Citation: Xiaobin Yao. Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping[J]. AIMS Mathematics, 2020, 5(3): 2577-2607. doi: 10.3934/math.2020169
[1] | Li Yang . Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains. AIMS Mathematics, 2021, 6(12): 13634-13664. doi: 10.3934/math.2021793 |
[2] | Xin Liu . Stability of random attractors for non-autonomous stochastic $ p $-Laplacian lattice equations with random viscosity. AIMS Mathematics, 2025, 10(3): 7396-7413. doi: 10.3934/math.2025339 |
[3] | Chunting Ji, Hui Liu, Jie Xin . Random attractors of the stochastic extended Brusselator system with a multiplicative noise. AIMS Mathematics, 2020, 5(4): 3584-3611. doi: 10.3934/math.2020233 |
[4] | Rou Lin, Min Zhao, Jinlu Zhang . Random uniform exponential attractors for non-autonomous stochastic Schrödinger lattice systems in weighted space. AIMS Mathematics, 2023, 8(2): 2871-2890. doi: 10.3934/math.2023150 |
[5] | Xiao Bin Yao, Chan Yue . Asymptotic behavior of plate equations with memory driven by colored noise on unbounded domains. AIMS Mathematics, 2022, 7(10): 18497-18531. doi: 10.3934/math.20221017 |
[6] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
[7] | Xintao Li . Wong-Zakai approximations and long term behavior of second order non-autonomous stochastic lattice dynamical systems with additive noise. AIMS Mathematics, 2022, 7(5): 7569-7594. doi: 10.3934/math.2022425 |
[8] | Xiaoxia Wang, Jinping Jiang . The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363 |
[9] | Ruonan Liu, Tomás Caraballo . Random dynamics for a stochastic nonlocal reaction-diffusion equation with an energy functional. AIMS Mathematics, 2024, 9(4): 8020-8042. doi: 10.3934/math.2024390 |
[10] | Hamood Ur Rehman, Aziz Ullah Awan, Sayed M. Eldin, Ifrah Iqbal . Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise. AIMS Mathematics, 2023, 8(9): 21606-21621. doi: 10.3934/math.20231101 |
In this paper, we study the asymptotic behavior of solutions for the following non-autonomous stochastic plate equation with multiplicative noise and nonlinear damping defined on the unbounded domain Rn:
utt+Δ2u+h(ut)+λu+f(x,u)=g(x,t)+εu∘dwdt | (1.1) |
with the initial value conditions
u(x,τ)=u0(x),ut(x,τ)=u1(x), | (1.2) |
where x∈Rn, t>τ with τ∈R, λ>0 and ε are constants, h(ut) is a nonlinear damping term, f is a given interaction term, g is a given function satisfying g∈L2loc(R,H1(Rn)), and w is a two-sided real-valued Wiener process on a probability space. The stochastic Eq. (1.1) is understood in the sense of Stratonovich's integration.
Plate equations like (1.1), especially when h(ut)=αut, have been investigated for many years due to their importance in some physical areas such as vibration and elasticity theory of solid mechanics. The study of the long-time dynamics of plate equations has become an outstanding topic in the field of the infinite dimensional dynamical system.
As we know, the attractor is regarded as a proper notation describing the long-time dynamics of solutions, and many classical literatures and monographs have been appeared for both the deterministic and stochastic dynamical systems over the last decades years, see [1,5,6,8,9,12,12,13,14,15,22,26,27,40] and references therein. However, in reality, a system is always affected by some random factors such as external noise. In order to study the large-time behavior and characterization of solution for the stochastic partial differential equations driven by noise, H. Crauel & Franco Flandoi [8,9], Franco Flandoi & B. Schmalfuss [12] and B. Schmalfuss [22] introduced the concept of pullback attractors, and established some abstract results for existence of such attractors about compact dynamical system [1,9,12,15,18]. Since these methods required the compactness of pullback absorbing set for systems, it could not be used to deal with the stochastic PDEs on unbounded domains. P. W. Bates, H. Lisei & K. Lu [4] presented the concept of asymptotic compactness for random dynamical systems, they proved the existence of random attractors for reaction-diffusion equations on unbounded domain using these abstract results in [3]. B. Wang in [27] further extended the concept of asymptotic compactness to the case of partial differential equations with both the random and the time-dependent forcing terms; moreover, he applied this criteria to the stochastic reaction-diffusion equation with additive noise on Rn, and obtained existence of an unique pullback attractor. Most of works on stochastic PDEs, please refer to [10,25,28,29,30,32,36] and references therein.
Just for problem (1.1)–(1.2) and the corresponding plate equations, in the deterministic case (i.e., ε=0), existence of global attractors has been studied by several authors, see for instance [2,15,16,17,34,35,38,39,41]. As far as the stochastic case driven by additive noise, when the deterministic forcing term g is independent of time, that is, g(x,t)≡g(x), existence of random pullback attractor on bounded domain was obtained in [20,23,24]. Recently, on the unbounded domain, the authors investigated existence and upper semi-continuity of random attractors for stochastic plate equation with rotational inertia and Kelvin-Voigt dissipative term as well as time dependent terms see [37] for details. To the best of our knowledge, it is not considered by any predecessors for the stochastic plate equation with multiplicative noise on unbounded domain. It is well known that multiplicative noise makes the problem more complex and interesting even to the case of bounded domain. Based the theory and applications of B. Wang in [27,31,33], we decide to study existence of pullback attractors for problem (1.1)–(1.2).
Notice that (1.1) is a non-autonomous stochastic equation in the sense that the external term g is time-dependent. In this case, like in [27], we need to introduce two parametric spaces to describe its dynamics: one is responsible for the deterministic non-autonomous perturbations and the other for the stochastic perturbations. In addition, since Sobolev embeddings are not compact on unbounded domain, we can not get the desired asymptotic compactness directly from the regularity of solutions. We here overcome this difficulty by using the uniform estimates on the tails of solutions outside a bounded ball in Rn and the splitting technique [28], as well as the compactness methods introduced in [19].
In comparison with the results recently published in [37], the novelty and the difficulties of this work are as follows: (ⅰ) The nonlinear damping h(ut) in Eq. (1.1) and its treatment; (ⅱ) Using a new Ornstein-Uhlenbeck process which does not depends on the damping coefficients but depends on an adjustable parameter δ, which is substantially different from [37].
The rest of this paper is organized as follows. In the next section, we recall some basic concepts related to random attractor for general random dynamical systems. In section 3, we provide some basic settings about Eq. (1.1) and show that it generates a continuous cocycle. Then we derive all necessary uniform estimates of solutions in section 4, and prove the existence of random attractors in sections 5. In section 6, we give conclusion as well as some comments on possible applications for these results.
Throughout the paper, we use ||⋅|| and (⋅,⋅) to denote the norm and the inner product of L2(Rn), respectively. The norms of Lp(Rn) and a Banach space X are generally written as ||⋅||p and ||⋅||X, respectively. The letters c and ci(i=1,2,…) are generic positive constants which may change their values from line to line or even in the same line and do not depend on ε.
In this section, we recall some definitions and known results regarding pullback attractors of non-autonomous random dynamical systems from [7,27], which they are useful to our problem.
In the sequel, we use (Ω,F,P) and (X,d) to denote a probability space and a complete separable metric space, respectively. If A and B are two nonempty subsets of X, then we use d(A,B) to denote their Hausdorff semi-distance.
Definition 2.1.1 Let θ:R×Ω→Ω be a (B(R)×F,F)-measurable mapping. We say (Ω,F,P,θ) is a parametric dynamical system if θ(0,⋅) is the identity on Ω, θ(s+t,⋅)=θ(t,⋅)∘θ(s,⋅) for all t,s∈R, and Pθ(t,⋅)=P for all t∈R.
Definition 2.1.2 Let K:R×Ω→2X be a set-valued mapping with closed nonempty images. We say K is measurable with respect to F in Ω if the mapping ω∈Ω→d(x,K(τ,ω)) is (F,B(R))-measurable for every fixed x∈X and τ∈R.
Definition 2.1.3 A mapping Φ:R+×R×Ω×X→X is called a continuous cocycle on X over R and (Ω,F,P,{θt}t∈R) if for all τ∈R,ω∈Ω and t,s∈R+, the following conditions (1)–(4) are satisfied:
(1) Φ(⋅,τ,⋅,⋅):R+×Ω×X→X is (B(R+)×F×B(X),B(X))-measurable;
(2) Φ(0,τ,ω,⋅) is the identity on X;
(3) Φ(t+s,τ,ω,⋅)=Φ(t,τ+s,θsω,⋅)∘Φ(s,τ,ω,⋅);
(4) Φ(t,τ,ω,⋅):X→X is continuous.
Hereafter, we assume Φ is a continuous cocycle on X over R and (Ω,F,P,{θt}t∈R), and D is the collection of some families of nonempty bounded subsets of X parameterized by τ∈R and ω∈Ω:
D={D={D(τ,ω)⊆X:D(τ,ω)≠∅,τ∈R,ω∈Ω}}. |
Definition 2.1.4 Let B={B(τ,ω):τ∈R,ω∈Ω} be a family of nonempty subsets of X. For every τ∈R,ω∈Ω, let
Ω(B,τ,ω)=⋂r≥0¯⋃t≥rΦ(t,τ−t,θ−tω,B(τ−t,θ−tω)). |
Then the family {Ω(B,τ,ω):τ∈R,ω∈Ω} is called the Ω-limit set of B and is denoted by Ω(B).
Definition 2.1.5 Let D be a collection of some families of nonempty subsets of X and K={K(τ,ω):τ∈R,ω∈Ω}∈D. Then K is called a D-pullback absorbing set for Φ if for all τ∈R and ω∈Ω and for every B∈D, there exists T=T(B,τ,ω)>0 such that
Φ(t,τ−t,θ−tω,B(τ−t,θ−tω))⊆K(τ,ω)forallt≥T. |
If, in addition, K(τ,ω) is closed in X and is measurable in ω with respect to F, then K is called a closed measurable D-pullback absorbing set for Φ.
Definition 2.1.6 Let D be a collection of some families of nonempty subsets of X. Then Φ is said to be D-pullback asymptotically compact in X if for all τ∈R and ω∈Ω, the sequence
{Φ(tn,τ−tn,θ−tnω,xn)}∞n=1has a convergent subsequence inX |
whenever tn→∞, and xn∈B(τ−tn,θ−tnω) with {B(τ,ω):τ∈R,ω∈Ω}∈D.
Definition 2.1.7 Let D be a collection of some families of nonempty subsets of X and A={A(τ,ω):τ∈R,ω∈Ω}∈D. Then A is called a D-pullback attractor for Φ if the following conditions (1)–(3) are fulfilled: for all t∈R+, τ∈R and ω∈Ω,
(1) A(τ,ω) is compact in X and is measurable in ω with respect to F.
(2) A is invariant, that is,
Φ(t,τ,ω,A(τ,ω))=A(τ+t,θtω). |
(3) For every B={B(τ,ω):τ∈R,ω∈Ω}∈D,
limt→∞d(Φ(t,τ−t,θ−tω,B(τ−t,θ−tω)),A(τ,ω))=0. |
Proposition 2.1.8 Let D be an inclusion-closed collection of some families of nonempty subsets of X, and Φ be a continuous cocycle on X over R and (Ω,F,P,{θt}t∈R). If Φ is D-pullback asymptotically compact in X and Φ has a closed measurable D-pullback absorbing set K in D, then Φ has a unique D-pullback attractor A in D which is given by, for each τ∈R and ω∈Ω,
A(τ,ω)=Ω(K,τ,ω)=⋃D∈DΩ(B,τ,ω) |
In this section, we outline some basic settings about (1.1)–(1.2) and show that it generates a continuous cocycle in H2(Rn)×L2(Rn).
Let ξ=ut+δu, where δ is a small positive constant whose value will be determined later. Substituting ut=ξ−δu into (1.1) we find
dudt+δu=ξ, | (2.2.1) |
dξdt−δξ+(δ2+λ)u+Δ2u+h(ξ−δu)+f(x,u)=g(x,t)+εu∘dwdt | (2.2.2) |
with the initial value conditions
u(x,τ)=u0(x),ξ(x,τ)=z0(x), | (2.2.3) |
where ξ0(x)=u1(x)+δu0(x),x∈Rn.
Assumption Ⅰ. Assume that the functions h, f satisfy the following conditions:
(1) Let F(x,u)=∫u0f(x,s)ds for x∈Rn and u∈R, there exist positive constants ci(i=1,2,3,4), such that
|f(x,u)|≤c1|u|γ+ϕ1(x), ϕ1∈L2(Rn), | (2.2.4) |
f(x,u)u−c2F(x,u)≥ϕ2(x), ϕ2∈L1(Rn), | (2.2.5) |
F(x,u)≥c3|u|γ+1−ϕ3(x), ϕ3∈L1(Rn), | (2.2.6) |
|∂f∂u(x,u)|≤β, |∂f∂x(x,u)|≤ϕ4(x), ϕ4∈L2(Rn), | (2.2.7) |
where β>0, 1≤γ≤n+4n−4. Note that (2.2.4) and (2.2.5) imply
F(x,u)≤c(|u|2+|u|γ+1+ϕ21+ϕ2). | (2.2.8) |
(2) There exist two constants β1,β2 such that
h(0)=0, 0<β1≤h′(v)≤β2<∞. | (2.2.9) |
Let (Ω,F,P) be the standard probability space, where Ω={ω∈C(R,R):ω(0)=0}, F is the Borel σ-algebra induced by the compact open topology of Ω, and P is the Wiener measure on (Ω,F). There is a classical group {θt}t∈R acting on (Ω,F,P) which is defined by
θtω(⋅)=ω(⋅+t)−ω(t),forallω∈Ω,t∈R, |
then (Ω,F,P,{θt}t∈R) is a parametric dynamical system.
It is convenient to convert the problem (2.2.1)–(2.2.3) into a deterministic system with a random parameter, and then show that it generates a cocycle over R and (Ω,F,P,{θt}t∈R).
Consider Ornstein-Uhlenbeck equation dz+δzdt=dω, z(−∞)=0, and Ornstein-Uhlenbeck process
z(θtω)=z(t,ω)=−δ∫0−∞eδs(θtω)(s)ds. | (2.2.10) |
From [1,11,18], it is known that the random variable |z(ω)| is a stationary, ergodic and tempered stochastic process, and there is a θt-invariant set ˜Ω⊂Ω of full P measure such that z(θtω) is continuous in t for every ω∈˜Ω. For convenience, we shall simply write ˜Ω as Ω.
Now, let v(x,t)=ξ(x,t)−εu(x,t)z(θtω), we obtain the equivalent system of (2.2.1)–(2.2.3),
dudt+δu−v=εuz(θtω), | (2.2.11) |
dvdt−δv+(δ2+λ+A)u+f(x,u)=g(x,t)−h(v+εuz(θtω)−δu)−ε(v−3δu+εuz(θtω))z(θtω) | (2.2.12) |
with the initial value conditions
u(x,τ)=u0(x),v(x,τ)=v0(x), | (2.2.13) |
where A is defined below and v0(x)=ξ0(x)−εz(θτω)u0,x∈Rn.
Let −Δ denote the Laplace operator in Rn, A=Δ2 with the domain D(A)=H4(Rn). We can also define the powers Aν of A for ν∈R. The space Vν=D(Aν4) is a Hilbert space with the following inner product and norm
(u,v)ν=(Aν4u,Aν4v),‖⋅‖ν=‖Aν4⋅‖. |
For brevity, the notation (⋅,⋅) for L2-inner product will also be used for the notation of duality pairing between dual spaces, ‖⋅‖ denotes the L2-norm.
Let E=H2×L2, with the Sobolev norm
‖y‖H2×L2=(‖v‖2+‖u‖2+‖Δu‖2)12, for y=(u,v)⊤∈E. | (2.2.14) |
We shall drop the transpose superscript for all column vectors of u and v. The well-posedness of local weak solutions for the problem of the random PDE (2.2.11)–(2.2.13) in E=H2(Rn)×H(Rn) can be shown by Galerkin approximation and compactness method as in [5,21,26,37]. Under conditions (2.2.4)–(2.2.7) and (2.2.9), for every ω∈Ω,τ∈R and (u0,v0)∈E, we can prove the problem (2.2.11)–(2.2.13) has a unique global solution (u(⋅,τ,ω,u0),v(⋅,τ,ω,v0))∈C([τ,∞),E). Moreover, for t≥τ, (u(t,τ,ω,u0),v(t,τ,ω,v0)) is (F,B(H2(Rn))×B(L2(Rn)))-measurable in ω and continuous in (u0,v0) with respect to the E-norm.
Thus the solution mapping can be used to define a continuous cocycle for (2.2.1)–(2.2.3). Let Φ:R+×R×Ω×E→E be a mapping given by
Φ(t,τ,ω,(u0,v0))=(u(t+τ,τ,θ−τω,u0),v(t+τ,τ,θ−τω,v0)), | (2.2.15) |
where v(t+τ,τ,θ−τω,v0)=ξ(t+τ,τ,θ−τω,ξ0)−εz(θtω)u(t+τ,τ,θ−τω,u0) with v0=ξ0−εz(ω)u0. Then Φ is a continuous cocycle over R and (Ω,F,P,{θt}t∈R) on E. For each t∈R+,τ∈R,ω∈Ω,
Φ(t,τ−t,θ−tω,(u0,v0))=(u(τ,τ−t,θ−τω,u0),v(τ,τ−t,θ−τω,v0))=(u(τ,τ−t,θ−τω,u0),ξ(τ,τ−t,θ−τω,ξ0)+εz(ω)u(τ,τ−t,θ−τω,u0)). | (2.2.16) |
This identity is useful when proving pullback asymptotic compactness of Φ. Next we make another assumption.
Assumption Ⅱ. We assume that σ,δ,ε and g(x,t) satisfy the following conditions:
σ=12min{δ,δc2}, | (2.2.17) |
δ>0 satisfies λ+δ2−β2δ>0, β1>5δ+β2δ(λ+δ2−β2δ), | (2.2.18) |
|ε|<min{−2√δ(γ2γ3+γ1)+√4δ(γ2γ3+γ1)2+πδγ2σγ2√π, −2√δ(γ2γ4+1)+√4δ(γ2γ4+1)2+πδγ2σγ2√π}, | (2.2.19) |
where γ1=max{1,c1c−132}, γ2=1+1λ+δ2−β2δ,γ3=32δ+12β2+2β2δ+1, γ4=32δ+12β2+2β2δ.
Moreover,
∫0−∞eσs‖g(⋅,τ+s)‖21ds<∞, ∀τ∈R, | (2.2.20) |
and
limk→∞∫0−∞eσs∫|x|≥k|g(x,τ+s)|2dxds=0,∀τ∈R, | (2.2.21) |
where |⋅| denotes the absolute value of real number in R.
Given a bounded nonempty subset B of E, we write ‖B‖=supϕ∈B‖ϕ‖E. Let D={D(τ,ω):τ∈R,ω∈Ω} be a family of bounded nonempty subsets of E such that for every τ∈R,ω∈Ω,
lims→−∞eσs‖D(τ+s,θsω)‖2E=0. | (2.2.22) |
Let D be the collection of all such families, that is,
D={D={D(τ,ω):τ∈R,ω∈Ω}: D satisfies (2.2.22)}. | (2.2.23) |
In this section, we conduct uniform estimates on the weak solutions of the stochastic plate Eqs. (2.2.1)–(2.2.3) defined on Rn, through the converted random Eq. (2.2.11)–(2.2.13), for the purposes of showing the existence of a pullback absorbing sets and the pullback asymptotic compactness of the cocycle.
We define a new norm ‖⋅‖E by
‖Y‖E=(‖v‖2+(λ+δ2−β2δ)‖u‖2+‖Δu‖2)12, for Y=(u,v)∈E. | (2.3.1) |
It is easy to check that ‖⋅‖E is equivalent to the usual norm ‖⋅‖H2×L2 in (2.2.14). First we show that the cocycle Φ has a pullback D-absorbing set in D.
Lemma 2.3.1 Under Assumptions Ⅰ and Ⅱ, for every τ∈R,ω∈Ω, D={D(τ,ω):τ∈R,ω∈Ω}∈D, there exists T=T(τ,ω,D)>0 such that for all t≥T the solution of problem (2.2.11)–(2.2.13) satisfies
‖Y(τ,τ−t,θ−τω,D(τ−t,θ−tω))‖2E≤R1(τ,ω), |
and R1(τ,ω) is given by
R1(τ,ω)=M+M∫0−∞e2∫s0[σ−γ1|ε||z(θrω)|−γ2(12ε2|z(θrω)|2+γ3|ε||z(θtω)|)]dr ⋅(‖g(⋅,s+τ)‖2+|ε||z(θsω)|)ds | (2.3.2) |
where M is a positive constant independent of τ,ω,D and ε.
Proof. Taking the inner product of (2.2.12) with v in L2(Rn), we find that
12ddt‖v‖2−(δ−εz(θtω))‖v‖2+(λ+δ2)(u,v)+(Au,v)+(f(x,u),v)=εz(θtω)(3δ−εz(θtω))(u,v)−(h(v+εuz(θtω)−δu),v)+(g(x,t),v). | (2.3.3) |
By the first equation of (2.2.11), we have
v=ut−εuz(θtω)+δu. | (2.3.4) |
By (2.2.9) and Lagrange's mean value theorem, we have
−(h(v+εuz(θtω)−δu),v)=−(h(v+εuz(θtω)−δu)−h(0),v)=−(h′(ϑ)(v+εuz(θtω)−δu),v)≤−β1‖v‖2−(h′(ϑ)(εuz(θtω)−δu),v)≤−β1‖v‖2+β2|ε||z(θtω)|‖u‖‖v‖+h′(ϑ)δ(u,v), | (2.3.5) |
where ϑ is between 0 and v+εuz(θtω)−δu.
By (2.2.9) and (2.3.4), we get
h′(ϑ)δ(u,v)=h′(ϑ)δ(u,ut−εuz(θtω)+δu)≤β2δ⋅12ddt‖u‖2+β2δ2‖u‖2+β2δ|ε||z(θtω)|‖u‖2. | (2.3.6) |
Substituting (2.3.4) into the third and fourth terms on the left-hand side of (2.3.3), we find that
(u,v)=(u,ut−εuz(θtω)+δu)≥12ddt‖u‖2+δ‖u‖2−|ε||z(θtω)|‖u‖2, | (2.3.7) |
and
(Au,v)=(Δu,Δv)=(Δu,Δut−εz(θtω)Δu+δΔu)≥12ddt‖Δu‖2+δ‖Δu‖2−|ε||z(θtω)|‖Δu‖2. | (2.3.8) |
For the first term on the right-hand side of (2.3.3), by (2.3.5), using the Cauchy-Schwarz inequality and Young's inequality, we have
εz(θtω)(3δ−εz(θtω))(u,v)+β2|ε||z(θtω)|‖u‖‖v‖=(3δεz(θtω)−ε2z2(θtω))(u,v)+β2|ε||z(θtω)|‖u‖‖v‖≤(3δ|ε||z(θtω)|+ε2|z(θtω)|2)‖u‖‖v‖+β2|ε||z(θtω)|‖u‖‖v‖=((3δ+β2)|ε||z(θtω)|+ε2|z(θtω)|2)‖u‖‖v‖≤(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)(‖u‖2+‖v‖2), | (2.3.9) |
and for the last term on the right-hand side of (2.3.3),
(g,v)≤‖g‖‖v‖≤‖g‖22(β1−δ)+β1−δ2‖v‖2. | (2.3.10) |
Let ˜F(x,u)=∫RnF(x,u)dx. Then for the last term on the left-hand side of (2.3.3) we have
(f(x,u),v)=(f(x,u),ut−εz(θtω)u+δu)=ddt˜F(x,u)+δ(f(x,u),u)−εz(θtω)(f(x,u),u). | (2.3.11) |
By condition (2.2.4) and (2.2.6), we have
εz(θtω)(f(x,u),u)≤c1|ε||z(θtω)|∫Rn|u|γ+1dx+|ε||z(θtω)|‖ϕ1‖2+|ε||z(θtω)|‖u‖2≤c1c−13|ε||z(θtω)|∫Rn(F(x,u)+ϕ3)dx+|ε||z(θtω)|‖ϕ1‖2+|ε||z(θtω)|‖u‖2≤c1c−13|ε||z(θtω)|˜F(x,u)+c|ε||z(θtω)|+|ε||z(θtω)|‖u‖2. | (2.3.12) |
Substitute (2.3.5)–(2.3.12) into (2.3.3) and together with (2.2.5) to obtain
12ddt(‖v‖2+(λ+δ2−β2δ)‖u‖2+‖Δu‖2+2˜F(x,u))+δ(‖v‖2+(λ+δ2−β2δ)‖u‖2+‖Δu‖2)+δc2˜F(x,u)≤c+(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)(‖u‖2+‖v‖2)+|ε||z(θtω)|(‖v‖2+(λ+δ2+β2δ)‖u‖2+‖Δu‖2)+|ε||z(θtω)|‖u‖2+3δ−β12‖v‖2+‖g‖22(β1−δ)+c1c−13|ε||z(θtω)|˜F(x,u)+c|ε||z(θtω)|≤(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)(‖u‖2+‖v‖2)+γ1|ε||z(θtω)|(‖v‖2+(λ+δ2+β2δ)‖u‖2+‖Δu‖2+2˜F(x,u))+|ε||z(θtω)|‖u‖2+c(1+‖g‖2+|ε||z(θtω)|), | (2.3.13) |
where γ1=max{1,c1c−132}.
Let σ=12min{δ,δc2}, then
12ddt(‖v‖2+(λ+δ2−β2δ)‖u‖2+‖Δu‖2+2˜F(x,u))≤−[σ−γ1|ε||z(θtω)|−γ2(12ε2|z(θtω)|2+γ3|ε||z(θtω)|)]⋅(‖v‖2+(λ+δ2−β2δ)‖u‖2+‖Δu‖2+2˜F(x,u))+c(1+‖g‖2+|ε||z(θtω)|), | (2.3.14) |
where γ2=1+1λ+δ2−β2δ, γ3=32δ+12β2+2β2δ+1.
Let us denote
ϱ(τ,ω)=σ−γ1|ε||z(θtω)|−γ2(12ε2|z(θtω)|2+γ3|ε||z(θtω)|). | (2.3.15) |
Using the Gronwall inequality to integrate (2.3.14) over (τ−t,τ) with t≥0, we get
‖v(τ,τ−t,ω,v0)‖2+(λ+δ2−β2δ)‖u(τ,τ−t,ω,u0)‖2+‖Δu(τ,τ−t,ω,u0)‖2+2˜F(x,u(τ,τ−t,ω,u0))≤(‖v0‖2+(λ+δ2−β2δ)‖u0‖2+‖Δu0‖2+2˜F(x,u0))e2∫τ−tτϱ(s,ω)ds+c∫ττ−te2∫sτϱ(r,ω)dr(1+‖g(⋅,s)‖2+|ε||z(θsω)|)ds. | (2.3.16) |
Replacing ω by θ−τω in the above we obtain, for every t∈R+, τ∈R, and ω∈Ω,
‖v(τ,τ−t,θ−τω,v0)‖2+(λ+δ2−β2δ)‖u(τ,τ−t,θ−τω,u0)‖2+‖Δu(τ,τ−t,θ−τω,u0)‖2+2˜F(x,u(τ,τ−t,θ−τω,u0))≤(‖v0‖2+(λ+δ2−β2δ)‖u0‖2+‖Δu0‖2+2˜F(x,u0))e2∫τ−tτϱ(s−τ,ω)ds+c∫ττ−te2∫sτϱ(r−τ,ω)dr(1+‖g(⋅,s)‖2+|ε||z(θs−τω)|)ds, | (2.3.17) |
then
‖v(τ,τ−t,θ−τω,v0)‖2+(λ+δ2−β2δ)‖u(τ,τ−t,θ−τω,u0)‖2+‖Δu(τ,τ−t,θ−τω,u0)‖2+2˜F(x,u(τ,τ−t,θ−τω,u0))≤(‖v0‖2+(λ+δ2−β2δ)‖u0‖2+‖Δu0‖2+2˜F(x,u0))e2∫−t0ϱ(s,ω)ds+c∫0−te2∫s0ϱ(r,ω)dr(1+‖g(⋅,s+τ)‖2+|ε||z(θsω)|)ds. | (2.3.18) |
Since |z(θtω)| is stationary and ergodic, from (2.2.10) and the ergodic theorem we can get
limt→∞1t∫0−t|z(θrω)|dr=E(|z(θrω)|)=1√πδ, | (2.3.19) |
limt→∞1t∫0−t|z(θrω)|2dr=E(|z(θrω)|2)=12δ. | (2.3.20) |
By (2.3.19)–(2.3.20), there exists T1(ω)>0 such that for all t≥T1(ω),
∫0−t|z(θrω)|dr<2√πδ t, ∫0−t|z(θrω)|2dr<1δ t. | (2.3.21) |
Next we show that for any s≤−T1
e2∫s0ϱ(r,ω)dr≤eσs. | (2.3.22) |
By using the two inequalities in (2.3.21), we have
∫s0[σ−γ1|ε||z(θrω)|−γ2(12ε2|z(θrω)|2+γ3|ε||z(θrω)|)]dr>σs−|ε|2γ1√πδs−γ2[12ε21δ+γ3|ε|2√πδ]s=−γ22δε2s−2√πδ[γ3γ2+γ1]|ε|s+σs. | (2.3.23) |
In order to have the inequality in (2.3.22) valid, we need
∫s0[σ−γ1|ε||z(θrω)|−γ2(12ε2|z(θrω)|2+γ3|ε||z(θrω)|)]dr≤σ2s. |
Since s≤−T1, then it requires that
γ22δε2+2√πδ[γ3γ2+γ1]|ε|−σ2<0. |
Solving this quadratic inequality, ε needs to satisfy (2.2.19) as we have assumed in Assumption Ⅱ.
Since |z(θtω)| is tempered, by (2.2.20) and (2.3.22), we see that the following integral is convergent,
R22(τ,ω)=c∫0−∞e2∫s0ϱ(r,ω)dr(1+‖g(⋅,s+τ)‖2+|ε||z(θsω)|)ds. | (2.3.24) |
Note that (2.2.8) implies
∫RnF(x,u0)dx≤c(1+‖u0‖2+‖u0‖γ+1H2). | (2.3.25) |
Since D∈D and (u0,v0)∈D(τ−t,θ−tω), for all t≥T1, we get from (2.3.24) and (2.3.25) that
(‖v0‖2+(λ+δ2−β2δ)‖u0‖2+‖Δu0‖2+2˜F(x,u0))e2∫−t0ϱ(s,ω)ds≤ce−σt(1+‖v0‖2+‖u0‖2H2+‖u0‖γ+1H2)≤ce−σt(1+‖D(τ−t,θ−tω)‖2+‖D(τ−t,θ−tω)‖γ+1)→0, as t→+∞. | (2.3.26) |
From (2.3.1), (2.3.18), (2.3.24) and (2.3.26), there exists T2=T2(τ,ω,D)≥T1 such for all that t≥T2,
‖Y(τ,τ−t,θ−τω,Y0(θ−τω))‖2E≤c(1+R22(τ,ω)), |
thus the proof is completed.
The following lemmas will be used to show the uniform estimates of solutions as well as to establish pullback asymptotic compactness.
Lemma 2.3.2 Under Assumptions Ⅰ and Ⅱ, for every τ∈R,ω∈Ω, D={D(τ,ω):τ∈R,ω∈Ω}∈D, there exists T=T(τ,ω,D)>0 such that for all t≥T, s∈[−t,0], the solution of problem (2.2.11)–(2.2.13) satisfies
‖Y(τ+s,τ−t,θ−τω,D(τ−t,θ−tω))‖2E≤M+R3(τ,ω)e2∫0sϱ(r,ω)dr, |
where (u0,v0)⊤∈D(τ−t,θ−tω), M is a positive constant independent of τ,ω,D and ε, and R3(τ,ω) is a specific random variable.
Proof.Similar to (2.3.18), integrating (2.3.14) over (τ−t,τ+s) with t≥0 and s∈[−t,0], we can obtain
‖v(τ+s,τ−t,ω,v0)‖2+(λ+δ2−β2δ)‖u(τ+s,τ−t,ω,u0)‖2+‖Δu(τ+s,τ−t,ω,u0)‖2+2˜F(x,u(τ+s,τ−t,ω,u0))≤(‖v0‖2+(λ+δ2−β2δ)‖u0‖2+‖Δu0‖2+2˜F(x,u0))e2∫τ−tτ+sϱ(r−t,ω)dr+c∫τ+sτ−te2∫ζτ+sϱ(r−τ,ω)dr(1+‖g(⋅,ζ)‖2+|ε||z(θζ−τω)|)dζ≤(‖v0‖2+(λ+δ2−β2δ)‖u0‖2+‖Δu0‖2+2˜F(x,u0))e2∫−tsϱ(r,ω)dr+c∫s−te2∫ζsϱ(r,ω)dr(1+‖g(⋅,ζ+τ)‖2+|ε||z(θζω)|)dζ. | (2.3.27) |
Moreover we have the following estimates for the last integral term on the right-hand side of (2.3.27):
c∫s−te2∫ζsϱ(r−t,ω)dr(1+‖g(⋅,ζ+τ)‖2+|ε||z(θζω)|)dζ=c[∫−T1−te2∫ζsϱ(r,ω)dr+∫s−T1e2∫ζsϱ(r,ω)dr](1+‖g(⋅,ζ+τ)‖2+|ε||z(θζω)|)dζ≤ce2∫0sϱ(r,ω)dr∫−T1−te2∫ζ0ϱ(r,ω)dr(1+‖g(⋅,ζ+τ)‖2+|ε||z(θζω)|)dζ+ce2∫0sϱ(r,ω)dr∫0−T1e2∫ζ0ϱ(r,ω)dr(1+‖g(⋅,ζ+τ)‖2+|ε||z(θζω)|)dζ≤ce2∫0sϱ(r,ω)dr∫−T1−teσζ(1+‖g(⋅,ζ+τ)‖2+|ε||z(θζω)|)dζ+ce2∫0sϱ(r,ω)dr∫0−T1e2∫ζ0ϱ(r,ω)dr(1+‖g(⋅,ζ+τ)‖2+|ε||z(θζω)|)dζ≤e2∫0sϱ(r,ω)drR4(τ,ω), | (2.3.28) |
where
R4(τ,ω)= c∫0−∞eσζ(1+‖g(⋅,ζ+τ)‖2+|ε||z(θζω)|)dζ+c∫0−T1e2∫ζ0ϱ(r,ω)dr(1+‖g(⋅,ζ+τ)‖2+|ε||z(θζω)|)dζ. |
Note that R4(τ,ω) is well defined by (2.2.20) and that z(θtω) is tempered. On the other hand, as in (2.3.26), we find that there exists T3=T3(τ,ω,D)≥T1 such that for all t≥T3,
(‖v0‖2+(λ+δ2−β2δ)‖u0‖2+‖Δu0‖2+2˜F(x,u0))e2∫−tsϱ(r,ω)dr≤ce2∫0sϱ(r,ω)dre2∫−t0ϱ(r,ω)dr(‖v0‖2+(λ+δ2−β2δ)‖u0‖2+‖Δu0‖2+2˜F(x,u0))≤e2∫0sϱ(r,ω)drR4(τ,ω). | (2.3.29) |
It follows from (2.3.27)–(2.3.29) and (2.3.25) that, for all t≥T3,s∈[−t,0], and ε satisfying (2.2.16),
‖v(τ+s,τ−t,θ−τω,v0)‖2+(λ+δ2−β2δ)‖u(τ+s,τ−t,θ−τω,u0)‖2+‖Δu(τ+s,τ−t,θ−τω,u0)‖2≤2e2∫0sϱ(r,ω)drR4(τ,ω). | (2.3.30) |
The proof is completed.
Lemma 2.3.3 Under Assumptions Ⅰ and Ⅱ, for every τ∈R,ω∈Ω, D={D(τ,ω):τ∈R,ω∈Ω}∈D, there exists T=T(τ,ω,D)>0 such that for all t≥T the solution of problem (2.2.11)–(2.2.13) satisfies
‖A14Y(τ,τ−t,θ−τω,D(τ−t,θ−tω))‖2E≤R5(τ,ω), |
and R5(τ,ω) is given by
R5(τ,ω)=R26(τ,ω)+ce−σt(‖A14v0‖2+‖A14u0‖2+‖A34u0‖2), | (2.3.31) |
where (u0,v0)⊤∈D(τ−t,θ−tω), c is a positive constant independent of τ,ω,D and ε, and R6(τ,ω) is a specific random variable.
Proof. Taking the inner product of (2.2.12) with A12v in L2(Rn), we find that
12ddt‖A14v‖2−(δ−εz(θtω))‖A14v‖2+(λ+δ2)(u,A12v)+(Au,A12v)+(f(x,u),A12v)=εz(θtω)(3δ−εz(θtω))(u,A12v)−(h(v+εuz(θtω)−δu),A12v)+(g(x,t),A12v). | (2.3.32) |
Similar to the proof of Lemma 2.3.1, we have the following estimates:
−(h(v+εuz(θtω)−δu),A12v)=−(h(v+εuz(θtω)−δu)−h(0),A12v)=−(h′(ϑ)(v+εuz(θtω)−δu),A12v)≤−β1‖A14v‖2−(h′(ϑ)(εuz(θtω)−δu),A12v)≤−β1‖A14v‖2+β2|ε||z(θtω)|‖A14u‖‖A14v‖+h′(ϑ)δ(u,A12v), | (2.3.33) |
h′(ϑ)δ(u,A12v)=h′(ϑ)δ(u,A12ut−εz(θtω)A12u)+δA12u)≤β2δ⋅12ddt‖A14u‖2+β2δ2‖A14u‖2+β2δ|ε||z(θtω)|‖A14u‖2, | (2.3.34) |
(u,A12v)=(u,A12ut−εz(θtω)A12u+δA12u)≥12ddt‖A14u‖2+δ‖A14u‖2−|ε||z(θtω)|‖A14u‖2, | (2.3.35) |
(Au,A12v)=(Au,A12ut−εz(θtω)A12u+δA12u)≥12ddt‖A34u‖2+δ‖A34u‖2−|ε||z(θtω)|‖A34u‖2, | (2.3.36) |
εz(θtω)(3δ−εz(θtω))(u,A12v)+β2|ε||z(θtω)|‖A14u‖‖A14v‖=(3δεz(θtω)−ε2z2(θtω))(u,A12v)+β2|ε||z(θtω)|‖A14u‖‖A14v‖≤(3δ|ε||z(θtω)|+ε2|z(θtω)|2)‖A14u‖‖A14v‖+β2|ε||z(θtω)|‖A14u‖‖A14v‖=((3δ+β2)|ε||z(θtω)|+ε2|z(θtω)|2)‖u‖‖v‖≤(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)(‖A14u‖2+‖A14v‖2), | (2.3.37) |
(g,A12v)≤‖g‖1‖A14v‖≤‖g‖212(β1−δ)+β1−δ2‖A14v‖2. | (2.3.38) |
For the last term on the left-hand side of (2.3.32), by (2.2.7), we have
−(f(x,u),A12v)=−∫Rn∂∂xf(x,u)⋅A14vdx−∫Rn∂∂uf(x,u)⋅A14u⋅A14vdx≤∫Rn|∂∂xf(x,u)|⋅|A14v|dx+β∫Rn|A14u|⋅|A14v|dx≤∫Rn|η4|⋅|A14v|dx+β∫Rn|A14u|⋅|A14v|dx≤‖η4‖‖A14v‖+β‖A14u‖‖A14v‖≤c12+(δ+β22δ(λ+δ2−β2δ))‖A14v‖2+12δ(λ+δ2−β2δ)‖A14u‖2. | (2.3.39) |
Substitute (2.3.33)–(2.3.39) into (2.3.32) and together with (2.2.18) to obtain
12ddt(‖A14v‖2+(λ+δ2−β2δ)‖A14u‖2+‖A34u‖2)+σ(‖A14v‖2+(λ+δ2−β2δ)‖A14u‖2+‖A34u‖2)≤(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)(‖A14u‖2+‖A14v‖2)+|ε||z(θtω)|(‖A14v‖2+(λ+δ2+β2δ)‖A14u‖2+‖A34u‖2)+‖g‖212(β1−δ). | (2.3.40) |
Then
12ddt(‖A14v‖2+(λ+δ2−β2δ)‖A14u‖2+‖A34u‖2)≤−[σ−|ε||z(θtω)|−γ2(12ε2|z(θtω)|2+γ4|ε||z(θtω)|)]⋅(‖A14v‖2+(λ+δ2−β2δ)‖A14u‖2+‖A34u‖2)+‖g‖212(β1−δ), | (2.3.41) |
where γ4=32δ+12β2+2β2δ.
Let us denote
ϱ1(τ,ω)=σ−|ε||z(θtω)|−γ2(12ε2|z(θtω)|2+γ4|ε||z(θtω)|). | (2.3.42) |
Using the Gronwall inequality to integrate (2.3.42) over (τ−t,τ) with t≥0, we get
‖A14v(τ,τ−t,ω,v0)‖2+(λ+δ2−β2δ)‖A14u(τ,τ−t,ω,u0)‖2+‖A34u(τ,τ−t,ω,u0)‖2≤(‖A14v0‖2+(λ+δ2−β2δ)‖A14u0‖2+‖A34u0‖2)e2∫τ−tτϱ1(s,ω)ds+c∫ττ−te2∫sτϱ1(r,ω)dr‖g(⋅,s)‖21ds. | (2.3.43) |
Replacing ω by θ−τω in (2.3.43), for every t∈R+, τ∈R, and ω∈Ω,
‖A14v(τ,τ−t,θ−τω,v0)‖2+(λ+δ2−β2δ)‖A14u(τ,τ−t,θ−τω,u0)‖2+‖A34u(τ,τ−t,θ−τω,u0)‖2≤(‖A14v0‖2+(λ+δ2−β2δ)‖A14u0‖2+‖A34u0‖2)e2∫τ−tτϱ1(s−τ,ω)ds+c∫ττ−te2∫sτϱ1(r−τ,ω)dr‖g(⋅,s)‖21ds, | (2.3.44) |
then
‖A14v(τ,τ−t,θ−τω,v0)‖2+(λ+δ2−β2δ)‖A14u(τ,τ−t,θ−τω,u0)‖2+‖A34u(τ,τ−t,θ−τω,u0)‖2≤(‖A14v0‖2+(λ+δ2−β2δ)‖A14u0‖2+‖A34u0‖2)e2∫−t0ϱ1(s,ω)ds+c13∫0−te2∫s0ϱ1(r,ω)dr‖g(⋅,s+τ)‖21ds. | (2.3.45) |
Next we show that for any s≤−T1
e2∫s0ϱ1(r,ω)dr≤eσs. | (2.3.46) |
In fact, using the two inequalities in (2.3.21), we have
∫s0[σ−|ε||z(θrω)|−γ2(12ε2|z(θrω)|2+γ4|ε||z(θrω)|)]dr>σs−|ε|2√πδs−γ2[12ε21δ+γ4|ε|2√πδ]s=−γ22δε2s−2√πδ[γ4γ2+1]|ε|s+δs. |
In order to have the inequality in (2.3.46) valid, we need
∫s0[σ−|ε||z(θrω)|−γ2(12ε2|z(θrω)|2+γ4|ε||z(θrω)|)]dr≤σ2s. |
Since s≤−T1, then it requires that
γ22δε2+2√πδ[γ4γ2+1]|ε|−σ2<0. |
Solving this quadratic inequality, ε needs to satisfy (2.2.19).
By (2.2.20) and (2.3.46), we see that the following integral is convergent,
R26(τ,ω)=c∫0−∞e2∫s0ϱ1(r,ω)dr‖g(⋅,s+τ)‖21ds. | (2.3.47) |
For all t≥T1, we get from (2.3.46) that
(‖A14v0‖2+(λ+δ2−β2δ)‖A14u0‖2+‖A34u0‖2)e2∫−t0Γ1(s,ω)ds≤ce−σt(‖A14v0‖2+‖A14u0‖2+‖A34u0‖2). | (2.3.48) |
From (2.3.1), (2.3.45), (2.3.47) and (2.3.48), there exists T4=T4(τ,ω,D)≥T1 such for all that t≥T4,
‖A14Y(τ,τ−t,θ−τω,Y0(θ−τω))‖2E≤R26(τ,ω)+ce−σt(‖A14v0‖2+‖A14u0‖2+‖A34u0‖2). | (2.3.49) |
Thus the proof is completed.
Next we conduct uniform estimates on the tail parts of the solutions for large space variables when time is sufficiently large in order to prove the pullback asymptotic compactness of the cocycle associated with Eqs.(2.2.11)–(2.2.13) on the unbounded domain Rn.
Lemma 2.3.4 Under Assumptions Ⅰ and Ⅱ, for every η>0,τ∈R,ω∈Ω, D={D(τ,ω):τ∈R,ω∈Ω}∈D, there exists T=T(τ,ω,D,η)>0,K=K(τ,ω,η)≥1 such that for all t≥T, k≥K, the solution of problem (2.2.11)–(2.2.13) satisfies
‖Y(τ,τ−t,θ−τω,D(τ−t,θ−tω))‖2E(Rn∖Bk)≤η, | (2.3.50) |
where for k≥1, Bk={x∈Rn:|x|≤k} and Rn∖Bk is the complement of Bk.
Proof. Choose a smooth function ρ, such that 0≤ρ≤1 for s∈R, and
ρ(s)={0, if 0≤|s|≤1,1, if |s|≥2, | (2.3.51) |
and there exist constants μ1,μ2,μ3,μ4 such that |ρ′(s)|≤μ1,|ρ″(s)|≤μ2,|ρ‴(s)|≤μ3,|ρ⁗(s)|≤μ4 for s∈R. Taking the inner product of (2.2.10) with ρ(|x|2k2)v in L2(Rn), we obtain
12ddt∫Rnρ(|x|2k2)|v|2dx−(δ−εz(θtω))∫Rnρ(|x|2k2)|v|2dx +(λ+δ2)∫Rnρ(|x|2k2)uvdx+∫Rn(Au)ρ(|x|2k2)vdx+∫Rnρ(|x|2k2)f(x,u)vdx=εz(θtω)(3δ−εz(θtω))∫Rnρ(|x|2k2)uvdx −∫Rnρ(|x|2k2)(h(v+εuz(θtω)−δu)vdx+∫Rnρ(|x|2k2)g(x,t)vdx. | (2.3.52) |
First, by (2.2.9), similar to (2.3.5), we have
−∫Rnρ(|x|2k2)(h(v+εuz(θtω)−δu)vdx=−∫Rnρ(|x|2k2)(h(v+εuz(θtω)−δu)−h(0))vdx≤−β1∫Rnρ(|x|2k2)|v|2dx+h′(ϑ)δ∫Rnρ(|x|2k2)uvdx+β2|ε||z(θtω)|∫Rnρ(|x|2k2)|u||v|dx. | (2.3.53) |
Taking (2.3.53) into (2.3.52), we have
12ddt∫Rnρ(|x|2k2)|v|2dx−(δ−εz(θtω)−β1)∫Rnρ(|x|2k2)|v|2dx+(λ+δ2−h′(ϑ)δ)∫Rnρ(|x|2k2)uvdx+∫Rn(Au)ρ(|x|2k2)vdx+∫Rnρ(|x|2k2)f(x,u)vdx≤εz(θtω)(3δ−εz(θtω))∫Rnρ(|x|2k2)uvdx+∫Rnρ(|x|2k2)g(x,t)vdx+β2|ε||z(θtω)|∫Rnρ(|x|2k2)|u||v|dx. | (2.3.54) |
For the third term on the left-hand side of (2.3.54), we have
(λ+δ2−h′(ϑ)δ)∫Rnρ(|x|2k2)uvdx=(λ+δ2−h′(ϑ)δ)∫Rnρ(|x|2k2)u(dudt+δu−εuz(θtω))dx=(λ+δ2−h′(ϑ)δ)∫Rnρ(|x|2k2)(12ddtu2+(δ−εz(θtω))u2)dx≥(λ+δ2−β2δ)(12ddt∫Rnρ(|x|2k2)|u|2dx+δ∫Rnρ(|x|2k2)|u|2dx)−(λ+δ2+β2δ)|ε||z(θtω)|∫Rnρ(|x|2k2)|u|2dx. | (2.3.55) |
For the fourth term on the left-hand side of (2.3.54), we have
∫Rn(Au)ρ(|x|2k2)vdx=∫Rn(Au)ρ(|x|2k2)(dudt+δu−εuz(θtω))dx=∫Rn(Δ2u)ρ(|x|2k2)(dudt+δu−εz(θtω)u)dx=∫Rn(Δu)Δ(ρ(|x|2k2)(dudt+δu−εz(θtω)u))dx=∫Rn(Δu)((2k2ρ′(|x|2k2)+4x2k4ρ″(|x|2k2))(dudt+δu−εz(θtω)u)+2⋅2|x|k2ρ′(|x|2k2)∇(dudt+δu−εz(θtω)u)+ρ(|x|2k2)Δ(dudt+δu−εz(θtω)u))dx≥−∫k<x<√2k(2μ1k2+4μ2x2k4)|(Δu)v|dx−∫k<x<√2k4μ1xk2|(Δu)(∇v)|dx+12ddt∫Rnρ(|x|2k2)|Δu|2dx+δ∫Rnρ(|x|2k2)|Δu|2dx−εz(θtω)∫Rnρ(|x|2k2)|Δu|2dx≥−∫Rn(2μ1+8μ2k2)|(Δu)v|dx−∫Rn4√2μ1k|(Δu)(∇v)|dx+12ddt∫Rnρ(|x|2k2)|Δu|2dx+δ∫Rnρ(|x|2k2)|Δu|2dx−εz(θtω)∫Rnρ(|x|2k2)|Δu|2dx≥−μ1+4μ2k2(‖Δu‖2+‖v‖2)−4√2μ1k‖Δu‖‖∇v‖+12ddt∫Rnρ(|x|2k2)|Δu|2dx+δ∫Rnρ(|x|2k2)|Δu|2dx−εz(θtω)∫Rnρ(|x|2k2)|Δu|2dx≥−μ1+4μ2k2(‖Δu‖2+‖v‖2)−2√2μ1k(‖Δu‖2+‖∇v‖2)+12ddt∫Rnρ(|x|2k2)|Δu|2dx−(|ε||z(θtω)|−δ)∫Rnρ(|x|2k2)|Δu|2dx. | (2.3.56) |
For the fifth term on the left-hand side of (2.3.54), we have
∫Rnρ(|x|2k2)f(x,u)vdx=∫Rnρ(|x|2k2)f(x,u)(dudt+δu−εz(θtω)u)dx=ddt∫Rnρ(|x|2k2)F(x,u)dx+δ∫Rnρ(|x|2k2)f(x,u)udx−εz(θtω)∫Rnρ(|x|2k2)f(x,u)udx. | (2.3.57) |
By (2.2.5), we see that
∫Rnρ(|x|2k2)f(x,u)udx≥c2∫Rnρ(|x|2k2)F(x,u)dx+∫Rnρ(|x|2k2)ϕ2(x)dx, | (2.3.58) |
On the other hand, by (2.2.4) and (2.2.6),
εz(θtω)∫Rnρ(|x|2k2)f(x,u)udx≤c|ε||z(θtω)|∫Rnρ(|x|2k2)F(x,u)dx+c|ε||z(θtω)|∫Rnρ(|x|2k2)|u|2dx+c|ε||z(θtω)|∫Rnρ(|x|2k2)(|ϕ1|2+|ϕ3|)dx. | (2.3.59) |
Similar to (2.3.9) and (2.3.10) in Lemma 2.3.1, we get
εz(θtω)(3δ−εz(θtω))∫Rnρ(|x|2k2)uvdx+β2|ε||z(θtω)∫Rnρ(|x|2k2)||u||v|dx≤(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)∫Rnρ(|x|2k2)(|u|2+|v|2)dx. | (2.3.60) |
∫Rnρ(|x|2k2)g(x,t)vdx≤12(β1−δ)∫Rnρ(|x|2k2)|g(x,t)|2dx+β1−δ2∫Rnρ(|x|2k2)|v|2dx. | (2.3.61) |
Assemble together (2.3.54)–(2.3.61) to obtain
12ddt∫Rnρ(|x|2k2)(|v|2+(λ+δ2−β2δ)|u|2+|Δu|2+2F(x,u))dx+δ∫Rnρ(|x|2k2)(|v|2+(λ+δ2−β2δ)|u|2+|Δu|2)dx+δc2∫Rnρ(|x|2k2)F(x,u)dx≤μ1+4μ2k2(|Δu|2+|v|2)+2√2μ1k(|Δu|2+|∇v|2)+(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)∫Rnρ(|x|2k2)(|u|2+|v|2)dx+c∫Rnρ(|x|2k2)|g(x,t)|2dx+c|ε||z(θtω)|∫Rnρ(|x|2k2)F(x,u)dx+c|ε||z(θtω)|∫Rnρ(|x|2k2)|u|2dx+c|ε||z(θtω)|∫Rnρ(|x|2k2)(|ϕ1|2+|ϕ3|)dx+c∫Rnρ(|x|2k2)ϕ2(x)dx+|ε||z(θtω)|∫Rnρ(|x|2k2)(|v|2+(λ+δ2+β2δ)|u|2+|Δu|2)dx. | (2.3.62) |
Since that ϕ1∈L2(Rn), ϕ2, ϕ3∈L1(Rn), for given η>0, there exists K0=K0(η)≥1 such that for all k≥K0,
c∫Rnρ(|x|2k2)(|ϕ1|2+|ϕ2|+|ϕ3|)dx=c∫|x|≥kρ(|x|2k2)(|ϕ1|2+|ϕ2|+|ϕ3|)dx≤c∫|x|≥k(|ϕ1|2+|ϕ2|+|ϕ3|)dx≤η. | (2.3.63) |
Using the expression (2.3.15), we conclude from (2.3.62) that
12ddt∫Rnρ(|x|2k2)(|v|2+(λ+δ2−β2δ)|u|2+|Δu|2+2F(x,u))dx≤−ϱ(t,ω)∫Rnρ(|x|2k2)(|v|2+(λ+δ2−β2δ)|u|2+|Δu|2+2F(x,u))dx+μ1+4μ2k2(|Δu|2+|v|2)+2√2μ1k(|Δu|2+|∇v|2)+c∫Rnρ(|x|2k2)|g(x,t)|2dx+η(1+|ε||z(θtω)|). | (2.3.64) |
Integrating (2.3.64) over (τ−t,τ) for t∈R+ and τ∈R, we get
∫Rnρ(|x|2k2)(|v(τ,τ−t,ω,v0)|2+(λ+δ2−β2δ)|u(τ,τ−t,ω,u0)|2)dx+∫Rnρ(|x|2k2)(|Δu(τ,τ−t,ω,u0)|2+2F(x,u(τ,τ−t,ω,u0)))dx≤e2∫τ−tτϱ(μ,ω)dμ∫Rnρ(|x|2k2)(|v0(x)|2+(λ+δ2−β2δ)|u0(x)|2)dx+e2∫τ−tτϱ(μ,ω)dμ∫Rnρ(|x|2k2)(|Δu0(x)|2+2F(x,u0(x)))dx+c∫ττ−te2∫sτϱ(μ,ω)dμ∫Rnρ(|x|2k2)|g(x,s)|2dsdx+η∫ττ−te2∫sτϱ(μ,ω)dμ(1+|ε||z(θsω)|)ds+μ1+4μ2k2∫ττ−te2∫sτϱ(μ,ω)dμ(|Δu(s,τ−t,ω,u0)|2+|v(s,τ−t,ω,v0)|2)ds+2√2μ1k∫ττ−te2∫sτϱ(μ,ω)dμ(|Δu(s,τ−t,ω,u0)|2+|∇v(s,τ−t,ω,v0)|2)ds. | (2.3.65) |
Replacing ω by θ−τω in (2.3.65) and by (2.3.51) we obtain, for every t∈R+, τ∈R, and ω∈Ω,
∫Rnρ(|x|2k2)(|v(τ,τ−t,θ−τω,v0)|2+(λ+δ2−β2δ)|u(τ,τ−t,θ−τω,u0)|2)dx+∫Rnρ(|x|2k2)(|Δu(τ,τ−t,θ−τω,u0)|2+2F(x,u(τ,τ−t,θ−τω,u0)))dx≤e2∫τ−tτϱ(μ−τ,ω)dμ∫Rnρ(|x|2k2)(|v0(x)|2+(λ+δ2−β2δ)|u0(x)|2)dx+e2∫τ−tτϱ(μ−τ,ω)dμ∫Rnρ(|x|2k2)(|Δu0(x)|2+2F(x,u0(x)))dx+c∫ττ−te2∫sτϱ(μ−τ,ω)dμ∫Rnρ(|x|2k2)|g(x,s)|2dsdx+η∫ττ−te2∫sτϱ(μ−τ,ω)dμ(1+|ε||z(θs−τω)|)ds+μ1+4μ2k2∫ττ−te2∫sτϱ(μ−τ,ω)dμ(‖Δu(s,τ−t,θ−τω,u0)‖2+‖v(s,τ−t,θ−τω,v0)‖2)ds+2√2μ1k∫ττ−te2∫sτϱ(μ−τ,ω)dμ(‖Δu(s,τ−t,θ−τω,u0)‖2+‖∇v(s,τ−t,θ−τω,v0)‖2)ds≤e2∫−t0ϱ(μ,ω)dμ(‖v0(x)‖2+(λ+δ2−β2δ)‖u0(x)‖2+‖Δu0(x)‖2+2˜F(x,u0(x)))dx+c∫0−te2∫s0ϱ(μ,ω)dμ∫Rnρ(|x|2k2)|g(x,s+τ)|2dsdx+η∫0−te2∫s0ϱ(μ,ω)dμ(1+|ε||z(θsω)|)ds+μ1+4μ2k2∫ττ−te2∫sτϱ(μ−τ,ω)dμ(‖Δu(s,τ−t,θ−τω,u0)‖2+‖v(s,τ−t,θ−τω,v0)‖2)ds+2√2μ1k∫ττ−te2∫sτϱ(μ−τ,ω)dμ(‖Δu(s,τ−t,θ−τω,u0)‖2+‖∇v(s,τ−t,θ−τω,v0)‖2)ds. | (2.3.66) |
It is similar to (2.3.26), for an arbitrarily given η>0, there exists T=T(τ,ω,D,η) such that for all t≥T,
e2∫−t0ϱ(μ,ω)dμ(‖v0(x)‖2+(λ+δ2−β2δ)‖u0(x)‖2+‖Δu0(x)‖2+2˜F(x,u0(x)))dx≤η. | (2.3.67) |
For the second and third terms on the right-hand of (2.3.66), by Lemma 2.3.1 and Lemma 2.3.3, for all t≥max{T2, T4},
μ1+4μ2k2∫ττ−te2∫sτϱ(μ−τ,ω)dμ(‖Δu(s,τ−t,θ−τω,u0)‖2+‖v(s,τ−t,θ−τω,v0)‖2)ds+2√2μ1k∫ττ−te2∫sτϱ(μ−τ,ω)dμ(‖Δu(s,τ−t,θ−τω,u0)‖2+‖∇v(s,τ−t,θ−τω,v0)‖2)ds≤η(R21(τ,ω)+R25(τ,ω)). | (2.3.68) |
For the fourth term on the right-hand side of (2.3.66), there exists K1=K1(τ,ω)≥1 such that for all k≥K1, by (2.3.22), we get
∫0−∞e2∫s0ϱ(μ,ω)dμ∫Rnρ(|x|2k2)|g(x,s+τ)|2dsdx≤∫−T1−∞e2∫s0ϱ(μ,ω)dμ∫|x|≥k|g(x,s+τ)|2dsdx+∫0−T1e2∫s0ϱ(μ,ω)dμ∫|x|≥k|g(x,s+τ)|2dsdx≤∫−T1−∞eσs∫|x|≥k|g(x,s+τ)|2dsdx+ec∗∫0−T1eσs∫|x|≥k|g(x,s+τ)|2dsdx, | (2.3.69) |
where c∗>0 is a random variable independent of τ∈R and D∈D, i.e.
c∗=(σ2+|ε|max−T1≤μ≤0|z(θμω)|+γ2(12ε2max−T1≤μ≤0z2(θμω)+γ3|ε|max−T1≤μ≤0|z(θμω)|))T1. |
Therefore, by (2.2.21) there exists K2(τ,ω)≥K1 such that for all k≥K2, we obtain
c∫0−∞e2∫s0ϱ(μ,ω)dμ∫Rnρ(|x|2k2)|g(x,s+τ)|2dsdx≤ec∫0−∞eσs∫|x|≥k|g(x,s+τ)|2dsdx≤η. | (2.3.70) |
Let
R7(τ,ω)=∫0−∞e2∫s0ϱ(μ,ω)dμ(1+|ε||z(θsω)|)ds, | (2.3.71) |
by (2.3.22), we know that the integral of (2.3.71) is convergent.
Together with (2.3.66)–(2.3.70), we have
∫Rnρ(|x|2k2)(|v(τ,τ−t,θ−τω,v0)|2+(λ+δ2−β2δ)|u(τ,τ−t,θ−τω,u0)|2)dx+∫Rnρ(|x|2k2)(|Δu(τ,τ−t,θ−τω,u0)|2+2F(x,u(τ,τ−t,θ−τω,u0)))dx≤2η(1+R21(τ,ω)+R25(τ,ω)+R7(τ,ω)). | (2.3.72) |
It follows from (2.3.25) and (2.3.72) that there exists K3=K3(τ,ω)≥K2, such for all k≥K3, t≥max{T2, T4},
∫|x|≥√2kρ(|x|2k2)(|v(τ,τ−t,θ−τω,v0)|2+(λ+δ2−β2δ)|u(τ,τ−t,θ−τω,u0)|2)dx+∫Rnρ(|x|2k2)(|Δu(τ,τ−t,θ−τω,u0)|2)dx≤3η(1+R21(τ,ω)+R25(τ,ω)+R7(τ,ω)), |
which implies (2.3.50).
We now derive uniform estimates of solutions in bounded domains. These estimates will be used to establish pullback asymptotic compactness. Let ˆρ=1−ρ with ρ given by (2.3.51). Fix k≥1, and set
{ˆu(t,τ,ω,^u0)=ˆρ(|x|2k2)u(t,τ,ω,u0),ˆv(t,τ,ω,^v0)=ˆρ(|x|2k2)v(t,τ,ω,v0). | (2.3.73) |
By (2.2.11)–(2.2.13) we find that ˆu and ˆv satisfy the following system in B2k={x∈Rn:|x|<2k}:
dˆudt=ˆv+εˆuz(θtω)−δˆu, | (2.3.74) |
dˆvdt−δˆv+(δ2+λ+A)ˆu+ˆρ(|x|2k2)f(u)=ˆρ(|x|2k2)g(x,t)−ˆρ(|x|2k2)h(v+εuz(θtω)−δu)−ε(ˆv−3δˆu+εˆuz(θtω))z(θtω)+4Δ∇ˆρ(|x|2k2)∇u+6Δˆρ(|x|2k2)Δu+4∇ˆρ(|x|2k2)Δ∇u+uΔ2ˆρ(|x|2k2), | (2.3.75) |
with boundary conditions
ˆu=ˆv=0 for |x|=2k. | (2.3.76) |
Let {en}∞n=1 be an orthonormal basis of L2(B2k) such that Aen=λnen with zero boundary condition in B2k. Given n, let Xn=span{e1,⋯,en} and Pn:L2(B2k)→Xn be the projection operator.
Lemma 2.3.5 Under Assumptions Ⅰ and Ⅱ, for every η>0,τ∈R,ω∈Ω, D={D(τ,ω):τ∈R,ω∈Ω}∈D, there exists T=T(τ,ω,D,η)>0,K=K(τ,ω,η)≥1 and N=N(τ,ω,η)≥1 such that for all t≥T, k≥K and n≥N, the solution of problem (2.3.74)–(2.3.76) satisfies
‖(I−Pn)ˆY(τ,τ−t,θ−τω,D(τ−t,θ−τω))‖2E(B2k)≤η. |
Proof. Let ˆun,1=Pnˆu,ˆun,2=(I−Pn)ˆu,ˆvn,1=Pnˆv,ˆvn,2=(I−Pn)ˆv. Applying I−Pn to (2.3.74), we obtain
ˆvn,2=dˆun,2dt+δˆun,2−εz(θtω)ˆun,2. | (2.3.77) |
Then applying I−Pn to (2.3.75) and taking the inner product with ˆvn,2 in L2(B2k), we have
12ddt‖ˆvn,2‖2−(δ−εz(θtω))‖ˆvn,2‖2+(λ+δ2+A)(ˆun,2,ˆvn,2)+((I−Pn)ˆρ(|x|2k2)f(x,u),ˆvn,2)=((I−Pn)ˆρ(|x|2k2)g(x,t),ˆvn,2)+εz(θtω)(3δ−εz(θtω))(ˆun,2,ˆvn,2)−(I−Pn)ˆρ(|x|2k2)(h(v+εz(θtω)−δu),ˆvn,2)+(4Δ∇ˆρ(|x|2k2)∇u+6Δˆρ(|x|2k2)Δu+4∇ˆρ(|x|2k2)Δ∇u+uΔ2ˆρ(|x|2k2),ˆvn,2). | (2.3.78) |
Substituting ˆvn,2 in (2.3.77) into the third term on the left-hand side of (2.3.78), we have
(ˆun,2,ˆvn,2)=(ˆun,2,dˆun,2dt+δˆun,2−εz(θtω)ˆun,2)≥12ddt‖ˆun,2‖2+δ‖ˆun,2‖2−|ε||z(θtω)|‖ˆun,2‖2, | (2.3.79) |
and then
(Aˆun,2,ˆvn,2)=(Δˆun,2,Δ(dˆun,2dt+δˆun,2−εz(θtω)ˆun,2))≥12ddt‖Δˆun,2‖2+δ‖Δˆun,2‖2−|ε||z(θtω)|‖Δˆun,2‖2. | (2.3.80) |
For the fourth term on the left-hand side of (2.3.78), we have
((I−Pn)ˆρ(|x|2k2)f(x,u),ˆvn,2)=((I−Pn)ˆρ(|x|2k2)f(x,u),dˆun,2dt+δˆun,2−εz(θtω)ˆun,2)=ddt((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)−((I−Pn)ˆρ(|x|2k2)f′u(x,u)ut,ˆun,2)+(δ−εz(θtω))((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2). | (2.3.81) |
For the third term on the right-hand side of (2.3.78), we have
−(I−Pn)ˆρ(|x|2k2)(h(v+εz(θtω)−δu),ˆvn,2)=−(I−Pn)ˆρ(|x|2k2)(h(v+εz(θtω)−δu)−h(0),ˆvn,2)≤−β1‖ˆvn,2‖2+h′(ϑ)δ(ˆun,2,ˆvn,2)+β2|ε||z(θtω)|‖ˆun,2‖‖ˆvn,2‖. | (2.3.82) |
Using the Cauchy-Schwarz inequality and Young's inequality, we get
εz(θtω)(3δ−εz(θtω))(ˆun,2,ˆvn,2)+β2|ε||z(θtω)|‖ˆun,2‖‖ˆvn,2‖=(3δεz(θtω)−ε2z2(θtω))(ˆun,2,ˆvn,2)+β2|ε||z(θtω)|‖ˆun,2‖‖ˆvn,2‖≤(3δ|ε||z(θtω)|+ε2|z(θtω)|2)‖ˆun,2‖‖ˆvn,2‖+β2|ε||z(θtω)|‖ˆun,2‖‖ˆvn,2‖=((3δ+β2)|ε||z(θtω)|+ε2|z(θtω)|2)‖ˆun,2‖‖ˆvn,2‖≤(12(3δ+β2)|ε||z(θtω)|+12ε2|z(θtω)|2)(‖ˆun,2‖2+‖ˆvn,2‖2), | (2.3.83) |
and
((I−Pn)ˆρ(|x|2k2)g(x,t),ˆvn,2)≤β1−δ4‖ˆvn,2‖2+1β1−δ‖(I−Pn)(ˆρ(|x|2k2)g(x,t))‖2. | (2.3.84) |
Now, we estimate the last term in (2.3.78)
(4Δ∇ˆρ(|x|2k2)⋅∇u+6Δˆρ(|x|2k2)⋅Δu+4∇ˆρ(|x|2k2)⋅Δ∇u+uΔ2ˆρ(|x|2k2),ˆvn,2)=(4∇u⋅(12|x|k4ˆρ″(|x|2k2)+8|x|3k6ˆρ‴(|x|2k2))+6Δu⋅(2k2ˆρ′(|x|2r2)+4x2k4ˆρ″(|x|2k2))+8|x|k2Δ∇u⋅ˆρ′(|x|2k2)+u(12k4ˆρ″(|x|2k2)+48x2k6ˆρ‴(|x|2k2)+16x4k8ˆρ⁗(|x|2k2)),ˆvn,2)≤16√2(3μ2+4μ3)k3‖∇u‖⋅‖ˆvn,2‖+12(μ1+4μ2)k2‖Δu‖⋅‖ˆvn,2‖+8√2μ1k‖A34u‖⋅‖ˆvn,2‖+4(3μ2+24μ3+16μ4)k4‖u‖⋅‖ˆvn,2‖≤8(48μ2+64μ3)2(β1−δ)k6‖∇u‖2+4(12μ1+48μ2)2(β1−δ)k4‖Δu‖2+512μ21(β1−δ)k2‖A34u‖2+4(12μ2+96μ3+64μ4)2(β1−δ)k8‖u‖2+β1−δ4‖ˆvn,2‖2. | (2.3.85) |
Assemble together (2.3.78)–(2.3.85) to obtain
12ddt[‖ˆvn,2‖2+(λ+δ2−β2δ)‖ˆun,2‖2+‖Δˆun,2‖2+2((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)]+(δ−|ε||z(θtω)|)[‖ˆvn,2‖2+(λ+δ2−β2δ)‖ˆun,2‖2+‖Δˆun,2‖2+((I−Pn)ˆρ(|x|2k2)f(u),ˆun,2)]≤(12(3δ+β2+4β2δ)|ε||z(θtω)|+12ε2|z(θtω)|2)(‖ˆvn,2‖2+‖ˆun,2‖2)+2β1−δ(4(48μ2+64μ3)2k6‖∇u‖2+2(12μ1+48μ2)2k4‖Δu‖2+256μ21k2‖A34u‖2+2(12μ2+96μ3+64μ4)2k8‖u‖2+12‖(I−Pn)(ˆρ(|x|2k2)g(x,t))‖2)+3δ−β12‖ˆvn,2‖2+((I−Pn)ˆρ(|x|2k2)f′u(x,u)ut,ˆun,2). |
It follows that
ddt[‖ˆvn,2‖2+(λ+δ2−β2δ)‖ˆun,2‖2+‖Δˆun,2‖2+2((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)]≤2(−δ+|ε||z(θtω)|+γ2(12(3δ+β2+4β2δ)|ε||z(θtω)|+12ε2|z(θtω)|2))⋅[‖ˆvn,2‖2+(λ+δ2−β2δ)‖ˆun,2‖2+‖Δˆun,2‖2+2((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)]+4β1−δ(4(48μ2+64μ3)2k6‖∇u‖2+2(12μ1+48μ2)2k4‖Δu‖2+256μ21k2‖A34u‖2+2(12μ2+96μ3+64μ4)2k8‖u‖2+12‖(I−Pn)(ˆρ(|x|2k2)g(x,t))‖2)+2((I−Pn)ˆρ(|x|2k2)f′u(x,u)ut,ˆun,2)+2(δ−|ε||z(θtω)|−γ2(12(3δ+β2+4β2δ)|ε||z(θtω)|+12ε2|z(θtω)|2))⋅((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)≤−2ϱ(τ,ω)[‖ˆvn,2‖2+(λ+δ2−β2δ)‖ˆun,2‖2+‖Δˆun,2‖2+2((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)]+2[−δ+σ−(γ1+γ2−1)|ε||z(θtω)|]⋅[‖ˆvn,2‖2+(λ+δ2−β2δ)‖ˆun,2‖2+‖Δˆun,2‖2]+2((I−Pn)ˆρ(|x|2k2)f′u(x,u)ut,ˆun,2)+4β1−δ(4(48μ2+64μ3)2k6‖∇u‖2+2(12μ1+48μ2)2k4‖Δu‖2+256μ21k2‖A34u‖2+2(12μ2+96μ3+64μ4)2k8‖u‖2+12‖(I−Pn)(ˆρ(|x|2k2)g(x,t))‖2)+4(σ−12δ)⋅((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)+4[−γ12|ε||z(θtω)|−γ22(12ε2|z(θtω)|2+(12(3δ+β2+4β2δ+4)|ε||z(θtω)|))]⋅((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2). | (2.3.86) |
Let θ=n(γ−1)4(γ+1). Since 1≤γ≤n+4n−4, we find that 0≤θ≤1. Then by (2.2.4) and interpolation inequalities, the last term on the right hand of (2.3.86) is bounded by
4[−γ12|ε||z(θtω)|−γ22(12ε2|z(θtω)|2+(12(3δ+β2+4β2δ+4)|ε||z(θtω)|))]⋅((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)≤c(1+|z(θtω)|2)[c1∫Rnˆρ(|x|2k2)|u|γ|ˆun,2|dx+∫Rnˆρ(|x|2k2)|η1(x)||ˆun,2|dx]≤c(1+|z(θtω)|2)(c1‖u‖γγ+1‖ˆun,2‖γ+1+‖η1‖‖ˆun,2‖)≤c(1+|z(θtω)|2)(c1‖u‖γγ+1‖Δˆun,2‖θ‖ˆun,2‖1−θ+λ−12n+1‖η1‖‖Δˆun,2‖)≤c(1+|z(θtω)|2)[λ−12n+1‖Δˆun,2‖(c1λθ2n+1‖u‖γH2+‖η1‖))]≤16(δ−σ)‖Δˆun,2‖2+cλ−1n+1(1+|z(θtω)|18+λθn+1‖u‖18H2(Rn)). | (2.3.87) |
Similarly we have
4(σ−12δ)((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)≤16(δ−σ)‖Δˆun,2‖2+cλ−1n+1(1+λθn+1‖u‖18H2(Rn)). | (2.3.88) |
On the other hand, by (2.2.7), using H¨older inequality and Young's inequality, we obtain
2((I−Pn)ˆρ(|x|2k2)f′u(x,u)ut,ˆun,2)≤16(δ−σ)‖Δˆun,2‖2+cλ−1n+1‖ut‖2≤16(δ−σ)‖Δˆun,2‖2+cλ−1n+1(‖u‖2+‖v‖2+‖u‖4+|z(θtω)|4). | (2.3.89) |
Then by (2.3.86)–(2.3.89), we obtain
ddt[‖ˆvn,2‖2+(λ+δ2−β2δ)‖ˆun,2‖2+‖Δˆun,2‖2+2((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)]≤−2ϱ(τ,ω)[‖ˆvn,2‖2+(λ+δ2−β2δ)‖ˆun,2‖2+‖Δˆun,2‖2+2((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)]+cλ−1n+1[1+‖v‖18+(1+λθn+1)‖u‖18H2(Rn)+|z(θtω)|18]+ck6‖∇u‖2+ck4‖Δu‖2+ck2‖A34u‖2+ck8‖u‖2+c‖(I−Pn)(ˆρ(|x|2k2)g(x,t))‖2. | (2.3.90) |
Note that λn→∞ when n→∞. Therefore, given η>0, by Lemma 2.3.1 and 2.3.3, we know there exist N1=N1(η)≥1 and K4=K4(η)≥1 such for all n≥N1 and k≥K4,
ddt[‖ˆvn,2‖2+(λ+δ2−β2δ)‖ˆun,2‖2+‖Δˆun,2‖2+2((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)]≤−2ϱ(τ,ω)[‖ˆvn,2‖2+(λ+δ2−β2δ)‖ˆun,2‖2+‖Δˆun,2‖2+2((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2)]+η(1+‖v‖18+‖u‖18H2(Rn)+|z(θtω)|18)+c‖(I−Pn)(ˆρ(|x|2k2)g(x,t))‖2. | (2.3.91) |
Integrating (2.3.91) over (τ−t,τ) with t≥0, we get for all n≥N1 and k≥K4,
‖ˆvn,2(τ,τ−t,ω)‖2+(λ+δ2−β2δ)‖ˆun,2(τ,τ−t,ω)‖2+‖Δˆun,2(τ,τ−t,ω)‖2+2((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2(τ,τ−t,ω))≤ce2∫τ−tτϱ(μ,ω)dμ(1+‖v0‖2+‖u0‖2H2(Rn))+η∫ττ−te2∫sτϱ(μ,ω)dμ(‖u(s,τ−t,ω,u0)‖18H2(Rn)+‖v(s,τ−t,ω,v0)‖18)ds+η∫ττ−te2∫sτϱ(μ,ω)dμ(1+|z(θsω)|18)ds+c∫ττ−te2∫sτϱ(μ,ω)dμ‖(I−Pn)(ˆρ(|x|2k2)g(x,s))‖2ds. |
Replacing ω by θ−τω in the above we obtain, for every t∈R+, τ∈R, ω∈Ω, n≥N1 and k≥K4,
‖ˆvn,2(τ,τ−t,θ−τω)‖2+(λ+δ2−β2δ)‖ˆun,2(τ,τ−t,θ−τω)‖2+‖Δˆun,2(τ,τ−t,θ−τω)‖2+2((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2(τ,τ−t,θ−τω))≤ce2∫τ−tτϱ(μ−τ,ω)dμ(1+‖v0‖2+‖u0‖γ+1H2(Rn))+η∫ττ−te2∫sτϱ(μ−τ,ω)dμ(‖u(s,τ−t,θ−τω,u0)‖18H2(Rn)+‖v(s,τ−t,θ−τω,v0)‖18)ds+η∫ττ−te2∫sτϱ(μ−τ,ω)dμ(1+|z(θs−τω)|18)ds+c∫ττ−te2∫sτϱ(μ−τ,ω)dμ‖(I−Pn)(ˆρ(|x|2k2)g(x,s))‖2ds≤ce2∫−t0ϱ(μ,ω)dμ(1+‖v0‖2+‖u0‖γ+1H2(Rn))+η∫0−te2∫s0ϱ(μ,ω)dμ(‖u(s+τ,τ−t,θ−τω,u0)‖18H2(Rn)+‖v(s+τ,τ−t,θ−τω,v0)‖18)ds+η∫0−te2∫s0ϱ(μ,ω)dμ(1+|z(θsω)|18)ds+c∫0−te2∫s0ϱ(μ,ω)dμ‖(I−Pn)(ˆρ(|x|2k2)g(x,s+τ))‖2ds. | (2.3.92) |
We now estimate every term on the right-hand side of (2.3.92). For the first term, as in (2.3.26), we find that there exists ˜T=˜T(τ,ω,D,η)>0 such for all t≥˜T,
ce2∫−t0ϱ(μ,ω)dμ(1+‖v0‖2+‖u0‖γ+1H2(Rn))≤η. | (2.3.93) |
For the second term on the right-hand side of (2.3.92), by Lemma 2.3.2 we have
η∫0−te2∫s0ϱ(μ,ω)dμ(‖u(s+τ,τ−t,θ−τω,u0)‖18H2(Rn)+‖v(s+τ,τ−t,θ−τω,v0)‖18)ds≤ηc∫0−te2∫s0ϱ(μ,ω)dμds+ηR93(τ,ω)∫0−te−16∫s0ϱ(μ,ω)dμds≤ηc∫0−∞e2∫s0ϱ(μ,ω)dμds+η8σR93(τ,ω), | (2.3.94) |
where R3(τ,ω) is the random variable given in Lemma 2.3.2. Note that by (2.3.22) the above integral is well defined, and so is the following one
∫0−∞e2∫s0ϱ(μ,ω)dμ(1+|z(θsω)|18)ds<∞. | (2.3.95) |
For the last term on the right-hand side of (2.3.92), by (2.2.20) and (2.3.22), since g∈L2(Rn), there exists N2=N2(τ,ω,η)≥N1, such that for all n≥N2,
∫0−∞e2∫s0ϱ(μ,ω)dμ‖(I−Pn)(ˆρ(|x|2k2)g(x,s+τ))‖2ds<η. | (2.3.96) |
According to (2.3.92)–(2.3.96) we find that, for every τ∈R, ω∈Ω, t≥˜T, n≥N2 and k≥K4,
‖ˆvn,2(τ,τ−t,θ−τω)‖2+(λ+δ2−β2δ)‖ˆun,2(τ,τ−t,θ−τω)‖2+‖Δˆun,2(τ,τ−t,θ−τω)‖2+2((I−Pn)ˆρ(|x|2k2)f(x,u),ˆun,2(τ,τ−t,θ−τω))≤ηR8(τ,ω), | (2.3.97) |
where R8(τ,ω) is a positive random variable. The proof is completed by (2.2.4) and (2.3.97).
In this section, we prove existence and uniqueness of D- pullback attractors for the stochastic system (2.2.11)–(2.2.13). First we apply the Lemmas shown in Section 4 to prove the asymptotic compactness of solutions of (2.2.11)–(2.2.13) in E.
Lemma 3.1 Under Assumptions Ⅰ and Ⅱ, for every τ∈R, ω∈Ω, the sequence of weak solutions of (2.2.11)–(2.2.13), {Y(τ,τ−tm,θ−τω,Y0(θ−tmω))}∞m=1 has a convergent subsequence in E whenever tm→∞ and Y0(θ−tmω)∈D(τ−tm,θ−tmω) with D∈D.
Proof. Let tm→∞ and Y0(θ−tmω)∈D(τ−tm,θ−tmω) with D∈D. By Lemma 2.3.1, there exists m1=m1(τ,ω,D)>0 such for all m≥m1, we have
‖Y(τ,τ−tm,θ−τω,Y0(θ−tmω))‖2E≤R1(τ,ω). | (3.1) |
By Lemma 2.3.4, for every η>0, there exist k0=k0(τ,ω,η)≥1 and m2=m2(τ,ω,D,η)≥m1 such for all m≥m2,
‖Y(τ,τ−t,θ−τω,D(τ−t,θ−tω))‖2E(Rn∖Bk0)≤η. | (3.2) |
By Lemma 2.3.5, there exist k1=k1(τ,ω,η)≥k0 and m3=m3(τ,ω,D,η)≥m2 and n1=n1(τ,ω,η)≥0 such for all m≥m3,
‖(I−Pn)ˆY(τ,τ−t,θ−τω,D(τ−t,θ−τω))‖2E(B2k1)≤η. | (3.3) |
Using (2.3.73) and (3.1), we get
‖PnˆY(τ,τ−t,θ−τω,D(τ−t,θ−τω))‖2PnE(B2k1)≤c19R1(τ,ω), | (3.4) |
which together with (3.3) implies that {Y(τ,τ−tm,θ−τω,Y0(θ−tmω))} is precompact in E(B2k1). Note that ˆρ(|x|2k21)=1 for |x|≤k1. Therefore, {Y(τ,τ−tm,θ−τω,Y0(θ−tmω))} is precompact in E(Bk1), which along with (5.2) shows the precompactness of this sequence in E.
Theorem 3.1 Under Assumptions Ⅰ and Ⅱ, the random dynamical system Φ generated by the stochastic plate Eq. (2.2.11)–(2.2.13) has a unique pullback D-attractor A={A(τ,ω):τ∈R, ω∈Ω}∈D in the space E.
Proof. Note that the cocycle Φ is pullback D-asymptotically compact in E by Lemma 3.1. On the other hand, the cocycle Φ has a pullback D-absorbing set by Lemma 2.3.1. Then the existence and uniqueness of a pullback D-attractor of Φ follow from Proposition 2.1.8 immediately.
Using the uniform estimates on the tails of solutions and the splitting technique as well as the compactness methods, we obtained the existence of pullback attractor for the problem (1.1)–(1.2). It is well-known that the pullback random attractors are employed to describe long-time behavior for an non-autonomous dynamical system with random term, while the D-pullback attractor that we obtained can characterize the asymptotic behavior of the equation like (1.1)–(1.2), which is featured with both stochastic term and non-autonomous term.
This work is supported by the High-level talent program of QHMU (No.(2020XJG10)).
The author declares that there is no conflict of interest.
[1] | L. Arnold, Random Dynamical Systems, 1998. |
[2] |
A. R. A. Barbosaa, T. F. Ma, Long-time dynamics of an extensible plate equation with thermal memory, J. Math. Anal. Appl., 416 (2014), 143-165. doi: 10.1016/j.jmaa.2014.02.042
![]() |
[3] |
P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017
![]() |
[4] |
P. W. Bates, H. Lisei, K. Lu, Attractors for stochastic lattic dynamical systems, Stoch. Dynam., 6 (2006), 1-21. doi: 10.1142/S0219493706001621
![]() |
[5] | V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, American Math. Soc., 2002. |
[6] | I. Chueshov, Monotone Random Systems Theory and Applications, 2002. |
[7] | H. Crauel, Random Probability Measure on Polish Spaces, CRC press, 2002. |
[8] |
H. Crauel, A. Debussche, F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341. doi: 10.1007/BF02219225
![]() |
[9] |
H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Theory, Rel., 100 (1994), 365-393. doi: 10.1007/BF01193705
![]() |
[10] |
H. Cui, J. A. Langa, Uniform attractors for non-automous random dynamical systems, J. Differ. Equ., 263 (2017), 1225-1268. doi: 10.1016/j.jde.2017.03.018
![]() |
[11] |
X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793. doi: 10.1080/07362990600751860
![]() |
[12] |
F. Flandoli, B. Schmalfuss, Random attractors for the 3D stochastic Navier- Stokes equation with multiplicative white noise, Stochastics and Stochastics Reports, 59 (1996), 21-45. doi: 10.1080/17442509608834083
![]() |
[13] | C. Gao, L. Lv, Y. Wang, Spectra of a discrete Sturm-Liouville problem with eigenparameter-dependent boundary conditions in Pontryagin space, Quaest. Math., 2019 (2019), 1-26. |
[14] |
J. Huang, W. Shen, Pullback attractors for non-autonomous and random parabolic equations on non-smooth domains, Discrete Cont. Dyn. S., 24 (2009), 855-882. doi: 10.3934/dcds.2009.24.855
![]() |
[15] |
A. K. Khanmamedov, A global attractor for the plate equation with displacement-dependent damping, Nonlinear Analysis: Theory, Methods and Applications, 74 (2011), 1607-1615. doi: 10.1016/j.na.2010.10.031
![]() |
[16] |
A. K. Khanmamedov, Existence of a global attractor for the plate equation with a critical exponent in an unbounded domain, Appl. Math. Lett., 18 (2005), 827-832. doi: 10.1016/j.aml.2004.08.013
![]() |
[17] |
A. K. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J. Differ. Equ., 225 (2006), 528-548. doi: 10.1016/j.jde.2005.12.001
![]() |
[18] |
P. E. Kloeden, J. A. Langa, Flattening, squeezing and the existence of random attractors, P. Roy. Soc. Lond. A. Mat., 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753
![]() |
[19] |
Q. Ma, S. Wang, C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana U. Math. J., 51 (2002), 1541-1559. doi: 10.1512/iumj.2002.51.2255
![]() |
[20] | W. J. Ma, Q. Z. Ma, Attractors for stochastic strongly damped plate equations with additive noise, Electron. J. Differ. Equ., 111 (2013), 1-12. |
[21] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. |
[22] | B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, 1992. |
[23] |
X. Shen, Q. Ma, The existence of random attractors for plate equations with memory and additive white noise, Korean J. Math., 24 (2016), 447-467. doi: 10.11568/kjm.2016.24.3.447
![]() |
[24] |
X. Shen, Q. Ma, Existence of random attractors for weakly dissipative plate equations with memory and additive white noise, Comput. Math. Appl., 73 (2017), 2258-2271. doi: 10.1016/j.camwa.2017.03.009
![]() |
[25] |
Z. Shen, S. Zhou, W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differ. Equ., 248 (2010), 1432-1457. doi: 10.1016/j.jde.2009.10.007
![]() |
[26] | R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 1997. |
[27] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015
![]() |
[28] | B. Wang, X. Gao, Random attractors for wave equations on unbounded domains, Conference Publications, 2009. |
[29] |
Z. Wang, S. Zhou, A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Analysis: Real World Applications, 12 (2011), 3468-3482. doi: 10.1016/j.nonrwa.2011.06.008
![]() |
[30] | Z. Wang, S. Zhou, Random attractor for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 5 (2015), 363-387. |
[31] | B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on R3, T. Am. Math. Soc., 363 (2011), 3639-3663. |
[32] |
Z. Wang, S. Zhou, Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise, Discrete Cont. Dyn. S., 38 (2018), 4767-4817. doi: 10.3934/dcds.2018210
![]() |
[33] | B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1-31. |
[34] |
L. Yang, Uniform attractor for non-autonomous plate equations with a localized damping and a critical nonlinearity, J. Math. Anal. Appl., 338 (2008), 1243-1254. doi: 10.1016/j.jmaa.2007.06.011
![]() |
[35] |
L. Yang, C. K. Zhong, Global attractor for plate equation with nonlinear damping, Nonlinear Analysis: Theory, Methods and Applications, 69 (2008), 3802-3810. doi: 10.1016/j.na.2007.10.016
![]() |
[36] |
M. Yang, J. Duan, P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Analysis: Real World Applications, 12 (2011), 464-478. doi: 10.1016/j.nonrwa.2010.06.032
![]() |
[37] | X. Yao, Q. Ma, T. Liu, Asymptotic behavior for stochastic plate equations with rotational inertia and kelvin-voigt dissipative term on unbounded domains, Discrete Cont. Dyn-B, 24 (2019), 1889-1917. |
[38] |
X. Yao, Q. Ma, L. Xu, Global attractors for a Kirchhoff type plate equation with memory, Kodai Math. J., 40 (2017), 63-78. doi: 10.2996/kmj/1490083224
![]() |
[39] | X. Yao, Q. Ma, Global attractors of the extensible plate equations with nonlinear damping and memory, J. Funct. Space., 2017 (2017), 1-10. |
[40] |
X. Yao, X. Liu, Asymptotic behavior for non-autonomous stochastic plate equation on unbounded domains, Open Math., 17 (2019), 1281-1302. doi: 10.1515/math-2019-0092
![]() |
[41] |
G. Yue, C. Zhong, Global attractors for plate equations with critical exponent in locally uniform spaces, Nonlinear Analysis: Theory, Methods and Applications, 71 (2009), 4105-4114. doi: 10.1016/j.na.2009.02.089
![]() |
1. | Xiaobin Yao, Zhang Zhang, Pietro De Lellis, Asymptotic Behavior of the Kirchhoff Type Stochastic Plate Equation on Unbounded Domains, 2022, 2022, 1099-0526, 1, 10.1155/2022/1053042 | |
2. | Xiao Bin Yao, Asymptotic behavior for stochastic plate equations with memory in unbounded domains, 2022, 0, 1565-1339, 10.1515/ijnsns-2021-0383 | |
3. | Xiao Bin Yao, Chan Yue, Asymptotic behavior of plate equations with memory driven by colored noise on unbounded domains, 2022, 7, 2473-6988, 18497, 10.3934/math.20221017 | |
4. | Xiaobin Yao, Asymptotic behavior for stochastic plate equations with memory and additive noise on unbounded domains, 2022, 27, 1531-3492, 443, 10.3934/dcdsb.2021050 | |
5. | Xiao Bin Yao, Random attractors for stochastic plate equations with memory in unbounded domains, 2021, 19, 2391-5455, 1435, 10.1515/math-2021-0097 | |
6. | Xiao Bin Yao, Asymptotic behavior of plate equations driven by colored noise on unbounded domains, 2023, 2023, 1687-2770, 10.1186/s13661-023-01715-4 | |
7. | Xiaobin Yao, DYNAMICS OF KIRCHHOFF TYPE PLATE EQUATIONS WITH NONLINEAR DAMPING DRIVEN BY MULTIPLICATIVE NOISE, 2024, 14, 2156-907X, 1148, 10.11948/20220281 | |
8. | Kaili Han, Yangrong Li, Huan Xia, Residually continuous pullback attractors for stochastic discrete plate equations, 2024, 47, 0170-4214, 7448, 10.1002/mma.9982 | |
9. | Xiaobin Yao, Dynamics of plate equations with time delay driven by additive noise in $\mathbb{R}^{n}$, 2023, 2023, 1029-242X, 10.1186/s13660-023-02950-0 | |
10. | Xiao Bin Yao, Deng Juan Feng, Asymptotic behavior for stochastic plate equations on unbounded domains, 2023, 187, 00074497, 103315, 10.1016/j.bulsci.2023.103315 |