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1. Introduction

Let q ≥ 3 be an integer, χ denotes any Dirichlet character mod q. Then for any integers m and n,
the generalized Kloosterman sum K(m, n, χ; q) is defined as

K(m, n, χ; q) =

q∑
a=1

χ(a)e
(
ma + na

q

)
,

where, e(y) = e2πiy, and a · a ≡ 1 mod q.
As is known to all, the research on the properties of K(m, n, χ; q) is a very important topic in analytic

number theory, and many famous number theory problems are closely related to it. Because of this
reason, many scholars have studied the properties of K(m, n, χ; q), and obtained a series of meaningful
results, interested readers may refer to references [3–21]. For example, Zhang Wenpeng [3] proved the
following conclusion:

Let q > 2 be an odd square-full number, n be any integer with (n, q) = 1. Then for any primitive

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020168


2570

character χ mod q, we have the identity

q∑′

m=1

∣∣∣∣∣∣∣
q∑

a=1

χ(a) e
(
ma + na

q

)∣∣∣∣∣∣∣
4

= q2φ(q)
∏
pα‖q

(
α + 1 −

5
p − 1

)
,

where pα‖q denotes that pα|q and pα+1 - q.
If q = p is a prime, then Zhang Wenpeng [4], Li Jianghua and Liu Yanni [5] also proved the identity

p−1∑
m=1

|K(m, n, χ; p)|4 =

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma + na

p

)∣∣∣∣∣∣∣
4

=


2p3 − 3p2 − 3p − 1 if χ is the principal character mod p,
3p3 − 8p2 if χ is the Legendre symbol mod p,
p2(2p − 7) if χ is a non-real character mod p,

where (n, p) = 1.
In addition, Kloosterman sum has been widely used in the study of analytic number theory problem.

In fact, Zhang Yitang’s very important works [6] on the gaps between primes is obtained based on the
sieve methods and some special mean value estimate for Kloosterman sums.

On the other hand, Lv Xingxing and Zhang Wenpeng [7] introduced a new sum, which can be
regarded as a companion of the Kloosterman sum. It is defined by

H(m, n, k, χ; p) =

p−1∑
a=1

χ (ma + na) e
(
ka
q

)
. (1.1)

Then they used the analytic methods and the properties of character sums to study the hybrid power
mean problem involving H(m, n, k, χ; p) and the quadratic Gauss sums, and obtained an exact compu-
tational formula for ∑

χ mod p

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma2

p

)∣∣∣∣∣∣∣
2

·

∣∣∣∣∣∣∣
p−1∑
b=1

χ
(
b + b

)
e
(
nb
p

)∣∣∣∣∣∣∣
2

.

Shane Chern [8] also studied the mean value properties of H(m, n, r, χ; q), and obtained the identity

∑
χ mod p

∣∣∣∣∣∣∣∣
p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

χ (ma + na) e
(
ka
p

)∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣

2

= (p − 1)
(
p4 − 7p3 + 17p2 − 5p − 25

)
,

where p is an odd prime, n and k are integers with (nk, p) = 1.
But Shane Chern said in [8], his ultimate goal is to find the fourth power mean of H(m, n, k, χ; p).

That is,

∑
χ mod p

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

χ (ma + na) e
(
ka
p

)∣∣∣∣∣∣∣
4

. (1.2)
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Unfortunately, he did not succeed, and ultimately he only proved a different form of the following:

∑
χ mod p

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

χ (ma + na) e
(
ka
p

)∣∣∣∣∣∣∣
4

= (p − 1)
(
p2 − 10p + 37 + pT (p) − TL(p)

)
,

where T (p) and TL(p) are defined by

T (p) =

p−1∑
u=1

p−1∑
a=1

p−1∑
b=1

(a−1)2(ua−1)(ub−1)≡(b−1)2(ub−1)(ua−1) mod p

χ0

(
(a − 1)2(ua − 1)(ub − 1)

)

and

TL(p) =

p−1∑
u=1

 p−1∑
a=1

(
(ua − 1)(ua − 1)

p

)
2

,

χ0 denotes the principal character, and
(
∗

p

)
denotes the Legendre’s symbol mod p.

According to our experience, the main term in this formula is focused on T (p), which is the reason
why one can not see any asymptotic properties of (1.2).

Inspired by references [7, 8], we are interested in the computing problem of the following 2k-th
power mean

p−1∑
m=0

∑
χ mod p

∣∣∣∣∣∣∣
p−1∑
a=1

χ (a + a) e
(
ma
p

)∣∣∣∣∣∣∣
2k

, k ≥ 2. (1.3)

Although this problem looks very similar to the mean value (1.2), it is substantially different.
Of course, it seems no one to study this 2k-th power mean and we have not seen any related results

so far.
In this paper, we will use the number of the solutions of some congruence equations mod p and the

properties of the Legendre’s symbol to study the calculating problem of (1.3) with k = 2, and give a
sharp asymptotic formula for it. That is, we will prove the following result:

Theorem. Let p be an odd prime with p ≡ 3 mod 4, then we have the asymptotic formula

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=0

χ (a + a) e
(
ma
p

)∣∣∣∣∣∣∣
4

= 3p4 + O
(
p

7
2 · ln p

)
.

Some notes: For prime p with p ≡ 1 mod 4, because the congruence equation a + a ≡ 0 mod p
has two solutions, so it is a little bit complicated, and we do not have a corresponding result. For
p ≡ 3 mod 4 and k = 2, if one can get an exact value for the summation

p−1∑
a=1

p−1∑
b=1

(
a2b2(a + b)2 − 4ab(a + b)2 − 4ab

p

)
, (1.4)

then we can obtain an exact calculating formula for (1.3).
Whether there exists an exact calculating formula for (1.4) is an open problem.
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2. Some basic lemmas

In this section, we first give three simple lemmas, which are necessary in the proof of our main
result. Of course, in order to prove these lemmas, we need some basic knowledge of elementary and
analytic number theory, these content can be found in reference [1], here we do not need to repeat
them. First we prove the following:

Lemma 1. For any odd prime p, we have the identity
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

ab≡cd mod p
a+b≡c+d mod p

1 = 2p2 − 5p + 3.

Proof. Note that if a, b, c passed through a reduced residue system mod p, then da, db and cd also
pass through a reduced residue system mod p, providing (d, p) = 1. So from these properties we have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

ab≡cd mod p
a+b≡c+d mod p

1 =

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

abd2≡cd2 mod p
ad+bd≡cd+d mod p

1 = (p − 1)
p−1∑
a=1

p−1∑
b=1

a+b≡ab+1 mod p

1

= (p − 1)
p−1∑
a=1

p−1∑
b=1

(a−1)(b−1)≡0 mod p

1 = (p − 1)

2 p−1∑
a=1

1 − 1


= (p − 1)(2p − 3) = 2p2 − 5p + 3.

This proves Lemma 1.
Lemma 2. Let p be an odd prime with p ≡ 3 mod 4, then we have the asymptotic formula

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(a+b)2+1≡abcd mod p
a+b≡c+d mod p

1 = p2 + O
(
p

3
2 · ln p

)
.

Proof. Since p ≡ 3 mod 4, so for any integers a and b, we have p -
(
(a + b)2 + 1

)
. From the

properties of the reduced residue system, quadratic residue and Legendre’s symbol mod p we have
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(a+b)2+1≡abcd mod p
a+b≡c+d mod p

1 =

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=0

(a+b)2+1≡abcd mod p
a+b≡c+d mod p

1 −
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

(a+b)2+1≡0 mod p
a+b≡c mod p

1

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

(a+b)2+1≡abc(a+b−c) mod p

1 =

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

abc2−ab(a+b)c+(a+b)2+1≡0 mod p

1

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

(ab)2c2−(ab)2(a+b)c+ab((a+b)2+1)≡0 mod p

1 =

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

c2−ab(a+b)c+ab((a+b)2+1)≡0 mod p

1
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=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=0

(2c−ab(a+b))2+4ab((a+b)2+1)≡a2b2(a+b)2 mod p

1 =

p−1∑
a=1

p−1∑
b=1

p−1∑
c=0

c2+4ab((a+b)2+1)≡a2b2(a+b)2 mod p

1

=

p−1∑
a=1

p−1∑
b=1

(
1 +

(
a2b2(a + b)2 − 4ab(a + b)2 − 4ab

p

))

= (p − 1)2 +

p−1∑
a=1

p−1∑
b=1

(
a2b6(a + 1)2 − 4ab4(a + 1)2 − 4ab2

p

)

= (p − 1)2 +

p−1∑
a=1

p−1∑
b=1

a2(a + 1)2 − 4ab
2
(a + 1)2 − 4ab

4

p


= (p − 1)2 +

p−1∑
a=1

p−1∑
b=1

(
a2(a + 1)2 − 4ab2(a + 1)2 − 4ab4

p

)

= (p − 1)2 +

p−1∑
a=1

p−1∑
b=1

(
−a
p

) 
(
2b2 + (a + 1)2

)2
− a(a + 1)2 − (a + 1)4

p

 . (2.1)

It is clear that there exist at most three integers 1 ≤ a ≤ p − 1 such that p | (a + 1)2
(
(a + 1)2 + a

)
. If

p - (a+1)2
(
(a + 1)2 + a

)
, that is, a , −1 and p - (a + 1)2+a, then

(
2x2 + (a + 1)2

)2
−a(a+1)2−(a+1)4 is

not a complete square of an integral coefficient polynomial f (x). So from the Weil’s important work [2]
we have the estimate

p−1∑
b=1


(
2b2 + (a + 1)2

)2
− a(a + 1)2 − (a + 1)4

p

 � √p · ln p. (2.2)

Then combining (2.1) and (2.2) we have the estimate

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(a+b)2+1≡abcd mod p
a+b≡c+d mod p

1 = p2 + O (3p) + O
(
p

3
2 · ln p

)
= p2 + O

(
p

3
2 · ln p

)
.

This proves Lemma 2.
Lemma 3. Let p be a prime, then we have the identity

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(a+b)2+1≡abcd mod p
ab≡cd mod p

a+b≡c+d mod p

1 ≤ 4(p − 1).

Proof. It is clear that the conditions ab ≡ cd mod p and (a + b)2 + 1 ≡ abcd mod p are equivalent
to ab ≡ cd mod p and (a + b)2 + 1 ≡ (ab)2 mod p, and the condition (a + b)2 + 1 ≡ (ab)2 mod p is
equivalent to (a + b + ab)(a + b − ab) ≡ −1 mod p.
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Then we have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(a+b)2+1≡abcd mod p
ab≡cd mod p

a+b≡c+d mod p

1 =

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(a+b+ab)(a+b−ab)≡−1 mod p
ab≡cd mod p

a+b≡c+d mod p

1

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
t=1

(a+b+ab)≡−t mod p

a+b−ab≡ 1
t mod p

ab≡cd mod p
a+b≡c+d mod p

1 =

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
t=1

(c+d)≡(a+b)≡( 1
t −t)/2 mod p

cd≡ab≡(−t− 1
t )/2 mod p

1

Notice that for any given s, t ∈ F∗q, the equation{
x + y = s
xy = t

has at most 2 zeros in Fq, hence we have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(a+b)2+1≡abcd mod p
ab≡cd mod p

a+b≡c+d mod p

1 ≤ 4(p − 1).

This proves Lemma 3.

3. Proof of the theorem

In this section, we use the three simple lemmas in section two to prove our main result. In fact,
from Lemma 1, Lemma 2, Lemma 3, the trigonometric identity

p−1∑
a=0

e
(
ma
p

)
=

{
p, if p | m;
0, if p - m

and the orthogonality of characters mod p∑
χ mod p

χ(a) =

{
p − 1, if a ≡ 1 mod p;
0, otherwise

. we have

1
p(p − 1)

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

χ (a + a) e
(
ma
p

)∣∣∣∣∣∣∣
4
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=
1
p

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(a+a)(b+b)≡(c+c)(d+d) mod p

p−1∑
m=0

e
(
m(a + b − c − d)

p

)

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

ab(a2+1)(b2+1)≡cd(c2+1)(d2+1) mod p
a+b≡c+d mod p

1 =

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

ab((ab−1)2+(a+b)2)≡cd((cd−1)2+(c+d)2) mod p
a+b≡c+d mod p

1

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(ab−cd)((a+b)2+1−abcd)≡0 mod p
a+b≡c+d mod p

1 =

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

ab≡cd mod p
a+b≡c+d mod p

1

+

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(a+b)2+1≡abcd mod p
a+b≡c+d mod p

1 −
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(a+b)2+1≡abcd mod p
ab≡cd

a+b≡c+d mod p

1

= 2p2 − 5p + 3 + p2 + O
(
p

3
2 · ln p

)
+ O (p)

= 3p2 + O
(
p

3
2 · ln p

)
.

This completes the proof of our Theorem.
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