Research article

Sum of the triple divisor function of mixed powers

  • Received: 05 January 2022 Revised: 17 April 2022 Accepted: 27 April 2022 Published: 05 May 2022
  • MSC : 11P32, 11P05, 11P55

  • Let $ d_3(n) $ denote the 3-th divisor function. In this paper, we study the asymptotic formula of the sum

    $ \sum\limits_{\substack{1 \leqslant n_1,n_2 \leqslant X^{\frac{1}{2}} \\ 1 \leqslant n_3 \leqslant X^{\frac{1}{k}}}} d_3(n_1^2+n_2^2+n_3^k) $

    with $ n_1, n_2, n_3\in \mathbb{Z}^+ $ and $ k \geqslant 3 $ be an integer. Previously only the case of $ k=2 $ is studied.

    Citation: Li Zhou, Liqun Hu. Sum of the triple divisor function of mixed powers[J]. AIMS Mathematics, 2022, 7(7): 12885-12896. doi: 10.3934/math.2022713

    Related Papers:

  • Let $ d_3(n) $ denote the 3-th divisor function. In this paper, we study the asymptotic formula of the sum

    $ \sum\limits_{\substack{1 \leqslant n_1,n_2 \leqslant X^{\frac{1}{2}} \\ 1 \leqslant n_3 \leqslant X^{\frac{1}{k}}}} d_3(n_1^2+n_2^2+n_3^k) $

    with $ n_1, n_2, n_3\in \mathbb{Z}^+ $ and $ k \geqslant 3 $ be an integer. Previously only the case of $ k=2 $ is studied.



    加载中


    [1] C. E. Chace, The divisor problem for arithmetic progressions with small modulus, Acta Arith., 61 (1992), 35–50.
    [2] C. E. Chace, Writing integers as sums of products, Trans. Am. Math. Soc., 345 (1994), 367–379. https://doi.org/10.1090/S0002-9947-1994-1257641-3 doi: 10.1090/S0002-9947-1994-1257641-3
    [3] R. T. Guo, W. G. Zhai, Some problems about the ternary quadratic form $m_1^2 +m_2^2 +m_3^2$, Acta Arith., bf 156 (2012), 101–121.
    [4] L. Q. Hu, An asymptotic formula related to the divisors of the quaternary quadratic form, Acta Arith., 166 (2014), 129–140. https://doi.org/10.4064/aa166-2-2 doi: 10.4064/aa166-2-2
    [5] L. Q. Hu and L. Yang, Sums of the triple divisor function over values of a quaternary quadratic form, Acta Arith., 183 (2018), 63–85. https://doi.org/10.4064/aa170120-20-10 doi: 10.4064/aa170120-20-10
    [6] L. K. Hua, Introduction to Number Theory, Science Press, Beijing, 1957 (in Chinese).
    [7] X. D. Lü, Q. W. Mu, The Sum of Divisors of Mixed Powers, Advances in Mathematics (in China), 45 (2016), 357–364.
    [8] Q. F. Sun, D. Y. Zhang, Sums of the triple divisor function over values of a ternary quadratic form, J. Number Theory, 168 (2016), 215–246.
    [9] R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math., vol. 125, Cambridge University, Cambridge, 1997.
    [10] L. L. Zhao, The sum of divisors of a quadratic form, Acta Arith., 163 (2014), 161–177. https://doi.org/10.4064/aa163-2-6 doi: 10.4064/aa163-2-6
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1511) PDF downloads(74) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog