Citation: He Yanqin, Zhu Chaoxi, Chen Zhuoyu. A sum analogous to Kloosterman sum and its fourth power mean[J]. AIMS Mathematics, 2020, 5(3): 2569-2576. doi: 10.3934/math.2020168
[1] | T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976. |
[2] | A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U. S. A., 34 (1948), 203-210. doi: 10.1073/pnas.34.5.203 |
[3] | W. P. Zhang, On the fourth power mean of the general Kloosterman sums, J. Number Theory, 169 (2016), 315-326. doi: 10.1016/j.jnt.2016.05.018 |
[4] | W. P. Zhang, On the fourth power mean of the general Kloosterman sums, Indian J. Pure Ap. Mat., 35 (2004), 237-242. |
[5] | J. H. Li, Y. N. Liu, Some new identities involving Gauss sums and general Kloosterman sums, Acta Math. Sinica (Chinese Series), 56 (2013), 413-416. |
[6] | Y. T. Zhang, Bounded gaps between primes, Ann. Math., 179 (2014), 1121-1174. doi: 10.4007/annals.2014.179.3.7 |
[7] | X. X. Lv, W. P. Zhang, A new hybrid power mean involving the generalized quadratic Gauss sums and sums analogous to Kloosterman sums, Lith. Math. J., 57 (2017), 359-366. doi: 10.1007/s10986-017-9366-z |
[8] | S. Chern, On the power mean of a sum analogous to the Kloosterman sum, Bull. Math. Soc. Sci. Math. Roumanie, 62 (2019), 77-92. |
[9] | W. P. Zhang, On the fourth and sixth power mean of the classical Kloosterman sums, J. Number Theory, 131 (2011), 228-238. doi: 10.1016/j.jnt.2010.08.008 |
[10] | W. P. Zhang, S. M. Shen, A note on the fourth power mean of the generalized Kloosterman sums, J. Number Theory, 174 (2017), 419-426. doi: 10.1016/j.jnt.2016.11.020 |
[11] | T. Estermann, On Kloostermann's sums, Mathematica, 8 (1961), 83-86. |
[12] | H. D. Kloosterman, On the representation of numbers in the form ax2 +by2 +cz2 +dt2, Acta Math., 49 (1926), 407-464. doi: 10.1007/BF02564120 |
[13] | H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math., 17 (1997), 61-63. |
[14] | H. Salié, Uber die Kloostermanschen Summen S (u, v; q), Math. Z., 34 (1931), 91-109. |
[15] | A. V. Malyshev, A generalization of Kloosterman sums and their estimates, (in Russian), Vestnik Leningrad University, 15 (1960), 59-75. |
[16] | W. P. Zhang, On the general Kloosterman sums and its fourth power mean, J. Number Theory, 104 (2004), 156-161. doi: 10.1016/S0022-314X(03)00154-9 |
[17] | W. P. Zhang, X. X. Li, The fourth power mean of the general 2-dimensional Kloostermann sums mod p, Acta Math. Sinica, English Series, 33 (2017), 861-867. doi: 10.1007/s10114-016-6347-9 |
[18] | W. P. Zhang, X. X. Lv, The fourth power mean of the general 3-dimensional Kloostermann sums mod p, Acta Math. Sinica, English Series, 35 (2019), 369-377. doi: 10.1007/s10114-018-7455-5 |
[19] | Y. Ye, Identities of incomplete Kloostermann sums, Proc. Amer. Math. Soc., 127 (1999), 2591-2600. doi: 10.1090/S0002-9939-99-05037-6 |
[20] | R. A. Smith, On n-dimensional Kloostermann sums, J. Number Theory, 11 (1979), 324-343. doi: 10.1016/0022-314X(79)90006-4 |
[21] | W. Luo, Bounds for incomplete Kloostermann sums, J. Number Theory, 75 (1999), 41-46. doi: 10.1006/jnth.1998.2340 |