Citation: Xiaobin Yao. Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping[J]. AIMS Mathematics, 2020, 5(3): 2577-2607. doi: 10.3934/math.2020169
[1] | L. Arnold, Random Dynamical Systems, 1998. |
[2] | A. R. A. Barbosaa, T. F. Ma, Long-time dynamics of an extensible plate equation with thermal memory, J. Math. Anal. Appl., 416 (2014), 143-165. doi: 10.1016/j.jmaa.2014.02.042 |
[3] | P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017 |
[4] | P. W. Bates, H. Lisei, K. Lu, Attractors for stochastic lattic dynamical systems, Stoch. Dynam., 6 (2006), 1-21. doi: 10.1142/S0219493706001621 |
[5] | V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, American Math. Soc., 2002. |
[6] | I. Chueshov, Monotone Random Systems Theory and Applications, 2002. |
[7] | H. Crauel, Random Probability Measure on Polish Spaces, CRC press, 2002. |
[8] | H. Crauel, A. Debussche, F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341. doi: 10.1007/BF02219225 |
[9] | H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Theory, Rel., 100 (1994), 365-393. doi: 10.1007/BF01193705 |
[10] | H. Cui, J. A. Langa, Uniform attractors for non-automous random dynamical systems, J. Differ. Equ., 263 (2017), 1225-1268. doi: 10.1016/j.jde.2017.03.018 |
[11] | X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793. doi: 10.1080/07362990600751860 |
[12] | F. Flandoli, B. Schmalfuss, Random attractors for the 3D stochastic Navier- Stokes equation with multiplicative white noise, Stochastics and Stochastics Reports, 59 (1996), 21-45. doi: 10.1080/17442509608834083 |
[13] | C. Gao, L. Lv, Y. Wang, Spectra of a discrete Sturm-Liouville problem with eigenparameter-dependent boundary conditions in Pontryagin space, Quaest. Math., 2019 (2019), 1-26. |
[14] | J. Huang, W. Shen, Pullback attractors for non-autonomous and random parabolic equations on non-smooth domains, Discrete Cont. Dyn. S., 24 (2009), 855-882. doi: 10.3934/dcds.2009.24.855 |
[15] | A. K. Khanmamedov, A global attractor for the plate equation with displacement-dependent damping, Nonlinear Analysis: Theory, Methods and Applications, 74 (2011), 1607-1615. doi: 10.1016/j.na.2010.10.031 |
[16] | A. K. Khanmamedov, Existence of a global attractor for the plate equation with a critical exponent in an unbounded domain, Appl. Math. Lett., 18 (2005), 827-832. doi: 10.1016/j.aml.2004.08.013 |
[17] | A. K. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J. Differ. Equ., 225 (2006), 528-548. doi: 10.1016/j.jde.2005.12.001 |
[18] | P. E. Kloeden, J. A. Langa, Flattening, squeezing and the existence of random attractors, P. Roy. Soc. Lond. A. Mat., 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753 |
[19] | Q. Ma, S. Wang, C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana U. Math. J., 51 (2002), 1541-1559. doi: 10.1512/iumj.2002.51.2255 |
[20] | W. J. Ma, Q. Z. Ma, Attractors for stochastic strongly damped plate equations with additive noise, Electron. J. Differ. Equ., 111 (2013), 1-12. |
[21] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. |
[22] | B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, 1992. |
[23] | X. Shen, Q. Ma, The existence of random attractors for plate equations with memory and additive white noise, Korean J. Math., 24 (2016), 447-467. doi: 10.11568/kjm.2016.24.3.447 |
[24] | X. Shen, Q. Ma, Existence of random attractors for weakly dissipative plate equations with memory and additive white noise, Comput. Math. Appl., 73 (2017), 2258-2271. doi: 10.1016/j.camwa.2017.03.009 |
[25] | Z. Shen, S. Zhou, W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differ. Equ., 248 (2010), 1432-1457. doi: 10.1016/j.jde.2009.10.007 |
[26] | R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 1997. |
[27] | B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015 |
[28] | B. Wang, X. Gao, Random attractors for wave equations on unbounded domains, Conference Publications, 2009. |
[29] | Z. Wang, S. Zhou, A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Analysis: Real World Applications, 12 (2011), 3468-3482. doi: 10.1016/j.nonrwa.2011.06.008 |
[30] | Z. Wang, S. Zhou, Random attractor for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 5 (2015), 363-387. |
[31] | B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, T. Am. Math. Soc., 363 (2011), 3639-3663. |
[32] | Z. Wang, S. Zhou, Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise, Discrete Cont. Dyn. S., 38 (2018), 4767-4817. doi: 10.3934/dcds.2018210 |
[33] | B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1-31. |
[34] | L. Yang, Uniform attractor for non-autonomous plate equations with a localized damping and a critical nonlinearity, J. Math. Anal. Appl., 338 (2008), 1243-1254. doi: 10.1016/j.jmaa.2007.06.011 |
[35] | L. Yang, C. K. Zhong, Global attractor for plate equation with nonlinear damping, Nonlinear Analysis: Theory, Methods and Applications, 69 (2008), 3802-3810. doi: 10.1016/j.na.2007.10.016 |
[36] | M. Yang, J. Duan, P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Analysis: Real World Applications, 12 (2011), 464-478. doi: 10.1016/j.nonrwa.2010.06.032 |
[37] | X. Yao, Q. Ma, T. Liu, Asymptotic behavior for stochastic plate equations with rotational inertia and kelvin-voigt dissipative term on unbounded domains, Discrete Cont. Dyn-B, 24 (2019), 1889-1917. |
[38] | X. Yao, Q. Ma, L. Xu, Global attractors for a Kirchhoff type plate equation with memory, Kodai Math. J., 40 (2017), 63-78. doi: 10.2996/kmj/1490083224 |
[39] | X. Yao, Q. Ma, Global attractors of the extensible plate equations with nonlinear damping and memory, J. Funct. Space., 2017 (2017), 1-10. |
[40] | X. Yao, X. Liu, Asymptotic behavior for non-autonomous stochastic plate equation on unbounded domains, Open Math., 17 (2019), 1281-1302. doi: 10.1515/math-2019-0092 |
[41] | G. Yue, C. Zhong, Global attractors for plate equations with critical exponent in locally uniform spaces, Nonlinear Analysis: Theory, Methods and Applications, 71 (2009), 4105-4114. doi: 10.1016/j.na.2009.02.089 |