multivariable divisor function. AIMS Mathematics, 2024, 9(10): 29197-29219. doi: 10.3934/math.20241415 |
[3] | Huimin Wang, Liqun Hu . Sums of the higher divisor function of diagonal homogeneous forms in short intervals. AIMS Mathematics, 2023, 8(10): 22577-22592. doi: 10.3934/math.20231150 |
[4] | Bhabesh Das, Helen K. Saikia . On the Sum of Unitary Divisors Maximum Function. AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96 |
[5] | Fei Hou, Bin Chen . Triple correlation sums of coefficients of $ \theta $-series. AIMS Mathematics, 2023, 8(10): 25275-25287. doi: 10.3934/math.20231289 |
[6] | Long Chen, Shaofang Hong . Divisibility among determinants of power matrices associated with integer-valued arithmetic functions. AIMS Mathematics, 2020, 5(3): 1946-1959. doi: 10.3934/math.2020130 |
[7] | He Yanqin, Zhu Chaoxi, Chen Zhuoyu . A sum analogous to Kloosterman sum and its fourth power mean. AIMS Mathematics, 2020, 5(3): 2569-2576. doi: 10.3934/math.2020168 |
[8] | Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937 |
[9] | Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638 |
[10] | Junfeng Cui, Li Wang . The generalized Kloosterman's sums and its fourth power mean. AIMS Mathematics, 2023, 8(11): 26590-26599. doi: 10.3934/math.20231359 |
Let d3(n) denote the 3-th divisor function. In this paper, we study the asymptotic formula of the sum
∑1⩽n1,n2⩽X121⩽n3⩽X1kd3(n21+n22+nk3)
with n1,n2,n3∈Z+ and k⩾3 be an integer. Previously only the case of k=2 is studied.
Let X>1 be a large integer and dt(n) denote the t-th divisor function. For t=2, we denote d(n):=d2(n). In 2012, Guo and Zhai [3] considered the asymptotic formula of the sum
∑1⩽n1,n2,n3⩽X12d(n21+n22+n23)=c1X32(logX)2+c2X32+O(X43+ϵ), |
where c1 and c2 are constants. The error term was refined to O(Xlog7X) by Zhao [10]. Later, Hu [4] considered the case of n21+n22+n23+n24. In 2016, Lü and Mu [7] considered the asymptotic formula of the sum
∑1⩽n1,n2⩽X121⩽n3⩽X1kd(n21+n22+nk3)=c3X1+1klogX+c4X1+1k+O(X1+1k−δ(k)+ϵ), |
with k⩾3. Here c3, c4 are constants and
δ(k)={542,k=3,116,k=4,140,k=5,1k2k−1,6⩽k⩽7,12k2(k−1),k⩾8. |
For t=3, recently, Sun and Zhang [8] considered the asymptotic formula of the sum
∑1⩽n1,n2,n3⩽X12d3(n21+n22+n23)=c5X32log2X+c6X32logX+c7X32+O(X32−18+ϵ). |
where c5, c6 and c7 are constants. Hu and Yang [5] also considered the case of n21+n22+n23+n24.
In this paper, inspired by Lü and Mu [7], we want to consider the asymptotic formula of the sum
∑1⩽n1,n2⩽X121⩽n3⩽X1kd3(n21+n22+nk3) |
with k⩾3. In order to state our result, let Gk(a,b,q) be the Gauss sum
Gk(a,b,q)=∑xmodqe(axk+bxq). |
and denote G(a,b,q):=G2(a,b,q). For 0⩽j⩽2, define
Aj(q)=q∑b=1e(−abq)cj+1(b,q), |
where a>0 is an integer. The coefficients cj(b,q) are sums of terms of the form
∑b1b2≡b(modq)f(b1) |
for some function f. The number of terms in cj(b,q) depends only on k. More precisely, The coefficients cj(b,q) are given explicitly in [1, (2.13)]. From [2, (4.8)] we can get
Aj(q)≪kq−1. | (1.1) |
For 0⩽i⩽j⩽2, define
S=1j!∞∑q=1∑amodq∗Aj(q)G2(a,0,q)Gk(a,0,q)q3 | (1.2) |
and
I=∫∞−∞(∫30e(−βu)(logu)idu)(∫10e(βv2)dv)2(∫10e(βvk)dv)dβ. | (1.3) |
Our result is the following theorem.
Theorem 1.1. let X>1 and k⩾3 be integers and let d3(n) denote the 3-th divisor function. We have
∑1⩽n1,n2⩽X121⩽n3⩽X1kd3(n21+n22+nk3)=2∑j=0Sj∑i=0CijIX1+1k(logX)j−i+O(X1+1k−δ(k)+ϵ), |
where S are defined in (1.2), I are defined in (1.3), and
δ(k)={115,k=3,1k2k−1,4⩽k⩽7,12k2(k−1),k⩾8. |
To prove our theorem, we use the circle method and some strategies in the work of [7].
Let X>1 and k⩾3 be integers. In order to apply the circle method, we choose the parameters P and Q such that
P=XθandQ=X1−θ, |
where
θ={k+16k+2,3⩽k⩽9,2k+2,k⩾10. |
Obviously, we have Q>X1/2. By Dirichlet's lemma on rational approximations, each α∈[Q−1,1+Q−1] can be written in the form
α=aq+β,|β|⩽1qQ | (2.1) |
for some integers a, q with 1⩽a⩽q⩽Q and (a,q)=1. We denote by M(q,a) the set of α satisfying (2.1) and define the major arcs and the minor arcs as follows.
M=⋃q⩽P⋃1⩽a⩽q(a,q)=1M(q,a),m=[1Q,1+1Q]∖M. |
Let
F(α,X)=∑1⩽n⩽3Xd3(n)e(−nα),Sk(α,X)=∑1⩽m⩽X1ke(mkα). | (2.2) |
Our Theorem 1.1 is a consequence of the following Proposition 2.1. We will give a proof of Proposition 2.1 in Section 3.
Proposition 2.1. Let F(α,X) and Sk(α,X) be defined as in (2.2). For α∈M, we have
∫MS22(α,X)Sk(α,X)F(α,X)dα=2∑j=0Sj∑i=0CijIX1+1k(logX)j−i+O(X1+1k−δ′(k)+ϵ), |
where S and I are defined as in Theorem 1.1 and
δ′(k)={k+12k(3k+1),3⩽k⩽9,2k(k+2),k⩾10. |
Now we can get Theorem 1.1 from Proposition 2.1.
Proof of Theorem 1.1. Applying the circle method, we get
∑1⩽n1,n2⩽X121⩽n3⩽X1kd3(n21+n22+nk3)=1+1Q∫1QS2(α,X)Sk(α,X)F(α,X)dα=∫MS2(α,X)Sk(α,X)F(α,X)dα+∫mS2(α,X)Sk(α,X)F(α,X)dα. |
To estimate the contribution from the minor arcs, we note that each α∈m can be written as (2.1) for P<q⩽Q and 1⩽a⩽q with (q,a)=1. In order to make the error term in the asymptotic formula as small as possible, we consider it in two cases.
In the case of 3⩽k⩽7, for α∈m, by Weyl's inequality we have
Sk(α,X)≪X1k+ϵ(P−1+X−1k+QX−1)12k−1. |
Combining Cauchy's inequality and Hua's inequality, we have
∫mS2(α,X)Sk(α,X)F(α,X)dα≪maxα∈m|Sk(α,X)|(∫10|S2(α,X)|4dα)12(∫10|F(α,X)|2dα)12≪X1+1k+ϵP−2(1−k)+X1+1k(1−2(1−k))+ϵ+X1+1k−2(1−k)+ϵQ2(1−k). | (2.3) |
In the case of k⩾8, for α∈m, we take ([7, Lemma 1.6]) in place of Weyl's inequality and get
Sk(α,X)≪X1k+ϵ(P−1+X−1k+QX−1)12k(k−1). |
Similarly with (2.3), we have
∫mS2(α,X)Sk(α,X)F(α,X)dα≪X1+1k+ϵP−12k(k−1)+X1+1k(1−11−2k(k−1))+ϵ+X1+1k−12k(k−1)+ϵQ12k(k−1). | (2.4) |
From Propositions 2.1, (2.3) and (2.4), Theorem 1.1 follows by taking Q=X1−θ with
θ={k+16k+2,3⩽k⩽9,2k+2,k⩾10. |
For α∈M, we write α=a/q+β, 1⩽a⩽q⩽P and |β|⩽1/(qQ) with (a,q)=1. Then we have
∫MS22(α,X)Sk(α,X)F(α,X)dα=∑q⩽P∑∑∗amodq∫M(q,a)S22(α,X)Sk(α,X)F(α,X)dα=∑q⩽P∫|β|⩽1qQ∑∑∗amodqS22(aq+β,X)Sk(aq+β,X)F(aq+β,X)dβ. | (3.1) |
First we need to estimate F(a/q+β,X).
Lemma 3.1. Suppose that (a,q)=1, q⩽P⩽x1/3 and |β|⩽1/(qQ). We have
F(aq+β,X)=2∑j=0Aj(q)Ij(β)+O(P3+ϵ+Xη+ϵP), |
where η=2/5, Aj(q) are defined in (1.2) and
Ij(β)=∫3X1e(−βu)logjuj!du. | (3.2) |
Proof. This is lemma 3.2 in [2] for k=3 and l=3. Integrating by parts, we have
Ij(β)≪kXϵmin{X,|β|−1}. | (3.3) |
Next we need to estimate S2(a/q+β,X) and Sk(a/q+β,X).
Lemma 3.2. Suppose that (a,q)=1, q⩽P⩽X13 and |β|⩽1/(qQ). We have
S2(aq+β,X)=G(a,0,q)qΨ0(β)+∑−3q/2<b<3q/2G(a,b,q)Ψ(b,q,β),Sk(aq+β,X)=Gk(a,0,q)qΨk(β)+O(q12+ϵ(1+X|β|)12) |
where Gk(a,b,q) are defined as in (1.1), Ψ0(β) and Ψk(β) are the integral
Ψ0(β)=∫X120e(βu2)du,Ψk(β)=∫X1k0e(βuk)du |
and Ψ(b,q,β) satisfies
∑−3q/2<b<3q/2|Ψ(b,q,β|≪log(q+2). | (3.4) |
Proof. The first formula is come from [10, Lemma 4.1]. We can also find the second formula in [9, Theorem 4.1].
From Lemmas 3.1 and 3.2, we have
∑∑∗amodqS2(aq+β,X)Sk(aq+β,X)F(aq+β,X)=3∑i=1Ti(q,β)Sk(aq+β,X)+O((P3+ϵ+Xη+ϵ)∑∑∗amodq|S(aq+β,X)|2|Sk(aq+β,X)|), | (3.5) |
where
Ti(q,β)=2∑j=0∑∑∗amodqAj(q)Ij(β)Ci−12(G(a,0,q)Ψ0(β)q)3−i×(∑−3q/2<b<3q/2G(a,b,q)Ψ(b,q,β))i−1. |
On inserting (3.5) into (3.1), we have
∫MS22(α,X)Sk(α,X)F(α,X)dα=3∑i=1∑q⩽P∫|β|⩽1qQTi(q,β)Sk(aq+β,X)dβ+O((P3+ϵ+Xη+ϵ)∫M|S2(α,X)|2|Sk(α,X)|dα). | (3.6) |
It follows from integration by parts together with trivial bounds that
Ψ0(β)≪(X1+|β|X)12,Ψk(β)≪(X1+|β|X)1k. | (3.7) |
By the definition of T1(q,β) and Lemma 3.2, we have
∑q⩽P∫|β|⩽1qQTi(q,β)Sk(aq+β,X)dβ=∑q⩽P∫|β|⩽1qQT1(q,β)Gk(a,0,q)qΨk(β)dβ+∑q⩽P∫|β|⩽1qQTi(q,β)O(q12+ϵ(1+X|β|)12)dβ=2∑j=0∑q⩽P∑∑∗amodqAj(q)G2(a,0,q)Gk(a,0,q)q3∫|β|⩽1qQIj(β)Ψ20(β)Ψk(β)dβ+2∑j=0∑q⩽P∑∑∗amodqAj(q)G2(a,0,q)q12+ϵq2∫|β|⩽1qQIj(β)Ψ20(β)(1+X|β|)12dβ:=∑1+∑2. |
By Lemma 3.4 in [6] and Theorem 4.2 in [9], we have
G(a,b,q)≪q12,Gk(a,0,q)≪q1−1k. | (3.8) |
To ∑1, we extend the integration over |β|⩽1/(qQ) to (−∞,∞) and the error term is
2∑j=0∑q⩽P∑∑∗amodqAj(q)G2(a,0,q)Gk(a,0,q)q3∫|β|>1qQIj(β)Ψ20(β)Ψk(β)dβ≪∑q⩽Pq−1−1k∫|β|>1qQ|β|−2−1kdβ≪∑q⩽Pq−1−1k(qQ)1+1k≪XQ1k. |
Here we use the upper bounds (1.1), (3.3), (3.7) and (3.8). Thus we have
∑q⩽P∫|β|⩽1qQT1(q,β)Gk(a,0,q)qΨk(β)dβ=2∑j=0∑q⩽P∑∑∗amodqAj(q)G2(a,0,q)Gk(a,0,q)q3∫∞−∞Ij(β)Ψ20(β)Ψk(β)dβ+O(XQ1k). |
Next, we estimate the integral on the right hand side. From the definitions of Ij(β), Ψ0(β) and Ψk(β), we obtain
∫∞−∞Ij(β)Ψ20(β)Ψk(β)dβ=∫∞−∞(∫3X1e(−βu)logjuj!du)(∫X120e(βv2)dv)2(∫X1k0e(βvk)dv)dβ=X1+1kj!∫∞−∞(∫3X1e(−βu)logjudu)(∫10e(βXv2)dv)2(∫10e(βXvk)dv)dβ=X1+1kj!∫∞−∞(∫31Xe(−βu)(log(Xu))jdu)(∫10e(βv2)dv)2(∫10e(βvk)dv)dβ=X1+1kj!∫∞−∞(∫30e(−βu)(log(Xu))jdu)(∫10e(βv2)dv)2(∫10e(βvk)dv)dβ+O(X1k+ϵ). |
Here
X1+1kj!∫∞−∞(∫1X0e(−βu)(log(Xu))jdu)(∫10e(βv2)dv)2(∫10e(βvk)dv)dβ≪X1k+ϵ. |
By (1.1) and (3.8), we have
2∑j=0∑q⩽P∑∑∗amodqAj(q)G2(a,0,q)Gk(a,0,q)q3≪1. |
Then we split log(Xu) and obtain
∑q⩽P∫|β|⩽1qQT1(q,β)Gk(a,0,q)qΨk(β)dβ=2∑j=01j!∑q⩽P∑∑∗amodqAj(q)G2(a,0,q)Gk(a,0,q)q3j∑i=0CijIX1+1k(logX)j−i+O(XQ1k+X1k+ϵ), |
where I are defined as in (1.3). Further, we extend the summation over q⩽P to all positive integers and the estimate of the error term is
2∑j=01j!∑q>P∑∑∗amodqAj(q)G2(a,0,q)Gk(a,0,q)q3j∑i=0CijIX1+1k(logX)j−i≪XQ1k. |
Thus we have
∑1=2∑j=0∑q⩽P∫|β|⩽1qQT1(q,β)Gk(a,0,q)qΨk(β)dβ=2∑j=0Sj∑i=0CijIX1+1k(logX)j−i+O(XQ1k+X1k+ϵ), |
where S and I defined in (1.2) and (1.3).
To ∑2, by (1.1), (3.3), (3.7) and (3.8) we have
∑2≪∑q⩽Pq−12+ϵ∫|β|⩽1qQ|β|−1X(1+X|β|)−12dβ≪X32+ϵQ−12. |
To sum up, we have
∑q⩽P∫|β|⩽1qQTi(q,β)Sk(aq+β,X)dβ=2∑j=0Sj∑i=0CijIX1+1k(logX)j−i+O(XQ1k+X32+ϵQ−12+X1k+ϵ), |
where S and I are defined in (1.2) and (1.3).
Now by the definition of Ti(q,β) and Lemma 3.2, we have
∑q⩽P∫|β|⩽1qQTi(q,β)Sk(a/q+β,X)dβ=Ci−122∑j=0∑q⩽P∑∑∗amodqAj(q)G3−i(a,0,q)Gk(a,0,q)q4−i×∫|β|⩽1qQIj(β)Ψ3−i0(β)Ψk(β)(∑−3q/2<b<3q/2G(a,b,q)Ψ(b,q,β))i−1dβ+Ci−122∑j=0∑q⩽P∑∑∗amodqAj(q)G3−i(a,0,q)q3−i∫|β|⩽1qQIj(β)Ψ3−i0(β)×(∑−3q/2<b<3q/2G(a,b,q)Ψ(b,q,β))i−1O(q12+ϵ(1+X|β|)12)dβ:=∑3+∑4. |
Combining Lemma 3.3 with (1.1), (3.3), (3.4), (3.7) and (3.8), for i=2,3 we have
∑3≪∑q⩽Pq3−i2qi−4q1−1kqi−12X32+1k−i2≪Xi2+12Q1+1k−i. |
For i=2,
∑4≪∑q⩽Pq12q−1q12+ϵq12X12+ϵ≪X2+ϵQ−32−ϵ. |
For i=3,
∑4≪∑q⩽Pq12+ϵqX12(qQ)−12≪X52+ϵQ−52−ϵ. |
By Hua's inequality, the contribution of O-term is bounded by
(P3+ϵ+Xη+ϵP)∫M|S2(α,X)|2|Sk(α,X)|dα≪(P3+ϵ+Xη+ϵP)(∫M|S2(α,X)|4dα)12(∫M|Sk(α,X)|2dα)12≪X12+12kP3+ϵ+X12+12k+η+ϵP=X72+12k+ϵQ−3−ϵ+X32+12k+η+ϵQ−1. |
From above, we have
∫MS22(α,X)Sk(α,X)F(α,X)dα=2∑j=0Sj∑i=0CijIX1+1k(logX)j−i+O(XQ1k+X32+ϵQ−12+X1k+ϵ+X32Q−1+1k+X2Q−2+1k+X2+ϵQ−32−ϵ+X52+ϵQ−52−ϵ+X72+12k+ϵQ−3−ϵ+X32+12k+η+ϵQ−1). |
By taking Q=X1−θ, where
θ={k+16k+2,3⩽k⩽9,2k+2,k⩾10. |
Comparing each item in the error term, we have for 3⩽k⩽9,
∫MF(α,X)S22(α,X)Sk(α,X)dα=2∑j=0Sj∑i=0CijIX1+1k(logX)j−i+O(X1+1k−k+12k(3k+1)+ϵ). |
For k⩾10,
∫MF(α,X)S22(α,X)Sk(α,X)dα=2∑j=0Sj∑i=0CijIX1+1k(logX)j−i+O(X1+1k−2k(k+2)+ϵ). |
Then we finish the proof of Proposition 2.1.
This work is supported by Natural Science Foundation of China (Grant Nos. 11761048), Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars (Grant Nos. 20212ACB211007), Social Science Planning Project of Jiangxi Province of 2020 Annual (Grant Nos. 20JY06), Tender subject for key research base of Humanities and Social Sciences in Colleges and universities in Jiangxi Province (Grant Nos. JD20109), Culture and Art Science Planning Project of Jiangxi Province of 2020 Annual (Grant Nos. YG2020129) and Basic education research project of Jiangxi Province (Grant Nos. SZUNDSX2019-984). The authors would like to express their thanks to the referee for many useful suggestions and comments on the manuscript.
The authors declare there is no conflict of interests.
[1] | C. E. Chace, The divisor problem for arithmetic progressions with small modulus, Acta Arith., 61 (1992), 35–50. |
[2] |
C. E. Chace, Writing integers as sums of products, Trans. Am. Math. Soc., 345 (1994), 367–379. https://doi.org/10.1090/S0002-9947-1994-1257641-3 doi: 10.1090/S0002-9947-1994-1257641-3
![]() |
[3] | R. T. Guo, W. G. Zhai, Some problems about the ternary quadratic form m21+m22+m23, Acta Arith., bf 156 (2012), 101–121. |
[4] |
L. Q. Hu, An asymptotic formula related to the divisors of the quaternary quadratic form, Acta Arith., 166 (2014), 129–140. https://doi.org/10.4064/aa166-2-2 doi: 10.4064/aa166-2-2
![]() |
[5] |
L. Q. Hu and L. Yang, Sums of the triple divisor function over values of a quaternary quadratic form, Acta Arith., 183 (2018), 63–85. https://doi.org/10.4064/aa170120-20-10 doi: 10.4064/aa170120-20-10
![]() |
[6] | L. K. Hua, Introduction to Number Theory, Science Press, Beijing, 1957 (in Chinese). |
[7] | X. D. Lü, Q. W. Mu, The Sum of Divisors of Mixed Powers, Advances in Mathematics (in China), 45 (2016), 357–364. |
[8] | Q. F. Sun, D. Y. Zhang, Sums of the triple divisor function over values of a ternary quadratic form, J. Number Theory, 168 (2016), 215–246. |
[9] | R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math., vol. 125, Cambridge University, Cambridge, 1997. |
[10] |
L. L. Zhao, The sum of divisors of a quadratic form, Acta Arith., 163 (2014), 161–177. https://doi.org/10.4064/aa163-2-6 doi: 10.4064/aa163-2-6
![]() |
1. | Himanshi Chanana, Saurabh Kumar Singh, Sum of the GL(3) Fourier coefficients over mixed powers, 2025, 21, 1793-0421, 531, 10.1142/S1793042125500265 |