Research article

Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping

  • Received: 14 November 2019 Accepted: 01 February 2020 Published: 12 March 2020
  • MSC : 35B40, 35B41

  • Based on the abstract theory of pullback attractors of non-autonomous non-compact dynamical systems by differential equations with both dependent-time deterministic and stochastic forcing terms, which introduced by B. Wang, we investigate existence of pullback attractors for the non-autonomous stochastic plate equations with multiplicative noise defined in the entire space Rn.

    Citation: Xiaobin Yao. Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping[J]. AIMS Mathematics, 2020, 5(3): 2577-2607. doi: 10.3934/math.2020169

    Related Papers:

    [1] Li Yang . Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains. AIMS Mathematics, 2021, 6(12): 13634-13664. doi: 10.3934/math.2021793
    [2] Xin Liu . Stability of random attractors for non-autonomous stochastic $ p $-Laplacian lattice equations with random viscosity. AIMS Mathematics, 2025, 10(3): 7396-7413. doi: 10.3934/math.2025339
    [3] Chunting Ji, Hui Liu, Jie Xin . Random attractors of the stochastic extended Brusselator system with a multiplicative noise. AIMS Mathematics, 2020, 5(4): 3584-3611. doi: 10.3934/math.2020233
    [4] Rou Lin, Min Zhao, Jinlu Zhang . Random uniform exponential attractors for non-autonomous stochastic Schrödinger lattice systems in weighted space. AIMS Mathematics, 2023, 8(2): 2871-2890. doi: 10.3934/math.2023150
    [5] Xiao Bin Yao, Chan Yue . Asymptotic behavior of plate equations with memory driven by colored noise on unbounded domains. AIMS Mathematics, 2022, 7(10): 18497-18531. doi: 10.3934/math.20221017
    [6] Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040
    [7] Xintao Li . Wong-Zakai approximations and long term behavior of second order non-autonomous stochastic lattice dynamical systems with additive noise. AIMS Mathematics, 2022, 7(5): 7569-7594. doi: 10.3934/math.2022425
    [8] Xiaoxia Wang, Jinping Jiang . The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363
    [9] Ruonan Liu, Tomás Caraballo . Random dynamics for a stochastic nonlocal reaction-diffusion equation with an energy functional. AIMS Mathematics, 2024, 9(4): 8020-8042. doi: 10.3934/math.2024390
    [10] Hamood Ur Rehman, Aziz Ullah Awan, Sayed M. Eldin, Ifrah Iqbal . Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise. AIMS Mathematics, 2023, 8(9): 21606-21621. doi: 10.3934/math.20231101
  • Based on the abstract theory of pullback attractors of non-autonomous non-compact dynamical systems by differential equations with both dependent-time deterministic and stochastic forcing terms, which introduced by B. Wang, we investigate existence of pullback attractors for the non-autonomous stochastic plate equations with multiplicative noise defined in the entire space Rn.


    In this paper, we study the asymptotic behavior of solutions for the following non-autonomous stochastic plate equation with multiplicative noise and nonlinear damping defined on the unbounded domain Rn:

    utt+Δ2u+h(ut)+λu+f(x,u)=g(x,t)+εudwdt (1.1)

    with the initial value conditions

    u(x,τ)=u0(x),ut(x,τ)=u1(x), (1.2)

    where xRn, t>τ with τR, λ>0 and ε are constants, h(ut) is a nonlinear damping term, f is a given interaction term, g is a given function satisfying gL2loc(R,H1(Rn)), and w is a two-sided real-valued Wiener process on a probability space. The stochastic Eq. (1.1) is understood in the sense of Stratonovich's integration.

    Plate equations like (1.1), especially when h(ut)=αut, have been investigated for many years due to their importance in some physical areas such as vibration and elasticity theory of solid mechanics. The study of the long-time dynamics of plate equations has become an outstanding topic in the field of the infinite dimensional dynamical system.

    As we know, the attractor is regarded as a proper notation describing the long-time dynamics of solutions, and many classical literatures and monographs have been appeared for both the deterministic and stochastic dynamical systems over the last decades years, see [1,5,6,8,9,12,12,13,14,15,22,26,27,40] and references therein. However, in reality, a system is always affected by some random factors such as external noise. In order to study the large-time behavior and characterization of solution for the stochastic partial differential equations driven by noise, H. Crauel & Franco Flandoi [8,9], Franco Flandoi & B. Schmalfuss [12] and B. Schmalfuss [22] introduced the concept of pullback attractors, and established some abstract results for existence of such attractors about compact dynamical system [1,9,12,15,18]. Since these methods required the compactness of pullback absorbing set for systems, it could not be used to deal with the stochastic PDEs on unbounded domains. P. W. Bates, H. Lisei & K. Lu [4] presented the concept of asymptotic compactness for random dynamical systems, they proved the existence of random attractors for reaction-diffusion equations on unbounded domain using these abstract results in [3]. B. Wang in [27] further extended the concept of asymptotic compactness to the case of partial differential equations with both the random and the time-dependent forcing terms; moreover, he applied this criteria to the stochastic reaction-diffusion equation with additive noise on Rn, and obtained existence of an unique pullback attractor. Most of works on stochastic PDEs, please refer to [10,25,28,29,30,32,36] and references therein.

    Just for problem (1.1)–(1.2) and the corresponding plate equations, in the deterministic case (i.e., ε=0), existence of global attractors has been studied by several authors, see for instance [2,15,16,17,34,35,38,39,41]. As far as the stochastic case driven by additive noise, when the deterministic forcing term g is independent of time, that is, g(x,t)g(x), existence of random pullback attractor on bounded domain was obtained in [20,23,24]. Recently, on the unbounded domain, the authors investigated existence and upper semi-continuity of random attractors for stochastic plate equation with rotational inertia and Kelvin-Voigt dissipative term as well as time dependent terms see [37] for details. To the best of our knowledge, it is not considered by any predecessors for the stochastic plate equation with multiplicative noise on unbounded domain. It is well known that multiplicative noise makes the problem more complex and interesting even to the case of bounded domain. Based the theory and applications of B. Wang in [27,31,33], we decide to study existence of pullback attractors for problem (1.1)–(1.2).

    Notice that (1.1) is a non-autonomous stochastic equation in the sense that the external term g is time-dependent. In this case, like in [27], we need to introduce two parametric spaces to describe its dynamics: one is responsible for the deterministic non-autonomous perturbations and the other for the stochastic perturbations. In addition, since Sobolev embeddings are not compact on unbounded domain, we can not get the desired asymptotic compactness directly from the regularity of solutions. We here overcome this difficulty by using the uniform estimates on the tails of solutions outside a bounded ball in Rn and the splitting technique [28], as well as the compactness methods introduced in [19].

    In comparison with the results recently published in [37], the novelty and the difficulties of this work are as follows: (ⅰ) The nonlinear damping h(ut) in Eq. (1.1) and its treatment; (ⅱ) Using a new Ornstein-Uhlenbeck process which does not depends on the damping coefficients but depends on an adjustable parameter δ, which is substantially different from [37].

    The rest of this paper is organized as follows. In the next section, we recall some basic concepts related to random attractor for general random dynamical systems. In section 3, we provide some basic settings about Eq. (1.1) and show that it generates a continuous cocycle. Then we derive all necessary uniform estimates of solutions in section 4, and prove the existence of random attractors in sections 5. In section 6, we give conclusion as well as some comments on possible applications for these results.

    Throughout the paper, we use |||| and (,) to denote the norm and the inner product of L2(Rn), respectively. The norms of Lp(Rn) and a Banach space X are generally written as ||||p and ||||X, respectively. The letters c and ci(i=1,2,) are generic positive constants which may change their values from line to line or even in the same line and do not depend on ε.

    In this section, we recall some definitions and known results regarding pullback attractors of non-autonomous random dynamical systems from [7,27], which they are useful to our problem.

    In the sequel, we use (Ω,F,P) and (X,d) to denote a probability space and a complete separable metric space, respectively. If A and B are two nonempty subsets of X, then we use d(A,B) to denote their Hausdorff semi-distance.

    Definition 2.1.1 Let θ:R×ΩΩ be a (B(R)×F,F)-measurable mapping. We say (Ω,F,P,θ) is a parametric dynamical system if θ(0,) is the identity on Ω, θ(s+t,)=θ(t,)θ(s,) for all t,sR, and Pθ(t,)=P for all tR.

    Definition 2.1.2 Let K:R×Ω2X be a set-valued mapping with closed nonempty images. We say K is measurable with respect to F in Ω if the mapping ωΩd(x,K(τ,ω)) is (F,B(R))-measurable for every fixed xX and τR.

    Definition 2.1.3 A mapping Φ:R+×R×Ω×XX is called a continuous cocycle on X over R and (Ω,F,P,{θt}tR) if for all τR,ωΩ and t,sR+, the following conditions (1)–(4) are satisfied:

    (1) Φ(,τ,,):R+×Ω×XX is (B(R+)×F×B(X),B(X))-measurable;

    (2) Φ(0,τ,ω,) is the identity on X;

    (3) Φ(t+s,τ,ω,)=Φ(t,τ+s,θsω,)Φ(s,τ,ω,);

    (4) Φ(t,τ,ω,):XX is continuous.

    Hereafter, we assume Φ is a continuous cocycle on X over R and (Ω,F,P,{θt}tR), and D is the collection of some families of nonempty bounded subsets of X parameterized by τR and ωΩ:

    D={D={D(τ,ω)X:D(τ,ω),τR,ωΩ}}.

    Definition 2.1.4 Let B={B(τ,ω):τR,ωΩ} be a family of nonempty subsets of X. For every τR,ωΩ, let

    Ω(B,τ,ω)=r0¯trΦ(t,τt,θtω,B(τt,θtω)).

    Then the family {Ω(B,τ,ω):τR,ωΩ} is called the Ω-limit set of B and is denoted by Ω(B).

    Definition 2.1.5 Let D be a collection of some families of nonempty subsets of X and K={K(τ,ω):τR,ωΩ}D. Then K is called a D-pullback absorbing set for Φ if for all τR and ωΩ and for every BD, there exists T=T(B,τ,ω)>0 such that

    Φ(t,τt,θtω,B(τt,θtω))K(τ,ω)foralltT.

    If, in addition, K(τ,ω) is closed in X and is measurable in ω with respect to F, then K is called a closed measurable D-pullback absorbing set for Φ.

    Definition 2.1.6 Let D be a collection of some families of nonempty subsets of X. Then Φ is said to be D-pullback asymptotically compact in X if for all τR and ωΩ, the sequence

    {Φ(tn,τtn,θtnω,xn)}n=1has a convergent subsequence inX

    whenever tn, and xnB(τtn,θtnω) with {B(τ,ω):τR,ωΩ}D.

    Definition 2.1.7 Let D be a collection of some families of nonempty subsets of X and A={A(τ,ω):τR,ωΩ}D. Then A is called a D-pullback attractor for Φ if the following conditions (1)–(3) are fulfilled: for all tR+, τR and ωΩ,

    (1) A(τ,ω) is compact in X and is measurable in ω with respect to F.

    (2) A is invariant, that is,

    Φ(t,τ,ω,A(τ,ω))=A(τ+t,θtω).

    (3) For every B={B(τ,ω):τR,ωΩ}D,

    limtd(Φ(t,τt,θtω,B(τt,θtω)),A(τ,ω))=0.

    Proposition 2.1.8 Let D be an inclusion-closed collection of some families of nonempty subsets of X, and Φ be a continuous cocycle on X over R and (Ω,F,P,{θt}tR). If Φ is D-pullback asymptotically compact in X and Φ has a closed measurable D-pullback absorbing set K in D, then Φ has a unique D-pullback attractor A in D which is given by, for each τR and ωΩ,

    A(τ,ω)=Ω(K,τ,ω)=DDΩ(B,τ,ω)

    In this section, we outline some basic settings about (1.1)–(1.2) and show that it generates a continuous cocycle in H2(Rn)×L2(Rn).

    Let ξ=ut+δu, where δ is a small positive constant whose value will be determined later. Substituting ut=ξδu into (1.1) we find

    dudt+δu=ξ, (2.2.1)
    dξdtδξ+(δ2+λ)u+Δ2u+h(ξδu)+f(x,u)=g(x,t)+εudwdt (2.2.2)

    with the initial value conditions

    u(x,τ)=u0(x),ξ(x,τ)=z0(x), (2.2.3)

    where ξ0(x)=u1(x)+δu0(x),xRn.

    Assumption Ⅰ. Assume that the functions h, f satisfy the following conditions:

    (1) Let F(x,u)=u0f(x,s)ds for xRn and uR, there exist positive constants ci(i=1,2,3,4), such that

    |f(x,u)|c1|u|γ+ϕ1(x),  ϕ1L2(Rn), (2.2.4)
    f(x,u)uc2F(x,u)ϕ2(x),  ϕ2L1(Rn), (2.2.5)
    F(x,u)c3|u|γ+1ϕ3(x),  ϕ3L1(Rn), (2.2.6)
    |fu(x,u)|β,  |fx(x,u)|ϕ4(x),  ϕ4L2(Rn), (2.2.7)

    where β>0, 1γn+4n4. Note that (2.2.4) and (2.2.5) imply

    F(x,u)c(|u|2+|u|γ+1+ϕ21+ϕ2). (2.2.8)

    (2) There exist two constants β1,β2 such that

    h(0)=0,    0<β1h(v)β2<. (2.2.9)

    Let (Ω,F,P) be the standard probability space, where Ω={ωC(R,R):ω(0)=0}, F is the Borel σ-algebra induced by the compact open topology of Ω, and P is the Wiener measure on (Ω,F). There is a classical group {θt}tR acting on (Ω,F,P) which is defined by

    θtω()=ω(+t)ω(t),forallωΩ,tR,

    then (Ω,F,P,{θt}tR) is a parametric dynamical system.

    It is convenient to convert the problem (2.2.1)–(2.2.3) into a deterministic system with a random parameter, and then show that it generates a cocycle over R and (Ω,F,P,{θt}tR).

    Consider Ornstein-Uhlenbeck equation dz+δzdt=dω, z()=0, and Ornstein-Uhlenbeck process

    z(θtω)=z(t,ω)=δ0eδs(θtω)(s)ds. (2.2.10)

    From [1,11,18], it is known that the random variable |z(ω)| is a stationary, ergodic and tempered stochastic process, and there is a θt-invariant set ˜ΩΩ of full P measure such that z(θtω) is continuous in t for every ω˜Ω. For convenience, we shall simply write ˜Ω as Ω.

    Now, let v(x,t)=ξ(x,t)εu(x,t)z(θtω), we obtain the equivalent system of (2.2.1)–(2.2.3),

    dudt+δuv=εuz(θtω), (2.2.11)
    dvdtδv+(δ2+λ+A)u+f(x,u)=g(x,t)h(v+εuz(θtω)δu)ε(v3δu+εuz(θtω))z(θtω) (2.2.12)

    with the initial value conditions

    u(x,τ)=u0(x),v(x,τ)=v0(x), (2.2.13)

    where A is defined below and  v0(x)=ξ0(x)εz(θτω)u0,xRn.

    Let Δ denote the Laplace operator in Rn, A=Δ2 with the domain D(A)=H4(Rn). We can also define the powers Aν of A for νR. The space Vν=D(Aν4) is a Hilbert space with the following inner product and norm

    (u,v)ν=(Aν4u,Aν4v),ν=Aν4.

    For brevity, the notation (,) for L2-inner product will also be used for the notation of duality pairing between dual spaces, denotes the L2-norm.

    Let E=H2×L2, with the Sobolev norm

    yH2×L2=(v2+u2+Δu2)12,  for  y=(u,v)E. (2.2.14)

    We shall drop the transpose superscript for all column vectors of u and v. The well-posedness of local weak solutions for the problem of the random PDE (2.2.11)–(2.2.13) in E=H2(Rn)×H(Rn) can be shown by Galerkin approximation and compactness method as in [5,21,26,37]. Under conditions (2.2.4)–(2.2.7) and (2.2.9), for every ωΩ,τR and (u0,v0)E, we can prove the problem (2.2.11)–(2.2.13) has a unique global solution (u(,τ,ω,u0),v(,τ,ω,v0))C([τ,),E). Moreover, for tτ, (u(t,τ,ω,u0),v(t,τ,ω,v0)) is (F,B(H2(Rn))×B(L2(Rn)))-measurable in ω and continuous in (u0,v0) with respect to the E-norm.

    Thus the solution mapping can be used to define a continuous cocycle for (2.2.1)–(2.2.3). Let Φ:R+×R×Ω×EE be a mapping given by

    Φ(t,τ,ω,(u0,v0))=(u(t+τ,τ,θτω,u0),v(t+τ,τ,θτω,v0)), (2.2.15)

    where v(t+τ,τ,θτω,v0)=ξ(t+τ,τ,θτω,ξ0)εz(θtω)u(t+τ,τ,θτω,u0) with v0=ξ0εz(ω)u0. Then Φ is a continuous cocycle over R and (Ω,F,P,{θt}tR) on E. For each tR+,τR,ωΩ,

    Φ(t,τt,θtω,(u0,v0))=(u(τ,τt,θτω,u0),v(τ,τt,θτω,v0))=(u(τ,τt,θτω,u0),ξ(τ,τt,θτω,ξ0)+εz(ω)u(τ,τt,θτω,u0)). (2.2.16)

    This identity is useful when proving pullback asymptotic compactness of Φ. Next we make another assumption.

    Assumption Ⅱ. We assume that σ,δ,ε and g(x,t) satisfy the following conditions:

    σ=12min{δ,δc2}, (2.2.17)
    δ>0 satisfies  λ+δ2β2δ>0, β1>5δ+β2δ(λ+δ2β2δ), (2.2.18)
    |ε|<min{2δ(γ2γ3+γ1)+4δ(γ2γ3+γ1)2+πδγ2σγ2π,                      2δ(γ2γ4+1)+4δ(γ2γ4+1)2+πδγ2σγ2π}, (2.2.19)

    where γ1=max{1,c1c132}, γ2=1+1λ+δ2β2δ,γ3=32δ+12β2+2β2δ+1, γ4=32δ+12β2+2β2δ.

    Moreover,

    0eσsg(,τ+s)21ds<,   τR, (2.2.20)

    and

    limk0eσs|x|k|g(x,τ+s)|2dxds=0,τR, (2.2.21)

    where || denotes the absolute value of real number in R.

    Given a bounded nonempty subset B of E, we write B=supϕBϕE. Let D={D(τ,ω):τR,ωΩ} be a family of bounded nonempty subsets of E such that for every τR,ωΩ,

    limseσsD(τ+s,θsω)2E=0. (2.2.22)

    Let D be the collection of all such families, that is,

    D={D={D(τ,ω):τR,ωΩ}: D satisfies (2.2.22)}. (2.2.23)

    In this section, we conduct uniform estimates on the weak solutions of the stochastic plate Eqs. (2.2.1)–(2.2.3) defined on Rn, through the converted random Eq. (2.2.11)–(2.2.13), for the purposes of showing the existence of a pullback absorbing sets and the pullback asymptotic compactness of the cocycle.

    We define a new norm E by

    YE=(v2+(λ+δ2β2δ)u2+Δu2)12,  for  Y=(u,v)E. (2.3.1)

    It is easy to check that E is equivalent to the usual norm H2×L2 in (2.2.14). First we show that the cocycle Φ has a pullback D-absorbing set in D.

    Lemma 2.3.1 Under Assumptionsand Ⅱ, for every τR,ωΩ, D={D(τ,ω):τR,ωΩ}D, there exists T=T(τ,ω,D)>0 such that for all tT the solution of problem (2.2.11)–(2.2.13) satisfies

    Y(τ,τt,θτω,D(τt,θtω))2ER1(τ,ω),

    and R1(τ,ω) is given by

    R1(τ,ω)=M+M0e2s0[σγ1|ε||z(θrω)|γ2(12ε2|z(θrω)|2+γ3|ε||z(θtω)|)]dr             (g(,s+τ)2+|ε||z(θsω)|)ds (2.3.2)

    where M is a positive constant independent of τ,ω,D and ε.

    Proof. Taking the inner product of (2.2.12) with v in L2(Rn), we find that

    12ddtv2(δεz(θtω))v2+(λ+δ2)(u,v)+(Au,v)+(f(x,u),v)=εz(θtω)(3δεz(θtω))(u,v)(h(v+εuz(θtω)δu),v)+(g(x,t),v). (2.3.3)

    By the first equation of (2.2.11), we have

    v=utεuz(θtω)+δu. (2.3.4)

    By (2.2.9) and Lagrange's mean value theorem, we have

    (h(v+εuz(θtω)δu),v)=(h(v+εuz(θtω)δu)h(0),v)=(h(ϑ)(v+εuz(θtω)δu),v)β1v2(h(ϑ)(εuz(θtω)δu),v)β1v2+β2|ε||z(θtω)|uv+h(ϑ)δ(u,v), (2.3.5)

    where ϑ is between 0 and v+εuz(θtω)δu.

    By (2.2.9) and (2.3.4), we get

    h(ϑ)δ(u,v)=h(ϑ)δ(u,utεuz(θtω)+δu)β2δ12ddtu2+β2δ2u2+β2δ|ε||z(θtω)|u2. (2.3.6)

    Substituting (2.3.4) into the third and fourth terms on the left-hand side of (2.3.3), we find that

    (u,v)=(u,utεuz(θtω)+δu)12ddtu2+δu2|ε||z(θtω)|u2, (2.3.7)

    and

    (Au,v)=(Δu,Δv)=(Δu,Δutεz(θtω)Δu+δΔu)12ddtΔu2+δΔu2|ε||z(θtω)|Δu2. (2.3.8)

    For the first term on the right-hand side of (2.3.3), by (2.3.5), using the Cauchy-Schwarz inequality and Young's inequality, we have

    εz(θtω)(3δεz(θtω))(u,v)+β2|ε||z(θtω)|uv=(3δεz(θtω)ε2z2(θtω))(u,v)+β2|ε||z(θtω)|uv(3δ|ε||z(θtω)|+ε2|z(θtω)|2)uv+β2|ε||z(θtω)|uv=((3δ+β2)|ε||z(θtω)|+ε2|z(θtω)|2)uv(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)(u2+v2), (2.3.9)

    and for the last term on the right-hand side of (2.3.3),

    (g,v)gvg22(β1δ)+β1δ2v2. (2.3.10)

    Let ˜F(x,u)=RnF(x,u)dx. Then for the last term on the left-hand side of (2.3.3) we have

    (f(x,u),v)=(f(x,u),utεz(θtω)u+δu)=ddt˜F(x,u)+δ(f(x,u),u)εz(θtω)(f(x,u),u). (2.3.11)

    By condition (2.2.4) and (2.2.6), we have

    εz(θtω)(f(x,u),u)c1|ε||z(θtω)|Rn|u|γ+1dx+|ε||z(θtω)|ϕ12+|ε||z(θtω)|u2c1c13|ε||z(θtω)|Rn(F(x,u)+ϕ3)dx+|ε||z(θtω)|ϕ12+|ε||z(θtω)|u2c1c13|ε||z(θtω)|˜F(x,u)+c|ε||z(θtω)|+|ε||z(θtω)|u2. (2.3.12)

    Substitute (2.3.5)–(2.3.12) into (2.3.3) and together with (2.2.5) to obtain

    12ddt(v2+(λ+δ2β2δ)u2+Δu2+2˜F(x,u))+δ(v2+(λ+δ2β2δ)u2+Δu2)+δc2˜F(x,u)c+(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)(u2+v2)+|ε||z(θtω)|(v2+(λ+δ2+β2δ)u2+Δu2)+|ε||z(θtω)|u2+3δβ12v2+g22(β1δ)+c1c13|ε||z(θtω)|˜F(x,u)+c|ε||z(θtω)|(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)(u2+v2)+γ1|ε||z(θtω)|(v2+(λ+δ2+β2δ)u2+Δu2+2˜F(x,u))+|ε||z(θtω)|u2+c(1+g2+|ε||z(θtω)|), (2.3.13)

    where γ1=max{1,c1c132}.

    Let σ=12min{δ,δc2}, then

    12ddt(v2+(λ+δ2β2δ)u2+Δu2+2˜F(x,u))[σγ1|ε||z(θtω)|γ2(12ε2|z(θtω)|2+γ3|ε||z(θtω)|)](v2+(λ+δ2β2δ)u2+Δu2+2˜F(x,u))+c(1+g2+|ε||z(θtω)|), (2.3.14)

    where γ2=1+1λ+δ2β2δ, γ3=32δ+12β2+2β2δ+1.

    Let us denote

    ϱ(τ,ω)=σγ1|ε||z(θtω)|γ2(12ε2|z(θtω)|2+γ3|ε||z(θtω)|). (2.3.15)

    Using the Gronwall inequality to integrate (2.3.14) over (τt,τ) with t0, we get

    v(τ,τt,ω,v0)2+(λ+δ2β2δ)u(τ,τt,ω,u0)2+Δu(τ,τt,ω,u0)2+2˜F(x,u(τ,τt,ω,u0))(v02+(λ+δ2β2δ)u02+Δu02+2˜F(x,u0))e2τtτϱ(s,ω)ds+cττte2sτϱ(r,ω)dr(1+g(,s)2+|ε||z(θsω)|)ds. (2.3.16)

    Replacing ω by θτω in the above we obtain, for every tR+, τR, and ωΩ,

    v(τ,τt,θτω,v0)2+(λ+δ2β2δ)u(τ,τt,θτω,u0)2+Δu(τ,τt,θτω,u0)2+2˜F(x,u(τ,τt,θτω,u0))(v02+(λ+δ2β2δ)u02+Δu02+2˜F(x,u0))e2τtτϱ(sτ,ω)ds+cττte2sτϱ(rτ,ω)dr(1+g(,s)2+|ε||z(θsτω)|)ds, (2.3.17)

    then

    v(τ,τt,θτω,v0)2+(λ+δ2β2δ)u(τ,τt,θτω,u0)2+Δu(τ,τt,θτω,u0)2+2˜F(x,u(τ,τt,θτω,u0))(v02+(λ+δ2β2δ)u02+Δu02+2˜F(x,u0))e2t0ϱ(s,ω)ds+c0te2s0ϱ(r,ω)dr(1+g(,s+τ)2+|ε||z(θsω)|)ds. (2.3.18)

    Since |z(θtω)| is stationary and ergodic, from (2.2.10) and the ergodic theorem we can get

    limt1t0t|z(θrω)|dr=E(|z(θrω)|)=1πδ, (2.3.19)
    limt1t0t|z(θrω)|2dr=E(|z(θrω)|2)=12δ. (2.3.20)

    By (2.3.19)–(2.3.20), there exists T1(ω)>0 such that for all tT1(ω),

    0t|z(θrω)|dr<2πδ t,    0t|z(θrω)|2dr<1δ t. (2.3.21)

    Next we show that for any sT1

    e2s0ϱ(r,ω)dreσs. (2.3.22)

    By using the two inequalities in (2.3.21), we have

    s0[σγ1|ε||z(θrω)|γ2(12ε2|z(θrω)|2+γ3|ε||z(θrω)|)]dr>σs|ε|2γ1πδsγ2[12ε21δ+γ3|ε|2πδ]s=γ22δε2s2πδ[γ3γ2+γ1]|ε|s+σs. (2.3.23)

    In order to have the inequality in (2.3.22) valid, we need

    s0[σγ1|ε||z(θrω)|γ2(12ε2|z(θrω)|2+γ3|ε||z(θrω)|)]drσ2s.

    Since sT1, then it requires that

    γ22δε2+2πδ[γ3γ2+γ1]|ε|σ2<0.

    Solving this quadratic inequality, ε needs to satisfy (2.2.19) as we have assumed in Assumption Ⅱ.

    Since |z(θtω)| is tempered, by (2.2.20) and (2.3.22), we see that the following integral is convergent,

    R22(τ,ω)=c0e2s0ϱ(r,ω)dr(1+g(,s+τ)2+|ε||z(θsω)|)ds. (2.3.24)

    Note that (2.2.8) implies

    RnF(x,u0)dxc(1+u02+u0γ+1H2). (2.3.25)

    Since DD and (u0,v0)D(τt,θtω), for all tT1, we get from (2.3.24) and (2.3.25) that

    (v02+(λ+δ2β2δ)u02+Δu02+2˜F(x,u0))e2t0ϱ(s,ω)dsceσt(1+v02+u02H2+u0γ+1H2)ceσt(1+D(τt,θtω)2+D(τt,θtω)γ+1)0,  as  t+. (2.3.26)

    From (2.3.1), (2.3.18), (2.3.24) and (2.3.26), there exists T2=T2(τ,ω,D)T1 such for all that tT2,

    Y(τ,τt,θτω,Y0(θτω))2Ec(1+R22(τ,ω)),

    thus the proof is completed.

    The following lemmas will be used to show the uniform estimates of solutions as well as to establish pullback asymptotic compactness.

    Lemma 2.3.2 Under Assumptionsand Ⅱ, for every τR,ωΩ, D={D(τ,ω):τR,ωΩ}D, there exists T=T(τ,ω,D)>0 such that for all tT, s[t,0], the solution of problem (2.2.11)–(2.2.13) satisfies

    Y(τ+s,τt,θτω,D(τt,θtω))2EM+R3(τ,ω)e20sϱ(r,ω)dr,

    where (u0,v0)D(τt,θtω), M is a positive constant independent of τ,ω,D and ε, and R3(τ,ω) is a specific random variable.

    Proof.Similar to (2.3.18), integrating (2.3.14) over (τt,τ+s) with t0 and s[t,0], we can obtain

    v(τ+s,τt,ω,v0)2+(λ+δ2β2δ)u(τ+s,τt,ω,u0)2+Δu(τ+s,τt,ω,u0)2+2˜F(x,u(τ+s,τt,ω,u0))(v02+(λ+δ2β2δ)u02+Δu02+2˜F(x,u0))e2τtτ+sϱ(rt,ω)dr+cτ+sτte2ζτ+sϱ(rτ,ω)dr(1+g(,ζ)2+|ε||z(θζτω)|)dζ(v02+(λ+δ2β2δ)u02+Δu02+2˜F(x,u0))e2tsϱ(r,ω)dr+cste2ζsϱ(r,ω)dr(1+g(,ζ+τ)2+|ε||z(θζω)|)dζ. (2.3.27)

    Moreover we have the following estimates for the last integral term on the right-hand side of (2.3.27):

    cste2ζsϱ(rt,ω)dr(1+g(,ζ+τ)2+|ε||z(θζω)|)dζ=c[T1te2ζsϱ(r,ω)dr+sT1e2ζsϱ(r,ω)dr](1+g(,ζ+τ)2+|ε||z(θζω)|)dζce20sϱ(r,ω)drT1te2ζ0ϱ(r,ω)dr(1+g(,ζ+τ)2+|ε||z(θζω)|)dζ+ce20sϱ(r,ω)dr0T1e2ζ0ϱ(r,ω)dr(1+g(,ζ+τ)2+|ε||z(θζω)|)dζce20sϱ(r,ω)drT1teσζ(1+g(,ζ+τ)2+|ε||z(θζω)|)dζ+ce20sϱ(r,ω)dr0T1e2ζ0ϱ(r,ω)dr(1+g(,ζ+τ)2+|ε||z(θζω)|)dζe20sϱ(r,ω)drR4(τ,ω), (2.3.28)

    where

    R4(τ,ω)= c0eσζ(1+g(,ζ+τ)2+|ε||z(θζω)|)dζ+c0T1e2ζ0ϱ(r,ω)dr(1+g(,ζ+τ)2+|ε||z(θζω)|)dζ.

    Note that R4(τ,ω) is well defined by (2.2.20) and that z(θtω) is tempered. On the other hand, as in (2.3.26), we find that there exists T3=T3(τ,ω,D)T1 such that for all tT3,

    (v02+(λ+δ2β2δ)u02+Δu02+2˜F(x,u0))e2tsϱ(r,ω)drce20sϱ(r,ω)dre2t0ϱ(r,ω)dr(v02+(λ+δ2β2δ)u02+Δu02+2˜F(x,u0))e20sϱ(r,ω)drR4(τ,ω). (2.3.29)

    It follows from (2.3.27)–(2.3.29) and (2.3.25) that, for all tT3,s[t,0], and ε satisfying (2.2.16),

    v(τ+s,τt,θτω,v0)2+(λ+δ2β2δ)u(τ+s,τt,θτω,u0)2+Δu(τ+s,τt,θτω,u0)22e20sϱ(r,ω)drR4(τ,ω). (2.3.30)

    The proof is completed.

    Lemma 2.3.3 Under Assumptionsand Ⅱ, for every τR,ωΩ, D={D(τ,ω):τR,ωΩ}D, there exists T=T(τ,ω,D)>0 such that for all tT the solution of problem (2.2.11)–(2.2.13) satisfies

    A14Y(τ,τt,θτω,D(τt,θtω))2ER5(τ,ω),

    and R5(τ,ω) is given by

    R5(τ,ω)=R26(τ,ω)+ceσt(A14v02+A14u02+A34u02), (2.3.31)

    where (u0,v0)D(τt,θtω), c is a positive constant independent of τ,ω,D and ε, and R6(τ,ω) is a specific random variable.

    Proof. Taking the inner product of (2.2.12) with A12v in L2(Rn), we find that

    12ddtA14v2(δεz(θtω))A14v2+(λ+δ2)(u,A12v)+(Au,A12v)+(f(x,u),A12v)=εz(θtω)(3δεz(θtω))(u,A12v)(h(v+εuz(θtω)δu),A12v)+(g(x,t),A12v). (2.3.32)

    Similar to the proof of Lemma 2.3.1, we have the following estimates:

    (h(v+εuz(θtω)δu),A12v)=(h(v+εuz(θtω)δu)h(0),A12v)=(h(ϑ)(v+εuz(θtω)δu),A12v)β1A14v2(h(ϑ)(εuz(θtω)δu),A12v)β1A14v2+β2|ε||z(θtω)|A14uA14v+h(ϑ)δ(u,A12v), (2.3.33)
    h(ϑ)δ(u,A12v)=h(ϑ)δ(u,A12utεz(θtω)A12u)+δA12u)β2δ12ddtA14u2+β2δ2A14u2+β2δ|ε||z(θtω)|A14u2, (2.3.34)
    (u,A12v)=(u,A12utεz(θtω)A12u+δA12u)12ddtA14u2+δA14u2|ε||z(θtω)|A14u2, (2.3.35)
    (Au,A12v)=(Au,A12utεz(θtω)A12u+δA12u)12ddtA34u2+δA34u2|ε||z(θtω)|A34u2, (2.3.36)
    εz(θtω)(3δεz(θtω))(u,A12v)+β2|ε||z(θtω)|A14uA14v=(3δεz(θtω)ε2z2(θtω))(u,A12v)+β2|ε||z(θtω)|A14uA14v(3δ|ε||z(θtω)|+ε2|z(θtω)|2)A14uA14v+β2|ε||z(θtω)|A14uA14v=((3δ+β2)|ε||z(θtω)|+ε2|z(θtω)|2)uv(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)(A14u2+A14v2), (2.3.37)
    (g,A12v)g1A14vg212(β1δ)+β1δ2A14v2. (2.3.38)

    For the last term on the left-hand side of (2.3.32), by (2.2.7), we have

    (f(x,u),A12v)=Rnxf(x,u)A14vdxRnuf(x,u)A14uA14vdxRn|xf(x,u)||A14v|dx+βRn|A14u||A14v|dxRn|η4||A14v|dx+βRn|A14u||A14v|dxη4A14v+βA14uA14vc12+(δ+β22δ(λ+δ2β2δ))A14v2+12δ(λ+δ2β2δ)A14u2. (2.3.39)

    Substitute (2.3.33)–(2.3.39) into (2.3.32) and together with (2.2.18) to obtain

    12ddt(A14v2+(λ+δ2β2δ)A14u2+A34u2)+σ(A14v2+(λ+δ2β2δ)A14u2+A34u2)(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)(A14u2+A14v2)+|ε||z(θtω)|(A14v2+(λ+δ2+β2δ)A14u2+A34u2)+g212(β1δ). (2.3.40)

    Then

    12ddt(A14v2+(λ+δ2β2δ)A14u2+A34u2)[σ|ε||z(θtω)|γ2(12ε2|z(θtω)|2+γ4|ε||z(θtω)|)](A14v2+(λ+δ2β2δ)A14u2+A34u2)+g212(β1δ), (2.3.41)

    where γ4=32δ+12β2+2β2δ.

    Let us denote

    ϱ1(τ,ω)=σ|ε||z(θtω)|γ2(12ε2|z(θtω)|2+γ4|ε||z(θtω)|). (2.3.42)

    Using the Gronwall inequality to integrate (2.3.42) over (τt,τ) with t0, we get

    A14v(τ,τt,ω,v0)2+(λ+δ2β2δ)A14u(τ,τt,ω,u0)2+A34u(τ,τt,ω,u0)2(A14v02+(λ+δ2β2δ)A14u02+A34u02)e2τtτϱ1(s,ω)ds+cττte2sτϱ1(r,ω)drg(,s)21ds. (2.3.43)

    Replacing ω by θτω in (2.3.43), for every tR+, τR, and ωΩ,

    A14v(τ,τt,θτω,v0)2+(λ+δ2β2δ)A14u(τ,τt,θτω,u0)2+A34u(τ,τt,θτω,u0)2(A14v02+(λ+δ2β2δ)A14u02+A34u02)e2τtτϱ1(sτ,ω)ds+cττte2sτϱ1(rτ,ω)drg(,s)21ds, (2.3.44)

    then

    A14v(τ,τt,θτω,v0)2+(λ+δ2β2δ)A14u(τ,τt,θτω,u0)2+A34u(τ,τt,θτω,u0)2(A14v02+(λ+δ2β2δ)A14u02+A34u02)e2t0ϱ1(s,ω)ds+c130te2s0ϱ1(r,ω)drg(,s+τ)21ds. (2.3.45)

    Next we show that for any sT1

    e2s0ϱ1(r,ω)dreσs. (2.3.46)

    In fact, using the two inequalities in (2.3.21), we have

    s0[σ|ε||z(θrω)|γ2(12ε2|z(θrω)|2+γ4|ε||z(θrω)|)]dr>σs|ε|2πδsγ2[12ε21δ+γ4|ε|2πδ]s=γ22δε2s2πδ[γ4γ2+1]|ε|s+δs.

    In order to have the inequality in (2.3.46) valid, we need

    s0[σ|ε||z(θrω)|γ2(12ε2|z(θrω)|2+γ4|ε||z(θrω)|)]drσ2s.

    Since sT1, then it requires that

    γ22δε2+2πδ[γ4γ2+1]|ε|σ2<0.

    Solving this quadratic inequality, ε needs to satisfy (2.2.19).

    By (2.2.20) and (2.3.46), we see that the following integral is convergent,

    R26(τ,ω)=c0e2s0ϱ1(r,ω)drg(,s+τ)21ds. (2.3.47)

    For all tT1, we get from (2.3.46) that

    (A14v02+(λ+δ2β2δ)A14u02+A34u02)e2t0Γ1(s,ω)dsceσt(A14v02+A14u02+A34u02). (2.3.48)

    From (2.3.1), (2.3.45), (2.3.47) and (2.3.48), there exists T4=T4(τ,ω,D)T1 such for all that tT4,

    A14Y(τ,τt,θτω,Y0(θτω))2ER26(τ,ω)+ceσt(A14v02+A14u02+A34u02). (2.3.49)

    Thus the proof is completed.

    Next we conduct uniform estimates on the tail parts of the solutions for large space variables when time is sufficiently large in order to prove the pullback asymptotic compactness of the cocycle associated with Eqs.(2.2.11)–(2.2.13) on the unbounded domain Rn.

    Lemma 2.3.4 Under Assumptionsand Ⅱ, for every η>0,τR,ωΩ, D={D(τ,ω):τR,ωΩ}D, there exists T=T(τ,ω,D,η)>0,K=K(τ,ω,η)1 such that for all tT, kK, the solution of problem (2.2.11)–(2.2.13) satisfies

    Y(τ,τt,θτω,D(τt,θtω))2E(RnBk)η, (2.3.50)

    where for k1, Bk={xRn:|x|k} and RnBk is the complement of Bk.

    Proof. Choose a smooth function ρ, such that 0ρ1 for sR, and

    ρ(s)={0,   if  0|s|1,1,   if  |s|2, (2.3.51)

    and there exist constants μ1,μ2,μ3,μ4 such that |ρ(s)|μ1,|ρ(s)|μ2,|ρ(s)|μ3,|ρ(s)|μ4 for sR. Taking the inner product of (2.2.10) with ρ(|x|2k2)v in L2(Rn), we obtain

    12ddtRnρ(|x|2k2)|v|2dx(δεz(θtω))Rnρ(|x|2k2)|v|2dx     +(λ+δ2)Rnρ(|x|2k2)uvdx+Rn(Au)ρ(|x|2k2)vdx+Rnρ(|x|2k2)f(x,u)vdx=εz(θtω)(3δεz(θtω))Rnρ(|x|2k2)uvdx     Rnρ(|x|2k2)(h(v+εuz(θtω)δu)vdx+Rnρ(|x|2k2)g(x,t)vdx. (2.3.52)

    First, by (2.2.9), similar to (2.3.5), we have

    Rnρ(|x|2k2)(h(v+εuz(θtω)δu)vdx=Rnρ(|x|2k2)(h(v+εuz(θtω)δu)h(0))vdxβ1Rnρ(|x|2k2)|v|2dx+h(ϑ)δRnρ(|x|2k2)uvdx+β2|ε||z(θtω)|Rnρ(|x|2k2)|u||v|dx. (2.3.53)

    Taking (2.3.53) into (2.3.52), we have

    12ddtRnρ(|x|2k2)|v|2dx(δεz(θtω)β1)Rnρ(|x|2k2)|v|2dx+(λ+δ2h(ϑ)δ)Rnρ(|x|2k2)uvdx+Rn(Au)ρ(|x|2k2)vdx+Rnρ(|x|2k2)f(x,u)vdxεz(θtω)(3δεz(θtω))Rnρ(|x|2k2)uvdx+Rnρ(|x|2k2)g(x,t)vdx+β2|ε||z(θtω)|Rnρ(|x|2k2)|u||v|dx. (2.3.54)

    For the third term on the left-hand side of (2.3.54), we have

    (λ+δ2h(ϑ)δ)Rnρ(|x|2k2)uvdx=(λ+δ2h(ϑ)δ)Rnρ(|x|2k2)u(dudt+δuεuz(θtω))dx=(λ+δ2h(ϑ)δ)Rnρ(|x|2k2)(12ddtu2+(δεz(θtω))u2)dx(λ+δ2β2δ)(12ddtRnρ(|x|2k2)|u|2dx+δRnρ(|x|2k2)|u|2dx)(λ+δ2+β2δ)|ε||z(θtω)|Rnρ(|x|2k2)|u|2dx. (2.3.55)

    For the fourth term on the left-hand side of (2.3.54), we have

    Rn(Au)ρ(|x|2k2)vdx=Rn(Au)ρ(|x|2k2)(dudt+δuεuz(θtω))dx=Rn(Δ2u)ρ(|x|2k2)(dudt+δuεz(θtω)u)dx=Rn(Δu)Δ(ρ(|x|2k2)(dudt+δuεz(θtω)u))dx=Rn(Δu)((2k2ρ(|x|2k2)+4x2k4ρ(|x|2k2))(dudt+δuεz(θtω)u)+22|x|k2ρ(|x|2k2)(dudt+δuεz(θtω)u)+ρ(|x|2k2)Δ(dudt+δuεz(θtω)u))dxk<x<2k(2μ1k2+4μ2x2k4)|(Δu)v|dxk<x<2k4μ1xk2|(Δu)(v)|dx+12ddtRnρ(|x|2k2)|Δu|2dx+δRnρ(|x|2k2)|Δu|2dxεz(θtω)Rnρ(|x|2k2)|Δu|2dxRn(2μ1+8μ2k2)|(Δu)v|dxRn42μ1k|(Δu)(v)|dx+12ddtRnρ(|x|2k2)|Δu|2dx+δRnρ(|x|2k2)|Δu|2dxεz(θtω)Rnρ(|x|2k2)|Δu|2dxμ1+4μ2k2(Δu2+v2)42μ1kΔuv+12ddtRnρ(|x|2k2)|Δu|2dx+δRnρ(|x|2k2)|Δu|2dxεz(θtω)Rnρ(|x|2k2)|Δu|2dxμ1+4μ2k2(Δu2+v2)22μ1k(Δu2+v2)+12ddtRnρ(|x|2k2)|Δu|2dx(|ε||z(θtω)|δ)Rnρ(|x|2k2)|Δu|2dx. (2.3.56)

    For the fifth term on the left-hand side of (2.3.54), we have

    Rnρ(|x|2k2)f(x,u)vdx=Rnρ(|x|2k2)f(x,u)(dudt+δuεz(θtω)u)dx=ddtRnρ(|x|2k2)F(x,u)dx+δRnρ(|x|2k2)f(x,u)udxεz(θtω)Rnρ(|x|2k2)f(x,u)udx. (2.3.57)

    By (2.2.5), we see that

    Rnρ(|x|2k2)f(x,u)udxc2Rnρ(|x|2k2)F(x,u)dx+Rnρ(|x|2k2)ϕ2(x)dx, (2.3.58)

    On the other hand, by (2.2.4) and (2.2.6),

    εz(θtω)Rnρ(|x|2k2)f(x,u)udxc|ε||z(θtω)|Rnρ(|x|2k2)F(x,u)dx+c|ε||z(θtω)|Rnρ(|x|2k2)|u|2dx+c|ε||z(θtω)|Rnρ(|x|2k2)(|ϕ1|2+|ϕ3|)dx. (2.3.59)

    Similar to (2.3.9) and (2.3.10) in Lemma 2.3.1, we get

    εz(θtω)(3δεz(θtω))Rnρ(|x|2k2)uvdx+β2|ε||z(θtω)Rnρ(|x|2k2)||u||v|dx(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)Rnρ(|x|2k2)(|u|2+|v|2)dx. (2.3.60)
    Rnρ(|x|2k2)g(x,t)vdx12(β1δ)Rnρ(|x|2k2)|g(x,t)|2dx+β1δ2Rnρ(|x|2k2)|v|2dx. (2.3.61)

    Assemble together (2.3.54)–(2.3.61) to obtain

    12ddtRnρ(|x|2k2)(|v|2+(λ+δ2β2δ)|u|2+|Δu|2+2F(x,u))dx+δRnρ(|x|2k2)(|v|2+(λ+δ2β2δ)|u|2+|Δu|2)dx+δc2Rnρ(|x|2k2)F(x,u)dxμ1+4μ2k2(|Δu|2+|v|2)+22μ1k(|Δu|2+|v|2)+(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)Rnρ(|x|2k2)(|u|2+|v|2)dx+cRnρ(|x|2k2)|g(x,t)|2dx+c|ε||z(θtω)|Rnρ(|x|2k2)F(x,u)dx+c|ε||z(θtω)|Rnρ(|x|2k2)|u|2dx+c|ε||z(θtω)|Rnρ(|x|2k2)(|ϕ1|2+|ϕ3|)dx+cRnρ(|x|2k2)ϕ2(x)dx+|ε||z(θtω)|Rnρ(|x|2k2)(|v|2+(λ+δ2+β2δ)|u|2+|Δu|2)dx. (2.3.62)

    Since that ϕ1L2(Rn), ϕ2, ϕ3L1(Rn), for given η>0, there exists K0=K0(η)1 such that for all kK0,

    cRnρ(|x|2k2)(|ϕ1|2+|ϕ2|+|ϕ3|)dx=c|x|kρ(|x|2k2)(|ϕ1|2+|ϕ2|+|ϕ3|)dxc|x|k(|ϕ1|2+|ϕ2|+|ϕ3|)dxη. (2.3.63)

    Using the expression (2.3.15), we conclude from (2.3.62) that

    12ddtRnρ(|x|2k2)(|v|2+(λ+δ2β2δ)|u|2+|Δu|2+2F(x,u))dxϱ(t,ω)Rnρ(|x|2k2)(|v|2+(λ+δ2β2δ)|u|2+|Δu|2+2F(x,u))dx+μ1+4μ2k2(|Δu|2+|v|2)+22μ1k(|Δu|2+|v|2)+cRnρ(|x|2k2)|g(x,t)|2dx+η(1+|ε||z(θtω)|). (2.3.64)

    Integrating (2.3.64) over (τt,τ) for tR+ and τR, we get

    Rnρ(|x|2k2)(|v(τ,τt,ω,v0)|2+(λ+δ2β2δ)|u(τ,τt,ω,u0)|2)dx+Rnρ(|x|2k2)(|Δu(τ,τt,ω,u0)|2+2F(x,u(τ,τt,ω,u0)))dxe2τtτϱ(μ,ω)dμRnρ(|x|2k2)(|v0(x)|2+(λ+δ2β2δ)|u0(x)|2)dx+e2τtτϱ(μ,ω)dμRnρ(|x|2k2)(|Δu0(x)|2+2F(x,u0(x)))dx+cττte2sτϱ(μ,ω)dμRnρ(|x|2k2)|g(x,s)|2dsdx+ηττte2sτϱ(μ,ω)dμ(1+|ε||z(θsω)|)ds+μ1+4μ2k2ττte2sτϱ(μ,ω)dμ(|Δu(s,τt,ω,u0)|2+|v(s,τt,ω,v0)|2)ds+22μ1kττte2sτϱ(μ,ω)dμ(|Δu(s,τt,ω,u0)|2+|v(s,τt,ω,v0)|2)ds. (2.3.65)

    Replacing ω by θτω in (2.3.65) and by (2.3.51) we obtain, for every tR+, τR, and ωΩ,

    Rnρ(|x|2k2)(|v(τ,τt,θτω,v0)|2+(λ+δ2β2δ)|u(τ,τt,θτω,u0)|2)dx+Rnρ(|x|2k2)(|Δu(τ,τt,θτω,u0)|2+2F(x,u(τ,τt,θτω,u0)))dxe2τtτϱ(μτ,ω)dμRnρ(|x|2k2)(|v0(x)|2+(λ+δ2β2δ)|u0(x)|2)dx+e2τtτϱ(μτ,ω)dμRnρ(|x|2k2)(|Δu0(x)|2+2F(x,u0(x)))dx+cττte2sτϱ(μτ,ω)dμRnρ(|x|2k2)|g(x,s)|2dsdx+ηττte2sτϱ(μτ,ω)dμ(1+|ε||z(θsτω)|)ds+μ1+4μ2k2ττte2sτϱ(μτ,ω)dμ(Δu(s,τt,θτω,u0)2+v(s,τt,θτω,v0)2)ds+22μ1kττte2sτϱ(μτ,ω)dμ(Δu(s,τt,θτω,u0)2+v(s,τt,θτω,v0)2)dse2t0ϱ(μ,ω)dμ(v0(x)2+(λ+δ2β2δ)u0(x)2+Δu0(x)2+2˜F(x,u0(x)))dx+c0te2s0ϱ(μ,ω)dμRnρ(|x|2k2)|g(x,s+τ)|2dsdx+η0te2s0ϱ(μ,ω)dμ(1+|ε||z(θsω)|)ds+μ1+4μ2k2ττte2sτϱ(μτ,ω)dμ(Δu(s,τt,θτω,u0)2+v(s,τt,θτω,v0)2)ds+22μ1kττte2sτϱ(μτ,ω)dμ(Δu(s,τt,θτω,u0)2+v(s,τt,θτω,v0)2)ds. (2.3.66)

    It is similar to (2.3.26), for an arbitrarily given η>0, there exists T=T(τ,ω,D,η) such that for all tT,

    e2t0ϱ(μ,ω)dμ(v0(x)2+(λ+δ2β2δ)u0(x)2+Δu0(x)2+2˜F(x,u0(x)))dxη. (2.3.67)

    For the second and third terms on the right-hand of (2.3.66), by Lemma 2.3.1 and Lemma 2.3.3, for all tmax{T2, T4},

    μ1+4μ2k2ττte2sτϱ(μτ,ω)dμ(Δu(s,τt,θτω,u0)2+v(s,τt,θτω,v0)2)ds+22μ1kττte2sτϱ(μτ,ω)dμ(Δu(s,τt,θτω,u0)2+v(s,τt,θτω,v0)2)dsη(R21(τ,ω)+R25(τ,ω)). (2.3.68)

    For the fourth term on the right-hand side of (2.3.66), there exists K1=K1(τ,ω)1 such that for all kK1, by (2.3.22), we get

    0e2s0ϱ(μ,ω)dμRnρ(|x|2k2)|g(x,s+τ)|2dsdxT1e2s0ϱ(μ,ω)dμ|x|k|g(x,s+τ)|2dsdx+0T1e2s0ϱ(μ,ω)dμ|x|k|g(x,s+τ)|2dsdxT1eσs|x|k|g(x,s+τ)|2dsdx+ec0T1eσs|x|k|g(x,s+τ)|2dsdx, (2.3.69)

    where c>0 is a random variable independent of τR and DD, i.e.

    c=(σ2+|ε|maxT1μ0|z(θμω)|+γ2(12ε2maxT1μ0z2(θμω)+γ3|ε|maxT1μ0|z(θμω)|))T1.

    Therefore, by (2.2.21) there exists K2(τ,ω)K1 such that for all kK2, we obtain

    c0e2s0ϱ(μ,ω)dμRnρ(|x|2k2)|g(x,s+τ)|2dsdxec0eσs|x|k|g(x,s+τ)|2dsdxη. (2.3.70)

    Let

    R7(τ,ω)=0e2s0ϱ(μ,ω)dμ(1+|ε||z(θsω)|)ds, (2.3.71)

    by (2.3.22), we know that the integral of (2.3.71) is convergent.

    Together with (2.3.66)–(2.3.70), we have

    Rnρ(|x|2k2)(|v(τ,τt,θτω,v0)|2+(λ+δ2β2δ)|u(τ,τt,θτω,u0)|2)dx+Rnρ(|x|2k2)(|Δu(τ,τt,θτω,u0)|2+2F(x,u(τ,τt,θτω,u0)))dx2η(1+R21(τ,ω)+R25(τ,ω)+R7(τ,ω)). (2.3.72)

    It follows from (2.3.25) and (2.3.72) that there exists K3=K3(τ,ω)K2, such for all kK3, tmax{T2, T4},

    |x|2kρ(|x|2k2)(|v(τ,τt,θτω,v0)|2+(λ+δ2β2δ)|u(τ,τt,θτω,u0)|2)dx+Rnρ(|x|2k2)(|Δu(τ,τt,θτω,u0)|2)dx3η(1+R21(τ,ω)+R25(τ,ω)+R7(τ,ω)),

    which implies (2.3.50).

    We now derive uniform estimates of solutions in bounded domains. These estimates will be used to establish pullback asymptotic compactness. Let ˆρ=1ρ with ρ given by (2.3.51). Fix k1, and set

    {ˆu(t,τ,ω,^u0)=ˆρ(|x|2k2)u(t,τ,ω,u0),ˆv(t,τ,ω,^v0)=ˆρ(|x|2k2)v(t,τ,ω,v0). (2.3.73)

    By (2.2.11)–(2.2.13) we find that ˆu and ˆv satisfy the following system in B2k={xRn:|x|<2k}:

    dˆudt=ˆv+εˆuz(θtω)δˆu, (2.3.74)
    dˆvdtδˆv+(δ2+λ+A)ˆu+ˆρ(|x|2k2)f(u)=ˆρ(|x|2k2)g(x,t)ˆρ(|x|2k2)h(v+εuz(θtω)δu)ε(ˆv3δˆu+εˆuz(θtω))z(θtω)+4Δˆρ(|x|2k2)u+6Δˆρ(|x|2k2)Δu+4ˆρ(|x|2k2)Δu+uΔ2ˆρ(|x|2k2), (2.3.75)

    with boundary conditions

    ˆu=ˆv=0   for   |x|=2k. (2.3.76)

    Let {en}n=1 be an orthonormal basis of L2(B2k) such that Aen=λnen with zero boundary condition in B2k. Given n, let Xn=span{e1,,en} and Pn:L2(B2k)Xn be the projection operator.

    Lemma 2.3.5 Under Assumptionsand Ⅱ, for every η>0,τR,ωΩ, D={D(τ,ω):τR,ωΩ}D, there exists T=T(τ,ω,D,η)>0,K=K(τ,ω,η)1 and N=N(τ,ω,η)1 such that for all tT, kK and nN, the solution of problem (2.3.74)–(2.3.76) satisfies

    (IPn)ˆY(τ,τt,θτω,D(τt,θτω))2E(B2k)η.

    Proof. Let ˆun,1=Pnˆu,ˆun,2=(IPn)ˆu,ˆvn,1=Pnˆv,ˆvn,2=(IPn)ˆv. Applying IPn to (2.3.74), we obtain

    ˆvn,2=dˆun,2dt+δˆun,2εz(θtω)ˆun,2. (2.3.77)

    Then applying IPn to (2.3.75) and taking the inner product with ˆvn,2 in L2(B2k), we have

    12ddtˆvn,22(δεz(θtω))ˆvn,22+(λ+δ2+A)(ˆun,2,ˆvn,2)+((IPn)ˆρ(|x|2k2)f(x,u),ˆvn,2)=((IPn)ˆρ(|x|2k2)g(x,t),ˆvn,2)+εz(θtω)(3δεz(θtω))(ˆun,2,ˆvn,2)(IPn)ˆρ(|x|2k2)(h(v+εz(θtω)δu),ˆvn,2)+(4Δˆρ(|x|2k2)u+6Δˆρ(|x|2k2)Δu+4ˆρ(|x|2k2)Δu+uΔ2ˆρ(|x|2k2),ˆvn,2). (2.3.78)

    Substituting ˆvn,2 in (2.3.77) into the third term on the left-hand side of (2.3.78), we have

    (ˆun,2,ˆvn,2)=(ˆun,2,dˆun,2dt+δˆun,2εz(θtω)ˆun,2)12ddtˆun,22+δˆun,22|ε||z(θtω)|ˆun,22, (2.3.79)

    and then

    (Aˆun,2,ˆvn,2)=(Δˆun,2,Δ(dˆun,2dt+δˆun,2εz(θtω)ˆun,2))12ddtΔˆun,22+δΔˆun,22|ε||z(θtω)|Δˆun,22. (2.3.80)

    For the fourth term on the left-hand side of (2.3.78), we have

    ((IPn)ˆρ(|x|2k2)f(x,u),ˆvn,2)=((IPn)ˆρ(|x|2k2)f(x,u),dˆun,2dt+δˆun,2εz(θtω)ˆun,2)=ddt((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)((IPn)ˆρ(|x|2k2)fu(x,u)ut,ˆun,2)+(δεz(θtω))((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2). (2.3.81)

    For the third term on the right-hand side of (2.3.78), we have

    (IPn)ˆρ(|x|2k2)(h(v+εz(θtω)δu),ˆvn,2)=(IPn)ˆρ(|x|2k2)(h(v+εz(θtω)δu)h(0),ˆvn,2)β1ˆvn,22+h(ϑ)δ(ˆun,2,ˆvn,2)+β2|ε||z(θtω)|ˆun,2ˆvn,2. (2.3.82)

    Using the Cauchy-Schwarz inequality and Young's inequality, we get

    εz(θtω)(3δεz(θtω))(ˆun,2,ˆvn,2)+β2|ε||z(θtω)|ˆun,2ˆvn,2=(3δεz(θtω)ε2z2(θtω))(ˆun,2,ˆvn,2)+β2|ε||z(θtω)|ˆun,2ˆvn,2(3δ|ε||z(θtω)|+ε2|z(θtω)|2)ˆun,2ˆvn,2+β2|ε||z(θtω)|ˆun,2ˆvn,2=((3δ+β2)|ε||z(θtω)|+ε2|z(θtω)|2)ˆun,2ˆvn,2(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)(ˆun,22+ˆvn,22), (2.3.83)

    and

    ((IPn)ˆρ(|x|2k2)g(x,t),ˆvn,2)β1δ4ˆvn,22+1β1δ(IPn)(ˆρ(|x|2k2)g(x,t))2. (2.3.84)

    Now, we estimate the last term in (2.3.78)

    (4Δˆρ(|x|2k2)u+6Δˆρ(|x|2k2)Δu+4ˆρ(|x|2k2)Δu+uΔ2ˆρ(|x|2k2),ˆvn,2)=(4u(12|x|k4ˆρ(|x|2k2)+8|x|3k6ˆρ(|x|2k2))+6Δu(2k2ˆρ(|x|2r2)+4x2k4ˆρ(|x|2k2))+8|x|k2Δuˆρ(|x|2k2)+u(12k4ˆρ(|x|2k2)+48x2k6ˆρ(|x|2k2)+16x4k8ˆρ(|x|2k2)),ˆvn,2)162(3μ2+4μ3)k3uˆvn,2+12(μ1+4μ2)k2Δuˆvn,2+82μ1kA34uˆvn,2+4(3μ2+24μ3+16μ4)k4uˆvn,28(48μ2+64μ3)2(β1δ)k6u2+4(12μ1+48μ2)2(β1δ)k4Δu2+512μ21(β1δ)k2A34u2+4(12μ2+96μ3+64μ4)2(β1δ)k8u2+β1δ4ˆvn,22. (2.3.85)

    Assemble together (2.3.78)–(2.3.85) to obtain

    12ddt[ˆvn,22+(λ+δ2β2δ)ˆun,22+Δˆun,22+2((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)]+(δ|ε||z(θtω)|)[ˆvn,22+(λ+δ2β2δ)ˆun,22+Δˆun,22+((IPn)ˆρ(|x|2k2)f(u),ˆun,2)](12(3δ+β2+4β2δ)|ε||z(θtω)|+12ε2|z(θtω)|2)(ˆvn,22+ˆun,22)+2β1δ(4(48μ2+64μ3)2k6u2+2(12μ1+48μ2)2k4Δu2+256μ21k2A34u2+2(12μ2+96μ3+64μ4)2k8u2+12(IPn)(ˆρ(|x|2k2)g(x,t))2)+3δβ12ˆvn,22+((IPn)ˆρ(|x|2k2)fu(x,u)ut,ˆun,2).

    It follows that

    ddt[ˆvn,22+(λ+δ2β2δ)ˆun,22+Δˆun,22+2((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)]2(δ+|ε||z(θtω)|+γ2(12(3δ+β2+4β2δ)|ε||z(θtω)|+12ε2|z(θtω)|2))[ˆvn,22+(λ+δ2β2δ)ˆun,22+Δˆun,22+2((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)]+4β1δ(4(48μ2+64μ3)2k6u2+2(12μ1+48μ2)2k4Δu2+256μ21k2A34u2+2(12μ2+96μ3+64μ4)2k8u2+12(IPn)(ˆρ(|x|2k2)g(x,t))2)+2((IPn)ˆρ(|x|2k2)fu(x,u)ut,ˆun,2)+2(δ|ε||z(θtω)|γ2(12(3δ+β2+4β2δ)|ε||z(θtω)|+12ε2|z(θtω)|2))((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)2ϱ(τ,ω)[ˆvn,22+(λ+δ2β2δ)ˆun,22+Δˆun,22+2((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)]+2[δ+σ(γ1+γ21)|ε||z(θtω)|][ˆvn,22+(λ+δ2β2δ)ˆun,22+Δˆun,22]+2((IPn)ˆρ(|x|2k2)fu(x,u)ut,ˆun,2)+4β1δ(4(48μ2+64μ3)2k6u2+2(12μ1+48μ2)2k4Δu2+256μ21k2A34u2+2(12μ2+96μ3+64μ4)2k8u2+12(IPn)(ˆρ(|x|2k2)g(x,t))2)+4(σ12δ)((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)+4[γ12|ε||z(θtω)|γ22(12ε2|z(θtω)|2+(12(3δ+β2+4β2δ+4)|ε||z(θtω)|))]((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2). (2.3.86)

    Let θ=n(γ1)4(γ+1). Since 1γn+4n4, we find that 0θ1. Then by (2.2.4) and interpolation inequalities, the last term on the right hand of (2.3.86) is bounded by

    4[γ12|ε||z(θtω)|γ22(12ε2|z(θtω)|2+(12(3δ+β2+4β2δ+4)|ε||z(θtω)|))]((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)c(1+|z(θtω)|2)[c1Rnˆρ(|x|2k2)|u|γ|ˆun,2|dx+Rnˆρ(|x|2k2)|η1(x)||ˆun,2|dx]c(1+|z(θtω)|2)(c1uγγ+1ˆun,2γ+1+η1ˆun,2)c(1+|z(θtω)|2)(c1uγγ+1Δˆun,2θˆun,21θ+λ12n+1η1Δˆun,2)c(1+|z(θtω)|2)[λ12n+1Δˆun,2(c1λθ2n+1uγH2+η1))]16(δσ)Δˆun,22+cλ1n+1(1+|z(θtω)|18+λθn+1u18H2(Rn)). (2.3.87)

    Similarly we have

    4(σ12δ)((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)16(δσ)Δˆun,22+cλ1n+1(1+λθn+1u18H2(Rn)). (2.3.88)

    On the other hand, by (2.2.7), using H¨older inequality and Young's inequality, we obtain

    2((IPn)ˆρ(|x|2k2)fu(x,u)ut,ˆun,2)16(δσ)Δˆun,22+cλ1n+1ut216(δσ)Δˆun,22+cλ1n+1(u2+v2+u4+|z(θtω)|4). (2.3.89)

    Then by (2.3.86)–(2.3.89), we obtain

    ddt[ˆvn,22+(λ+δ2β2δ)ˆun,22+Δˆun,22+2((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)]2ϱ(τ,ω)[ˆvn,22+(λ+δ2β2δ)ˆun,22+Δˆun,22+2((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)]+cλ1n+1[1+v18+(1+λθn+1)u18H2(Rn)+|z(θtω)|18]+ck6u2+ck4Δu2+ck2A34u2+ck8u2+c(IPn)(ˆρ(|x|2k2)g(x,t))2. (2.3.90)

    Note that λn when n. Therefore, given η>0, by Lemma 2.3.1 and 2.3.3, we know there exist N1=N1(η)1 and K4=K4(η)1 such for all nN1 and kK4,

    ddt[ˆvn,22+(λ+δ2β2δ)ˆun,22+Δˆun,22+2((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)]2ϱ(τ,ω)[ˆvn,22+(λ+δ2β2δ)ˆun,22+Δˆun,22+2((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2)]+η(1+v18+u18H2(Rn)+|z(θtω)|18)+c(IPn)(ˆρ(|x|2k2)g(x,t))2. (2.3.91)

    Integrating (2.3.91) over (τt,τ) with t0, we get for all nN1 and kK4,

    ˆvn,2(τ,τt,ω)2+(λ+δ2β2δ)ˆun,2(τ,τt,ω)2+Δˆun,2(τ,τt,ω)2+2((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2(τ,τt,ω))ce2τtτϱ(μ,ω)dμ(1+v02+u02H2(Rn))+ηττte2sτϱ(μ,ω)dμ(u(s,τt,ω,u0)18H2(Rn)+v(s,τt,ω,v0)18)ds+ηττte2sτϱ(μ,ω)dμ(1+|z(θsω)|18)ds+cττte2sτϱ(μ,ω)dμ(IPn)(ˆρ(|x|2k2)g(x,s))2ds.

    Replacing ω by θτω in the above we obtain, for every tR+, τR, ωΩ, nN1 and kK4,

    ˆvn,2(τ,τt,θτω)2+(λ+δ2β2δ)ˆun,2(τ,τt,θτω)2+Δˆun,2(τ,τt,θτω)2+2((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2(τ,τt,θτω))ce2τtτϱ(μτ,ω)dμ(1+v02+u0γ+1H2(Rn))+ηττte2sτϱ(μτ,ω)dμ(u(s,τt,θτω,u0)18H2(Rn)+v(s,τt,θτω,v0)18)ds+ηττte2sτϱ(μτ,ω)dμ(1+|z(θsτω)|18)ds+cττte2sτϱ(μτ,ω)dμ(IPn)(ˆρ(|x|2k2)g(x,s))2dsce2t0ϱ(μ,ω)dμ(1+v02+u0γ+1H2(Rn))+η0te2s0ϱ(μ,ω)dμ(u(s+τ,τt,θτω,u0)18H2(Rn)+v(s+τ,τt,θτω,v0)18)ds+η0te2s0ϱ(μ,ω)dμ(1+|z(θsω)|18)ds+c0te2s0ϱ(μ,ω)dμ(IPn)(ˆρ(|x|2k2)g(x,s+τ))2ds. (2.3.92)

    We now estimate every term on the right-hand side of (2.3.92). For the first term, as in (2.3.26), we find that there exists ˜T=˜T(τ,ω,D,η)>0 such for all t˜T,

    ce2t0ϱ(μ,ω)dμ(1+v02+u0γ+1H2(Rn))η. (2.3.93)

    For the second term on the right-hand side of (2.3.92), by Lemma 2.3.2 we have

    η0te2s0ϱ(μ,ω)dμ(u(s+τ,τt,θτω,u0)18H2(Rn)+v(s+τ,τt,θτω,v0)18)dsηc0te2s0ϱ(μ,ω)dμds+ηR93(τ,ω)0te16s0ϱ(μ,ω)dμdsηc0e2s0ϱ(μ,ω)dμds+η8σR93(τ,ω), (2.3.94)

    where R3(τ,ω) is the random variable given in Lemma 2.3.2. Note that by (2.3.22) the above integral is well defined, and so is the following one

    0e2s0ϱ(μ,ω)dμ(1+|z(θsω)|18)ds<. (2.3.95)

    For the last term on the right-hand side of (2.3.92), by (2.2.20) and (2.3.22), since gL2(Rn), there exists N2=N2(τ,ω,η)N1, such that for all nN2,

    0e2s0ϱ(μ,ω)dμ(IPn)(ˆρ(|x|2k2)g(x,s+τ))2ds<η. (2.3.96)

    According to (2.3.92)–(2.3.96) we find that, for every τR, ωΩ, t˜T, nN2 and kK4,

    ˆvn,2(τ,τt,θτω)2+(λ+δ2β2δ)ˆun,2(τ,τt,θτω)2+Δˆun,2(τ,τt,θτω)2+2((IPn)ˆρ(|x|2k2)f(x,u),ˆun,2(τ,τt,θτω))ηR8(τ,ω), (2.3.97)

    where R8(τ,ω) is a positive random variable. The proof is completed by (2.2.4) and (2.3.97).

    In this section, we prove existence and uniqueness of D- pullback attractors for the stochastic system (2.2.11)–(2.2.13). First we apply the Lemmas shown in Section 4 to prove the asymptotic compactness of solutions of (2.2.11)–(2.2.13) in E.

    Lemma 3.1 Under Assumptionsand Ⅱ, for every τR, ωΩ, the sequence of weak solutions of (2.2.11)–(2.2.13), {Y(τ,τtm,θτω,Y0(θtmω))}m=1 has a convergent subsequence in E whenever tm and Y0(θtmω)D(τtm,θtmω) with DD.

    Proof. Let tm and Y0(θtmω)D(τtm,θtmω) with DD. By Lemma 2.3.1, there exists m1=m1(τ,ω,D)>0 such for all mm1, we have

    Y(τ,τtm,θτω,Y0(θtmω))2ER1(τ,ω). (3.1)

    By Lemma 2.3.4, for every η>0, there exist k0=k0(τ,ω,η)1 and m2=m2(τ,ω,D,η)m1 such for all mm2,

    Y(τ,τt,θτω,D(τt,θtω))2E(RnBk0)η. (3.2)

    By Lemma 2.3.5, there exist k1=k1(τ,ω,η)k0 and m3=m3(τ,ω,D,η)m2 and n1=n1(τ,ω,η)0 such for all mm3,

    (IPn)ˆY(τ,τt,θτω,D(τt,θτω))2E(B2k1)η. (3.3)

    Using (2.3.73) and (3.1), we get

    PnˆY(τ,τt,θτω,D(τt,θτω))2PnE(B2k1)c19R1(τ,ω), (3.4)

    which together with (3.3) implies that {Y(τ,τtm,θτω,Y0(θtmω))} is precompact in E(B2k1). Note that ˆρ(|x|2k21)=1 for |x|k1. Therefore, {Y(τ,τtm,θτω,Y0(θtmω))} is precompact in E(Bk1), which along with (5.2) shows the precompactness of this sequence in E.

    Theorem 3.1 Under Assumptionsand Ⅱ, the random dynamical system Φ generated by the stochastic plate Eq. (2.2.11)–(2.2.13) has a unique pullback D-attractor A={A(τ,ω):τR, ωΩ}D in the space E.

    Proof. Note that the cocycle Φ is pullback D-asymptotically compact in E by Lemma 3.1. On the other hand, the cocycle Φ has a pullback D-absorbing set by Lemma 2.3.1. Then the existence and uniqueness of a pullback D-attractor of Φ follow from Proposition 2.1.8 immediately.

    Using the uniform estimates on the tails of solutions and the splitting technique as well as the compactness methods, we obtained the existence of pullback attractor for the problem (1.1)–(1.2). It is well-known that the pullback random attractors are employed to describe long-time behavior for an non-autonomous dynamical system with random term, while the D-pullback attractor that we obtained can characterize the asymptotic behavior of the equation like (1.1)–(1.2), which is featured with both stochastic term and non-autonomous term.

    This work is supported by the High-level talent program of QHMU (No.(2020XJG10)).

    The author declares that there is no conflict of interest.



    [1] L. Arnold, Random Dynamical Systems, 1998.
    [2] A. R. A. Barbosaa, T. F. Ma, Long-time dynamics of an extensible plate equation with thermal memory, J. Math. Anal. Appl., 416 (2014), 143-165. doi: 10.1016/j.jmaa.2014.02.042
    [3] P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017
    [4] P. W. Bates, H. Lisei, K. Lu, Attractors for stochastic lattic dynamical systems, Stoch. Dynam., 6 (2006), 1-21. doi: 10.1142/S0219493706001621
    [5] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, American Math. Soc., 2002.
    [6] I. Chueshov, Monotone Random Systems Theory and Applications, 2002.
    [7] H. Crauel, Random Probability Measure on Polish Spaces, CRC press, 2002.
    [8] H. Crauel, A. Debussche, F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341. doi: 10.1007/BF02219225
    [9] H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Theory, Rel., 100 (1994), 365-393. doi: 10.1007/BF01193705
    [10] H. Cui, J. A. Langa, Uniform attractors for non-automous random dynamical systems, J. Differ. Equ., 263 (2017), 1225-1268. doi: 10.1016/j.jde.2017.03.018
    [11] X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793. doi: 10.1080/07362990600751860
    [12] F. Flandoli, B. Schmalfuss, Random attractors for the 3D stochastic Navier- Stokes equation with multiplicative white noise, Stochastics and Stochastics Reports, 59 (1996), 21-45. doi: 10.1080/17442509608834083
    [13] C. Gao, L. Lv, Y. Wang, Spectra of a discrete Sturm-Liouville problem with eigenparameter-dependent boundary conditions in Pontryagin space, Quaest. Math., 2019 (2019), 1-26.
    [14] J. Huang, W. Shen, Pullback attractors for non-autonomous and random parabolic equations on non-smooth domains, Discrete Cont. Dyn. S., 24 (2009), 855-882. doi: 10.3934/dcds.2009.24.855
    [15] A. K. Khanmamedov, A global attractor for the plate equation with displacement-dependent damping, Nonlinear Analysis: Theory, Methods and Applications, 74 (2011), 1607-1615. doi: 10.1016/j.na.2010.10.031
    [16] A. K. Khanmamedov, Existence of a global attractor for the plate equation with a critical exponent in an unbounded domain, Appl. Math. Lett., 18 (2005), 827-832. doi: 10.1016/j.aml.2004.08.013
    [17] A. K. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J. Differ. Equ., 225 (2006), 528-548. doi: 10.1016/j.jde.2005.12.001
    [18] P. E. Kloeden, J. A. Langa, Flattening, squeezing and the existence of random attractors, P. Roy. Soc. Lond. A. Mat., 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753
    [19] Q. Ma, S. Wang, C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana U. Math. J., 51 (2002), 1541-1559. doi: 10.1512/iumj.2002.51.2255
    [20] W. J. Ma, Q. Z. Ma, Attractors for stochastic strongly damped plate equations with additive noise, Electron. J. Differ. Equ., 111 (2013), 1-12.
    [21] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
    [22] B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, 1992.
    [23] X. Shen, Q. Ma, The existence of random attractors for plate equations with memory and additive white noise, Korean J. Math., 24 (2016), 447-467. doi: 10.11568/kjm.2016.24.3.447
    [24] X. Shen, Q. Ma, Existence of random attractors for weakly dissipative plate equations with memory and additive white noise, Comput. Math. Appl., 73 (2017), 2258-2271. doi: 10.1016/j.camwa.2017.03.009
    [25] Z. Shen, S. Zhou, W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differ. Equ., 248 (2010), 1432-1457. doi: 10.1016/j.jde.2009.10.007
    [26] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 1997.
    [27] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015
    [28] B. Wang, X. Gao, Random attractors for wave equations on unbounded domains, Conference Publications, 2009.
    [29] Z. Wang, S. Zhou, A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Analysis: Real World Applications, 12 (2011), 3468-3482. doi: 10.1016/j.nonrwa.2011.06.008
    [30] Z. Wang, S. Zhou, Random attractor for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 5 (2015), 363-387.
    [31] B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on R3, T. Am. Math. Soc., 363 (2011), 3639-3663.
    [32] Z. Wang, S. Zhou, Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise, Discrete Cont. Dyn. S., 38 (2018), 4767-4817. doi: 10.3934/dcds.2018210
    [33] B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1-31.
    [34] L. Yang, Uniform attractor for non-autonomous plate equations with a localized damping and a critical nonlinearity, J. Math. Anal. Appl., 338 (2008), 1243-1254. doi: 10.1016/j.jmaa.2007.06.011
    [35] L. Yang, C. K. Zhong, Global attractor for plate equation with nonlinear damping, Nonlinear Analysis: Theory, Methods and Applications, 69 (2008), 3802-3810. doi: 10.1016/j.na.2007.10.016
    [36] M. Yang, J. Duan, P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Analysis: Real World Applications, 12 (2011), 464-478. doi: 10.1016/j.nonrwa.2010.06.032
    [37] X. Yao, Q. Ma, T. Liu, Asymptotic behavior for stochastic plate equations with rotational inertia and kelvin-voigt dissipative term on unbounded domains, Discrete Cont. Dyn-B, 24 (2019), 1889-1917.
    [38] X. Yao, Q. Ma, L. Xu, Global attractors for a Kirchhoff type plate equation with memory, Kodai Math. J., 40 (2017), 63-78. doi: 10.2996/kmj/1490083224
    [39] X. Yao, Q. Ma, Global attractors of the extensible plate equations with nonlinear damping and memory, J. Funct. Space., 2017 (2017), 1-10.
    [40] X. Yao, X. Liu, Asymptotic behavior for non-autonomous stochastic plate equation on unbounded domains, Open Math., 17 (2019), 1281-1302. doi: 10.1515/math-2019-0092
    [41] G. Yue, C. Zhong, Global attractors for plate equations with critical exponent in locally uniform spaces, Nonlinear Analysis: Theory, Methods and Applications, 71 (2009), 4105-4114. doi: 10.1016/j.na.2009.02.089
  • This article has been cited by:

    1. Xiaobin Yao, Zhang Zhang, Pietro De Lellis, Asymptotic Behavior of the Kirchhoff Type Stochastic Plate Equation on Unbounded Domains, 2022, 2022, 1099-0526, 1, 10.1155/2022/1053042
    2. Xiao Bin Yao, Asymptotic behavior for stochastic plate equations with memory in unbounded domains, 2022, 0, 1565-1339, 10.1515/ijnsns-2021-0383
    3. Xiao Bin Yao, Chan Yue, Asymptotic behavior of plate equations with memory driven by colored noise on unbounded domains, 2022, 7, 2473-6988, 18497, 10.3934/math.20221017
    4. Xiaobin Yao, Asymptotic behavior for stochastic plate equations with memory and additive noise on unbounded domains, 2022, 27, 1531-3492, 443, 10.3934/dcdsb.2021050
    5. Xiao Bin Yao, Random attractors for stochastic plate equations with memory in unbounded domains, 2021, 19, 2391-5455, 1435, 10.1515/math-2021-0097
    6. Xiao Bin Yao, Asymptotic behavior of plate equations driven by colored noise on unbounded domains, 2023, 2023, 1687-2770, 10.1186/s13661-023-01715-4
    7. Xiaobin Yao, DYNAMICS OF KIRCHHOFF TYPE PLATE EQUATIONS WITH NONLINEAR DAMPING DRIVEN BY MULTIPLICATIVE NOISE, 2024, 14, 2156-907X, 1148, 10.11948/20220281
    8. Kaili Han, Yangrong Li, Huan Xia, Residually continuous pullback attractors for stochastic discrete plate equations, 2024, 47, 0170-4214, 7448, 10.1002/mma.9982
    9. Xiaobin Yao, Dynamics of plate equations with time delay driven by additive noise in $\mathbb{R}^{n}$, 2023, 2023, 1029-242X, 10.1186/s13660-023-02950-0
    10. Xiao Bin Yao, Deng Juan Feng, Asymptotic behavior for stochastic plate equations on unbounded domains, 2023, 187, 00074497, 103315, 10.1016/j.bulsci.2023.103315
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3896) PDF downloads(323) Cited by(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog