Loading [MathJax]/jax/output/SVG/jax.js
Research article

Sum of the triple divisor function of mixed powers

  • Received: 05 January 2022 Revised: 17 April 2022 Accepted: 27 April 2022 Published: 05 May 2022
  • MSC : 11P32, 11P05, 11P55

  • Let d3(n) denote the 3-th divisor function. In this paper, we study the asymptotic formula of the sum

    1n1,n2X121n3X1kd3(n21+n22+nk3)

    with n1,n2,n3Z+ and k3 be an integer. Previously only the case of k=2 is studied.

    Citation: Li Zhou, Liqun Hu. Sum of the triple divisor function of mixed powers[J]. AIMS Mathematics, 2022, 7(7): 12885-12896. doi: 10.3934/math.2022713

    Related Papers:

    [1] Boran Kim . Locally recoverable codes in Hermitian function fields with certain types of divisors. AIMS Mathematics, 2022, 7(6): 9656-9667. doi: 10.3934/math.2022537
    [2] Zhen Guo . On mean square of the error term of a multivariable divisor function. AIMS Mathematics, 2024, 9(10): 29197-29219. doi: 10.3934/math.20241415
    [3] Huimin Wang, Liqun Hu . Sums of the higher divisor function of diagonal homogeneous forms in short intervals. AIMS Mathematics, 2023, 8(10): 22577-22592. doi: 10.3934/math.20231150
    [4] Bhabesh Das, Helen K. Saikia . On the Sum of Unitary Divisors Maximum Function. AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96
    [5] Fei Hou, Bin Chen . Triple correlation sums of coefficients of $ \theta $-series. AIMS Mathematics, 2023, 8(10): 25275-25287. doi: 10.3934/math.20231289
    [6] Long Chen, Shaofang Hong . Divisibility among determinants of power matrices associated with integer-valued arithmetic functions. AIMS Mathematics, 2020, 5(3): 1946-1959. doi: 10.3934/math.2020130
    [7] He Yanqin, Zhu Chaoxi, Chen Zhuoyu . A sum analogous to Kloosterman sum and its fourth power mean. AIMS Mathematics, 2020, 5(3): 2569-2576. doi: 10.3934/math.2020168
    [8] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [9] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [10] Junfeng Cui, Li Wang . The generalized Kloosterman's sums and its fourth power mean. AIMS Mathematics, 2023, 8(11): 26590-26599. doi: 10.3934/math.20231359
  • Let d3(n) denote the 3-th divisor function. In this paper, we study the asymptotic formula of the sum

    1n1,n2X121n3X1kd3(n21+n22+nk3)

    with n1,n2,n3Z+ and k3 be an integer. Previously only the case of k=2 is studied.



    Let X>1 be a large integer and dt(n) denote the t-th divisor function. For t=2, we denote d(n):=d2(n). In 2012, Guo and Zhai [3] considered the asymptotic formula of the sum

    1n1,n2,n3X12d(n21+n22+n23)=c1X32(logX)2+c2X32+O(X43+ϵ),

    where c1 and c2 are constants. The error term was refined to O(Xlog7X) by Zhao [10]. Later, Hu [4] considered the case of n21+n22+n23+n24. In 2016, Lü and Mu [7] considered the asymptotic formula of the sum

    1n1,n2X121n3X1kd(n21+n22+nk3)=c3X1+1klogX+c4X1+1k+O(X1+1kδ(k)+ϵ),

    with k3. Here c3, c4 are constants and

    δ(k)={542,k=3,116,k=4,140,k=5,1k2k1,6k7,12k2(k1),k8.

    For t=3, recently, Sun and Zhang [8] considered the asymptotic formula of the sum

    1n1,n2,n3X12d3(n21+n22+n23)=c5X32log2X+c6X32logX+c7X32+O(X3218+ϵ).

    where c5, c6 and c7 are constants. Hu and Yang [5] also considered the case of n21+n22+n23+n24.

    In this paper, inspired by Lü and Mu [7], we want to consider the asymptotic formula of the sum

    1n1,n2X121n3X1kd3(n21+n22+nk3)

    with k3. In order to state our result, let Gk(a,b,q) be the Gauss sum

    Gk(a,b,q)=xmodqe(axk+bxq).

    and denote G(a,b,q):=G2(a,b,q). For 0j2, define

    Aj(q)=qb=1e(abq)cj+1(b,q),

    where a>0 is an integer. The coefficients cj(b,q) are sums of terms of the form

    b1b2b(modq)f(b1)

    for some function f. The number of terms in cj(b,q) depends only on k. More precisely, The coefficients cj(b,q) are given explicitly in [1, (2.13)]. From [2, (4.8)] we can get

    Aj(q)kq1. (1.1)

    For 0ij2, define

    S=1j!q=1amodqAj(q)G2(a,0,q)Gk(a,0,q)q3 (1.2)

    and

    I=(30e(βu)(logu)idu)(10e(βv2)dv)2(10e(βvk)dv)dβ. (1.3)

    Our result is the following theorem.

    Theorem 1.1. let X>1 and k3 be integers and let d3(n) denote the 3-th divisor function. We have

    1n1,n2X121n3X1kd3(n21+n22+nk3)=2j=0Sji=0CijIX1+1k(logX)ji+O(X1+1kδ(k)+ϵ),

    where S are defined in (1.2), I are defined in (1.3), and

    δ(k)={115,k=3,1k2k1,4k7,12k2(k1),k8.

    To prove our theorem, we use the circle method and some strategies in the work of [7].

    Let X>1 and k3 be integers. In order to apply the circle method, we choose the parameters P and Q such that

    P=XθandQ=X1θ,

    where

    θ={k+16k+2,3k9,2k+2,k10.

    Obviously, we have Q>X1/2. By Dirichlet's lemma on rational approximations, each α[Q1,1+Q1] can be written in the form

    α=aq+β,|β|1qQ (2.1)

    for some integers a, q with 1aqQ and (a,q)=1. We denote by M(q,a) the set of α satisfying (2.1) and define the major arcs and the minor arcs as follows.

    M=qP1aq(a,q)=1M(q,a),m=[1Q,1+1Q]M.

    Let

    F(α,X)=1n3Xd3(n)e(nα),Sk(α,X)=1mX1ke(mkα). (2.2)

    Our Theorem 1.1 is a consequence of the following Proposition 2.1. We will give a proof of Proposition 2.1 in Section 3.

    Proposition 2.1. Let F(α,X) and Sk(α,X) be defined as in (2.2). For αM, we have

    MS22(α,X)Sk(α,X)F(α,X)dα=2j=0Sji=0CijIX1+1k(logX)ji+O(X1+1kδ(k)+ϵ),

    where S and I are defined as in Theorem 1.1 and

    δ(k)={k+12k(3k+1),3k9,2k(k+2),k10.

    Now we can get Theorem 1.1 from Proposition 2.1.

    Proof of Theorem 1.1. Applying the circle method, we get

    1n1,n2X121n3X1kd3(n21+n22+nk3)=1+1Q1QS2(α,X)Sk(α,X)F(α,X)dα=MS2(α,X)Sk(α,X)F(α,X)dα+mS2(α,X)Sk(α,X)F(α,X)dα.

    To estimate the contribution from the minor arcs, we note that each αm can be written as (2.1) for P<qQ and 1aq with (q,a)=1. In order to make the error term in the asymptotic formula as small as possible, we consider it in two cases.

    In the case of 3k7, for αm, by Weyl's inequality we have

    Sk(α,X)X1k+ϵ(P1+X1k+QX1)12k1.

    Combining Cauchy's inequality and Hua's inequality, we have

    mS2(α,X)Sk(α,X)F(α,X)dαmaxαm|Sk(α,X)|(10|S2(α,X)|4dα)12(10|F(α,X)|2dα)12X1+1k+ϵP2(1k)+X1+1k(12(1k))+ϵ+X1+1k2(1k)+ϵQ2(1k). (2.3)

    In the case of k8, for αm, we take ([7, Lemma 1.6]) in place of Weyl's inequality and get

    Sk(α,X)X1k+ϵ(P1+X1k+QX1)12k(k1).

    Similarly with (2.3), we have

    mS2(α,X)Sk(α,X)F(α,X)dαX1+1k+ϵP12k(k1)+X1+1k(1112k(k1))+ϵ+X1+1k12k(k1)+ϵQ12k(k1). (2.4)

    From Propositions 2.1, (2.3) and (2.4), Theorem 1.1 follows by taking Q=X1θ with

    θ={k+16k+2,3k9,2k+2,k10.

    For αM, we write α=a/q+β, 1aqP and |β|1/(qQ) with (a,q)=1. Then we have

    MS22(α,X)Sk(α,X)F(α,X)dα=qPamodqM(q,a)S22(α,X)Sk(α,X)F(α,X)dα=qP|β|1qQamodqS22(aq+β,X)Sk(aq+β,X)F(aq+β,X)dβ. (3.1)

    First we need to estimate F(a/q+β,X).

    Lemma 3.1. Suppose that (a,q)=1, qPx1/3 and |β|1/(qQ). We have

    F(aq+β,X)=2j=0Aj(q)Ij(β)+O(P3+ϵ+Xη+ϵP),

    where η=2/5, Aj(q) are defined in (1.2) and

    Ij(β)=3X1e(βu)logjuj!du. (3.2)

    Proof. This is lemma 3.2 in [2] for k=3 and l=3. Integrating by parts, we have

    Ij(β)kXϵmin{X,|β|1}. (3.3)

    Next we need to estimate S2(a/q+β,X) and Sk(a/q+β,X).

    Lemma 3.2. Suppose that (a,q)=1, qPX13 and |β|1/(qQ). We have

    S2(aq+β,X)=G(a,0,q)qΨ0(β)+3q/2<b<3q/2G(a,b,q)Ψ(b,q,β),Sk(aq+β,X)=Gk(a,0,q)qΨk(β)+O(q12+ϵ(1+X|β|)12)

    where Gk(a,b,q) are defined as in (1.1), Ψ0(β) and Ψk(β) are the integral

    Ψ0(β)=X120e(βu2)du,Ψk(β)=X1k0e(βuk)du

    and Ψ(b,q,β) satisfies

    3q/2<b<3q/2|Ψ(b,q,β|log(q+2). (3.4)

    Proof. The first formula is come from [10, Lemma 4.1]. We can also find the second formula in [9, Theorem 4.1].

    From Lemmas 3.1 and 3.2, we have

    amodqS2(aq+β,X)Sk(aq+β,X)F(aq+β,X)=3i=1Ti(q,β)Sk(aq+β,X)+O((P3+ϵ+Xη+ϵ)amodq|S(aq+β,X)|2|Sk(aq+β,X)|), (3.5)

    where

    Ti(q,β)=2j=0amodqAj(q)Ij(β)Ci12(G(a,0,q)Ψ0(β)q)3i×(3q/2<b<3q/2G(a,b,q)Ψ(b,q,β))i1.

    On inserting (3.5) into (3.1), we have

    MS22(α,X)Sk(α,X)F(α,X)dα=3i=1qP|β|1qQTi(q,β)Sk(aq+β,X)dβ+O((P3+ϵ+Xη+ϵ)M|S2(α,X)|2|Sk(α,X)|dα). (3.6)

    It follows from integration by parts together with trivial bounds that

    Ψ0(β)(X1+|β|X)12,Ψk(β)(X1+|β|X)1k. (3.7)

    By the definition of T1(q,β) and Lemma 3.2, we have

    qP|β|1qQTi(q,β)Sk(aq+β,X)dβ=qP|β|1qQT1(q,β)Gk(a,0,q)qΨk(β)dβ+qP|β|1qQTi(q,β)O(q12+ϵ(1+X|β|)12)dβ=2j=0qPamodqAj(q)G2(a,0,q)Gk(a,0,q)q3|β|1qQIj(β)Ψ20(β)Ψk(β)dβ+2j=0qPamodqAj(q)G2(a,0,q)q12+ϵq2|β|1qQIj(β)Ψ20(β)(1+X|β|)12dβ:=1+2.

    By Lemma 3.4 in [6] and Theorem 4.2 in [9], we have

    G(a,b,q)q12,Gk(a,0,q)q11k. (3.8)

    To 1, we extend the integration over |β|1/(qQ) to (,) and the error term is

    2j=0qPamodqAj(q)G2(a,0,q)Gk(a,0,q)q3|β|>1qQIj(β)Ψ20(β)Ψk(β)dβqPq11k|β|>1qQ|β|21kdβqPq11k(qQ)1+1kXQ1k.

    Here we use the upper bounds (1.1), (3.3), (3.7) and (3.8). Thus we have

    qP|β|1qQT1(q,β)Gk(a,0,q)qΨk(β)dβ=2j=0qPamodqAj(q)G2(a,0,q)Gk(a,0,q)q3Ij(β)Ψ20(β)Ψk(β)dβ+O(XQ1k).

    Next, we estimate the integral on the right hand side. From the definitions of Ij(β), Ψ0(β) and Ψk(β), we obtain

    Ij(β)Ψ20(β)Ψk(β)dβ=(3X1e(βu)logjuj!du)(X120e(βv2)dv)2(X1k0e(βvk)dv)dβ=X1+1kj!(3X1e(βu)logjudu)(10e(βXv2)dv)2(10e(βXvk)dv)dβ=X1+1kj!(31Xe(βu)(log(Xu))jdu)(10e(βv2)dv)2(10e(βvk)dv)dβ=X1+1kj!(30e(βu)(log(Xu))jdu)(10e(βv2)dv)2(10e(βvk)dv)dβ+O(X1k+ϵ).

    Here

    X1+1kj!(1X0e(βu)(log(Xu))jdu)(10e(βv2)dv)2(10e(βvk)dv)dβX1k+ϵ.

    By (1.1) and (3.8), we have

    2j=0qPamodqAj(q)G2(a,0,q)Gk(a,0,q)q31.

    Then we split log(Xu) and obtain

    qP|β|1qQT1(q,β)Gk(a,0,q)qΨk(β)dβ=2j=01j!qPamodqAj(q)G2(a,0,q)Gk(a,0,q)q3ji=0CijIX1+1k(logX)ji+O(XQ1k+X1k+ϵ),

    where I are defined as in (1.3). Further, we extend the summation over qP to all positive integers and the estimate of the error term is

    2j=01j!q>PamodqAj(q)G2(a,0,q)Gk(a,0,q)q3ji=0CijIX1+1k(logX)jiXQ1k.

    Thus we have

    1=2j=0qP|β|1qQT1(q,β)Gk(a,0,q)qΨk(β)dβ=2j=0Sji=0CijIX1+1k(logX)ji+O(XQ1k+X1k+ϵ),

    where S and I defined in (1.2) and (1.3).

    To 2, by (1.1), (3.3), (3.7) and (3.8) we have

    2qPq12+ϵ|β|1qQ|β|1X(1+X|β|)12dβX32+ϵQ12.

    To sum up, we have

    qP|β|1qQTi(q,β)Sk(aq+β,X)dβ=2j=0Sji=0CijIX1+1k(logX)ji+O(XQ1k+X32+ϵQ12+X1k+ϵ),

    where S and I are defined in (1.2) and (1.3).

    Now by the definition of Ti(q,β) and Lemma 3.2, we have

    qP|β|1qQTi(q,β)Sk(a/q+β,X)dβ=Ci122j=0qPamodqAj(q)G3i(a,0,q)Gk(a,0,q)q4i×|β|1qQIj(β)Ψ3i0(β)Ψk(β)(3q/2<b<3q/2G(a,b,q)Ψ(b,q,β))i1dβ+Ci122j=0qPamodqAj(q)G3i(a,0,q)q3i|β|1qQIj(β)Ψ3i0(β)×(3q/2<b<3q/2G(a,b,q)Ψ(b,q,β))i1O(q12+ϵ(1+X|β|)12)dβ:=3+4.

    Combining Lemma 3.3 with (1.1), (3.3), (3.4), (3.7) and (3.8), for i=2,3 we have

    3qPq3i2qi4q11kqi12X32+1ki2Xi2+12Q1+1ki.

    For i=2,

    4qPq12q1q12+ϵq12X12+ϵX2+ϵQ32ϵ.

    For i=3,

    4qPq12+ϵqX12(qQ)12X52+ϵQ52ϵ.

    By Hua's inequality, the contribution of O-term is bounded by

    (P3+ϵ+Xη+ϵP)M|S2(α,X)|2|Sk(α,X)|dα(P3+ϵ+Xη+ϵP)(M|S2(α,X)|4dα)12(M|Sk(α,X)|2dα)12X12+12kP3+ϵ+X12+12k+η+ϵP=X72+12k+ϵQ3ϵ+X32+12k+η+ϵQ1.

    From above, we have

    MS22(α,X)Sk(α,X)F(α,X)dα=2j=0Sji=0CijIX1+1k(logX)ji+O(XQ1k+X32+ϵQ12+X1k+ϵ+X32Q1+1k+X2Q2+1k+X2+ϵQ32ϵ+X52+ϵQ52ϵ+X72+12k+ϵQ3ϵ+X32+12k+η+ϵQ1).

    By taking Q=X1θ, where

    θ={k+16k+2,3k9,2k+2,k10.

    Comparing each item in the error term, we have for 3k9,

    MF(α,X)S22(α,X)Sk(α,X)dα=2j=0Sji=0CijIX1+1k(logX)ji+O(X1+1kk+12k(3k+1)+ϵ).

    For k10,

    MF(α,X)S22(α,X)Sk(α,X)dα=2j=0Sji=0CijIX1+1k(logX)ji+O(X1+1k2k(k+2)+ϵ).

    Then we finish the proof of Proposition 2.1.

    This work is supported by Natural Science Foundation of China (Grant Nos. 11761048), Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars (Grant Nos. 20212ACB211007), Social Science Planning Project of Jiangxi Province of 2020 Annual (Grant Nos. 20JY06), Tender subject for key research base of Humanities and Social Sciences in Colleges and universities in Jiangxi Province (Grant Nos. JD20109), Culture and Art Science Planning Project of Jiangxi Province of 2020 Annual (Grant Nos. YG2020129) and Basic education research project of Jiangxi Province (Grant Nos. SZUNDSX2019-984). The authors would like to express their thanks to the referee for many useful suggestions and comments on the manuscript.

    The authors declare there is no conflict of interests.



    [1] C. E. Chace, The divisor problem for arithmetic progressions with small modulus, Acta Arith., 61 (1992), 35–50.
    [2] C. E. Chace, Writing integers as sums of products, Trans. Am. Math. Soc., 345 (1994), 367–379. https://doi.org/10.1090/S0002-9947-1994-1257641-3 doi: 10.1090/S0002-9947-1994-1257641-3
    [3] R. T. Guo, W. G. Zhai, Some problems about the ternary quadratic form m21+m22+m23, Acta Arith., bf 156 (2012), 101–121.
    [4] L. Q. Hu, An asymptotic formula related to the divisors of the quaternary quadratic form, Acta Arith., 166 (2014), 129–140. https://doi.org/10.4064/aa166-2-2 doi: 10.4064/aa166-2-2
    [5] L. Q. Hu and L. Yang, Sums of the triple divisor function over values of a quaternary quadratic form, Acta Arith., 183 (2018), 63–85. https://doi.org/10.4064/aa170120-20-10 doi: 10.4064/aa170120-20-10
    [6] L. K. Hua, Introduction to Number Theory, Science Press, Beijing, 1957 (in Chinese).
    [7] X. D. Lü, Q. W. Mu, The Sum of Divisors of Mixed Powers, Advances in Mathematics (in China), 45 (2016), 357–364.
    [8] Q. F. Sun, D. Y. Zhang, Sums of the triple divisor function over values of a ternary quadratic form, J. Number Theory, 168 (2016), 215–246.
    [9] R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math., vol. 125, Cambridge University, Cambridge, 1997.
    [10] L. L. Zhao, The sum of divisors of a quadratic form, Acta Arith., 163 (2014), 161–177. https://doi.org/10.4064/aa163-2-6 doi: 10.4064/aa163-2-6
  • This article has been cited by:

    1. Himanshi Chanana, Saurabh Kumar Singh, Sum of the GL(3) Fourier coefficients over mixed powers, 2025, 21, 1793-0421, 531, 10.1142/S1793042125500265
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1788) PDF downloads(77) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog