Research article

A sum analogous to Kloosterman sum and its fourth power mean

  • Received: 29 October 2019 Accepted: 05 March 2020 Published: 11 March 2020
  • MSC : 11L03, 11L05

  • The main purpose of this paper is using the analytic methods and the properties of the Legendre's symbol and quadratic residue mod p to study the computational problem of the fourth power mean of a sum analogous to Kloosterman sum, and give a sharp asymptotic formula for it.

    Citation: He Yanqin, Zhu Chaoxi, Chen Zhuoyu. A sum analogous to Kloosterman sum and its fourth power mean[J]. AIMS Mathematics, 2020, 5(3): 2569-2576. doi: 10.3934/math.2020168

    Related Papers:

  • The main purpose of this paper is using the analytic methods and the properties of the Legendre's symbol and quadratic residue mod p to study the computational problem of the fourth power mean of a sum analogous to Kloosterman sum, and give a sharp asymptotic formula for it.


    加载中


    [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
    [2] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U. S. A., 34 (1948), 203-210. doi: 10.1073/pnas.34.5.203
    [3] W. P. Zhang, On the fourth power mean of the general Kloosterman sums, J. Number Theory, 169 (2016), 315-326. doi: 10.1016/j.jnt.2016.05.018
    [4] W. P. Zhang, On the fourth power mean of the general Kloosterman sums, Indian J. Pure Ap. Mat., 35 (2004), 237-242.
    [5] J. H. Li, Y. N. Liu, Some new identities involving Gauss sums and general Kloosterman sums, Acta Math. Sinica (Chinese Series), 56 (2013), 413-416.
    [6] Y. T. Zhang, Bounded gaps between primes, Ann. Math., 179 (2014), 1121-1174. doi: 10.4007/annals.2014.179.3.7
    [7] X. X. Lv, W. P. Zhang, A new hybrid power mean involving the generalized quadratic Gauss sums and sums analogous to Kloosterman sums, Lith. Math. J., 57 (2017), 359-366. doi: 10.1007/s10986-017-9366-z
    [8] S. Chern, On the power mean of a sum analogous to the Kloosterman sum, Bull. Math. Soc. Sci. Math. Roumanie, 62 (2019), 77-92.
    [9] W. P. Zhang, On the fourth and sixth power mean of the classical Kloosterman sums, J. Number Theory, 131 (2011), 228-238. doi: 10.1016/j.jnt.2010.08.008
    [10] W. P. Zhang, S. M. Shen, A note on the fourth power mean of the generalized Kloosterman sums, J. Number Theory, 174 (2017), 419-426. doi: 10.1016/j.jnt.2016.11.020
    [11] T. Estermann, On Kloostermann's sums, Mathematica, 8 (1961), 83-86.
    [12] H. D. Kloosterman, On the representation of numbers in the form ax2 +by2 +cz2 +dt2, Acta Math., 49 (1926), 407-464. doi: 10.1007/BF02564120
    [13] H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math., 17 (1997), 61-63.
    [14] H. Salié, Uber die Kloostermanschen Summen S (u, v; q), Math. Z., 34 (1931), 91-109.
    [15] A. V. Malyshev, A generalization of Kloosterman sums and their estimates, (in Russian), Vestnik Leningrad University, 15 (1960), 59-75.
    [16] W. P. Zhang, On the general Kloosterman sums and its fourth power mean, J. Number Theory, 104 (2004), 156-161. doi: 10.1016/S0022-314X(03)00154-9
    [17] W. P. Zhang, X. X. Li, The fourth power mean of the general 2-dimensional Kloostermann sums mod p, Acta Math. Sinica, English Series, 33 (2017), 861-867. doi: 10.1007/s10114-016-6347-9
    [18] W. P. Zhang, X. X. Lv, The fourth power mean of the general 3-dimensional Kloostermann sums mod p, Acta Math. Sinica, English Series, 35 (2019), 369-377. doi: 10.1007/s10114-018-7455-5
    [19] Y. Ye, Identities of incomplete Kloostermann sums, Proc. Amer. Math. Soc., 127 (1999), 2591-2600. doi: 10.1090/S0002-9939-99-05037-6
    [20] R. A. Smith, On n-dimensional Kloostermann sums, J. Number Theory, 11 (1979), 324-343. doi: 10.1016/0022-314X(79)90006-4
    [21] W. Luo, Bounds for incomplete Kloostermann sums, J. Number Theory, 75 (1999), 41-46. doi: 10.1006/jnth.1998.2340
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3361) PDF downloads(309) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog