AIMS Mathematics, 5(3): 2577-2607.
ATIMS Mathematics DOI:10.3934/math.2020169
% : Received: 14 November 2019
o Accepted: 01 February 2020
http://www.aimspress.com/journal/Math Published: 12 March 2020

Research article

Random attractors for non-autonomous stochastic plate equations with
multiplicative noise and nonlinear damping

Xiaobin Yao*

School of Mathematics and Statistics, Qinghai Nationalities University, Xi’ning, Qinghai, 810007,
China

* Correspondence: Email: yaoxiaobin2008 @ 163.com; Tel: 13897586728; Fax: 13897586728.

Abstract: Based on the abstract theory of pullback attractors of non-autonomous non-compact
dynamical systems by differential equations with both dependent-time deterministic and stochastic
forcing terms, which introduced by B. Wang, we investigate existence of pullback attractors for the
non-autonomous stochastic plate equations with multiplicative noise defined in the entire space R”".

Keywords: pullback attractors; plate equation; unbounded domains; multiplicative white noise
Mathematics Subject Classification: 35B40, 35B41

1. Introduction

In this paper, we study the asymptotic behavior of solutions for the following non-autonomous
stochastic plate equation with multiplicative noise and nonlinear damping defined on the unbounded
domain R":

d
ut,+A2u+h(u,)+/lu+f(x,u) :g(x,t)+8uod—v: (1.1)

with the initial value conditions
u(x, v) = up(x), ux, 1) = u(x), (1.2)

where x € R", t > 7 with 7 € R, 4 > 0 and ¢ are constants, /(u,) is a nonlinear damping term, f
is a given interaction term, g is a given function satisfying g € L} (R, H'(R")), and w is a two-sided
real-valued Wiener process on a probability space. The stochastic Eq. (1.1) is understood in the sense
of Stratonovich’s integration.

Plate equations like (1.1), especially when h(u;) = au,, have been investigated for many years due

to their importance in some physical areas such as vibration and elasticity theory of solid mechanics.
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The study of the long-time dynamics of plate equations has become an outstanding topic in the field of
the infinite dimensional dynamical system.

As we know, the attractor is regarded as a proper notation describing the long-time dynamics of
solutions, and many classical literatures and monographs have been appeared for both the deterministic
and stochastic dynamical systems over the last decades years, see [1,5,6,8,9,12,12-15,22,26,27,40]
and references therein. However, in reality, a system is always affected by some random factors such
as external noise. In order to study the large-time behavior and characterization of solution for the
stochastic partial differential equations driven by noise, H. Crauel & Franco Flandoi [8, 9], Franco
Flandoi & B. Schmalfuss [12] and B. Schmalfuss [22] introduced the concept of pullback attractors,
and established some abstract results for existence of such attractors about compact dynamical system
[1,9,12,15,18]. Since these methods required the compactness of pullback absorbing set for systems,
it could not be used to deal with the stochastic PDEs on unbounded domains. P. W. Bates, H. Lisei
& K. Lu [4] presented the concept of asymptotic compactness for random dynamical systems, they
proved the existence of random attractors for reaction-diffusion equations on unbounded domain using
these abstract results in [3]. B. Wang in [27] further extended the concept of asymptotic compactness
to the case of partial differential equations with both the random and the time-dependent forcing terms;
moreover, he applied this criteria to the stochastic reaction-diffusion equation with additive noise on
R”, and obtained existence of an unique pullback attractor. Most of works on stochastic PDEs, please
refer to [10,25,28-30, 32,36] and references therein.

Just for problem (1.1)—(1.2) and the corresponding plate equations, in the deterministic case (i.e.,
e = 0), existence of global attractors has been studied by several authors, see for instance [2, 15—
17,34,35,38,39,41]. As far as the stochastic case driven by additive noise, when the deterministic
forcing term g is independent of time, that is, g(x, ) = g(x), existence of random pullback attractor
on bounded domain was obtained in [20, 23, 24]. Recently, on the unbounded domain, the authors
investigated existence and upper semi-continuity of random attractors for stochastic plate equation
with rotational inertia and Kelvin-Voigt dissipative term as well as time dependent terms see [37] for
details. To the best of our knowledge, it is not considered by any predecessors for the stochastic plate
equation with multiplicative noise on unbounded domain. It is well known that multiplicative noise
makes the problem more complex and interesting even to the case of bounded domain. Based the
theory and applications of B. Wang in [27,31,33], we decide to study existence of pullback attractors
for problem (1.1)—(1.2).

Notice that (1.1) is a non-autonomous stochastic equation in the sense that the external term g is
time-dependent. In this case, like in [27], we need to introduce two parametric spaces to describe its
dynamics: one is responsible for the deterministic non-autonomous perturbations and the other for
the stochastic perturbations. In addition, since Sobolev embeddings are not compact on unbounded
domain, we can not get the desired asymptotic compactness directly from the regularity of solutions.
We here overcome this difficulty by using the uniform estimates on the tails of solutions outside a
bounded ball in R" and the splitting technique [28], as well as the compactness methods introduced
in [19].

In comparison with the results recently published in [37], the novelty and the difficulties of this
work are as follows: (i) The nonlinear damping /4(u,) in Eq. (1.1) and its treatment; (ii) Using a new
Ornstein-Uhlenbeck process which does not depends on the damping coefficients but depends on an
adjustable parameter ¢, which is substantially different from [37].
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The rest of this paper is organized as follows. In the next section, we recall some basic concepts
related to random attractor for general random dynamical systems. In section 3, we provide some basic
settings about Eq. (1.1) and show that it generates a continuous cocycle. Then we derive all necessary
uniform estimates of solutions in section 4, and prove the existence of random attractors in sections 5.
In section 6, we give conclusion as well as some comments on possible applications for these results.

Throughout the paper, we use || - || and (,-) to denote the norm and the inner product of L*(R"),
respectively. The norms of LP(R") and a Banach space X are generally written as || - ||, and || - [|x,
respectively. The letters ¢ and ¢; (i = 1,2,...) are generic positive constants which may change their
values from line to line or even in the same line and do not depend on &.

2. Materials and method

2.1. Preliminaries

In this section, we recall some definitions and known results regarding pullback attractors of non-
autonomous random dynamical systems from [7,27], which they are useful to our problem.

In the sequel, we use (2, F,%) and (X, d) to denote a probability space and a complete separable
metric space, respectively. If A and B are two nonempty subsets of X, then we use d(A, B) to denote
their Hausdorft semi-distance.

Definition 2.1.1 Let 0 : R x Q — Q be a (B(R) X ¥, ¥ )-measurable mapping. We say (Q, 7, P, 6) is
a parametric dynamical system if 6(0, -) is the identity on Q, 6(s + ¢,-) = 6(¢,-) o 6(s, -) for all ¢, s € R,
and PO(t,-) = P forall t € R.

Definition 2.1.2 Let K : R x Q — 2% be a set-valued mapping with closed nonempty images. We say
K is measurable with respect to F in Q if the mapping w € Q — d(x, K(1, w)) is (¥, B(R))-measurable
for every fixed x € X and 7 € R.

Definition 2.1.3 A mapping ® : R* X R X Q X X — X is called a continuous cocycle on X over R and
(Q,F,P, {0 }r) ifforall T e R, w € Qand ¢t, s € R*, the following conditions (1)—(4) are satisfied:

(D) PG, 7,+,) :RFXQAXX - Xis (BR") X F x B(X), B(X))-measurable;

(2) (0, 7, w, -) is the identity on X;

B D+ 5,7, w,) =D, T+ 5,0,w,) 0 D(s, T, w, -);

4) ©(t, 7, w,-) : X — X is continuous.

Hereafter, we assume @ is a continuous cocycle on X over R and (Q, F, P, {6,},cr), and D is the
collection of some families of nonempty bounded subsets of X parameterized by 7 € R and w € Q:

D={D={D(r,w) CX:D(t,w) # 0, T e R, w € Q}}.

Definition 2.1.4 Let B = {B(t,w) : 7 € R,w € Q} be a family of nonempty subsets of X. For every
TeR, weQ,let

Q(B,7,w) = ﬂ U O, 7 — 1,60, B(T — 1,0_,0)).

r>0 t>r
Then the family {Q(B, 7, w) : T € R, w € Q} is called the Q-limit set of B and is denoted by Q(B).
Definition 2.1.5 Let D be a collection of some families of nonempty subsets of X and K = {K(r, w) :
TeR,we Q} € D. Then K is called a D-pullback absorbing set for ® if for all r € R and w € Q and
for every B € D, there exists T = T(B, T, w) > 0 such that

O(t,7—1,0_0,B(t—-1,0_,w)) C K(tr,w) forallt>T.
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If, in addition, K(7, w) is closed in X and is measurable in w with respect to 7, then K is called a closed
measurable D-pullback absorbing set for ®.

Definition 2.1.6 Let D be a collection of some families of nonempty subsets of X. Then ® is said to
be D-pullback asymptotically compact in X if for all 7 € R and w € €, the sequence

(D, T —1,,0_,w, x,)},-,; has aconvergent subsequence in X

whenever t, — oo, and x, € B(t — t,,6_, w) with {B(t,w) : T € R,w € Q} € D.
Definition 2.1.7 Let D be a collection of some families of nonempty subsets of X and A = {A(1, w) :
7€ R ,we Q) € D. Then A is called a D-pullback attractor for @ if the following conditions (1)—(3)
are fulfilled: forallt e R", re Rand w € Q,
(1) A(r, w) is compact in X and is measurable in w with respect to 7.
(2) A is invariant, that is,
O(t, 7, w, A(t, w)) = A(T + t, 6,w).

(3) Forevery B = {B(t,w) : Te R,we Q} € D,

limd(®(t, 7 — t,0_,w, B(t — t,0_,w)), A(T,w)) = 0.

t—00
Proposition 2.1.8 Let D be an inclusion-closed collection of some families of nonempty subsets of X,
and ® be a continuous cocycle on X over R and (Q, F,P,{0:}ier). If © is D-pullback asymptotically
compact in X and @ has a closed measurable D-pullback absorbing set K in D, then ® has a unique
D-pullback attractor A in D which is given by, for each T € R and w € Q,

Alr,w) = UK, 7, 0) = |_] Q(B,7,w)

DeD

2.2. Cocycles for stochastic plate equation

In this section, we outline some basic settings about (1.1)—(1.2) and show that it generates a
continuous cocycle in H*(R") x L>(R").

Let & = u, + 6u, where ¢ is a small positive constant whose value will be determined later.
Substituting u, = € — éu into (1.1) we find

Cé—? +ou=¢, (2.2.1)
% — 8+ (6% + Du+ A u+ h(€ — ou) + f(x,u) = g(x,t) + suo ‘;_Vt” (2.2.2)

with the initial value conditions
u(x, ) = up(x), E(x, 1) = z0(x), (2.2.3)

where &y(x) = u;(x) + dup(x), x € R
Assumption I. Assume that the functions 4, f satisfy the following conditions:
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(1) Let F(x,u) = fou f(x, s)ds for x € R" and u € R, there exist positive constants c;(i = 1,2,3,4),
such that

1f(x,w) < cilul” + ¢i(x), ¢1 € L*(RY), (2.2.4)
Flx, wu — c2F(x,u) > ¢o(x), ¢ € L'(RY), (2.2.5)
F(x,u) > c3lul™ — ¢5(x), ¢3 € L'(R"), (2.2.6)
af af 2 n
|54%w33,54st¢4m,MeLaRx (2.2.7)
u X

where >0, 1 <y < %. Note that (2.2.4) and (2.2.5) imply
F(x,u) < c(lul* + ul*" + ¢7 + ¢,). (2.2.8)
(2) There exist two constants Sy, 5, such that
h(0)=0, 0<pB <Hh(v)<B; < oo (2.2.9)

Let (Q, 7, %) be the standard probability space, where Q = {w € C(R,R) : w(0) = 0}, F is the
Borel o-algebra induced by the compact open topology of Q, and # is the Wiener measure on (Q, 7).
There is a classical group {6,},cr acting on (Q, 7, %) which is defined by

Ow()=w(+1)—w®), foralwe, teR,

then (Q, F, P, {6;},cr) 1s a parametric dynamical system.

It is convenient to convert the problem (2.2.1)—(2.2.3) into a deterministic system with a random
parameter, and then show that it generates a cocycle over R and (Q, 7, P, {6,}cr)-

Consider Ornstein-Uhlenbeck equation dz + dzdt = dw, z(—c0) = 0, and Ornstein-Uhlenbeck

process
0

z@@:dmmzﬁj‘ﬂ@www. (2.2.10)

From [1, 11, 18], it is known that the random variable |z(w)| is a stationary, ergodic and tempered
stochastic process, and there is a 6,-invariant set Q ¢ Q of full P measure such that z(6,w) is continuous
in ¢ for every w € Q. For convenience, we shall simply write Qas Q.

Now, let v(x, 1) = &(x, 1) — eu(x, t)z(6,w), we obtain the equivalent system of (2.2.1)—(2.2.3),

cjl—b; + ou — v = euz(6,w), (2.2.11)
% v+ (P +A+A)u+ f(x,u) = g(x,t) — h(v + euz(6,w) — du)
—&(v — 36u + euz(6,w))z(0,w) (2.2.12)
with the initial value conditions
u(x, 7) = up(x), v(x, T) = vo(x), (2.2.13)

where A is defined below and vy(x) = &y(x) — ez2(6-w)uy, x € R”.
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Let —A denote the Laplace operator in R”, A = A? with the domain D(A) = H*(R"). We can also
define the powers A” of A for v € R. The space V, = D(A%) is a Hilbert space with the following inner
product and norm

(U, v), = (ATu, A%v), -1l = 1A% - 1.
For brevity, the notation (-, -) for L*-inner product will also be used for the notation of duality pairing
between dual spaces, || - || denotes the L>-norm.

Let E = H? x L?, with the Sobolev norm
Ml = (VP + [l + 1Aul®)?, for y = (u,v)" € E. (2.2.14)

We shall drop the transpose superscript for all column vectors of u and v. The well-posedness of local
weak solutions for the problem of the random PDE (2.2.11)—(2.2.13) in E = H*(R") x H(R") can be
shown by Galerkin approximation and compactness method as in [5,21,26,37]. Under conditions
(2.2.4)—(2.2.7) and (2.2.9), for every w € Q,7 € R and (uy,vy) € E, we can prove the problem
(2.2.11)—(2.2.13) has a unique global solution (u(-, 7, w, uy), v(:, T, w, vy)) € C([7, ), E). Moreover, for
t> 1, (ut, T, w,uy), v(t, T, w, vp)) is (F, B(H*(R")) x B(L*(R")))-measurable in w and continuous in
(ug, vo) with respect to the E-norm.

Thus the solution mapping can be used to define a continuous cocycle for (2.2.1)—(2.2.3). Let
®:R*XR X QX E — E be amapping given by

(D(t9 7, W, (MO’ VO)) = (l/l(t +7,7T, 67‘1'(1)9 MO)’ V(t +7,7, 071'(1)’ VO))a (2215)

where v(t+ 1, 7,0_.w, vo) = E(t+ T, T, 0_0, &) — e2(B,w)u(t + 7, T, 0_, up) with vy = & — ez(w)uy. Then
® is a continuous cocycle over R and (Q, 7, P, {6,},cr) on E. Foreacht e R*, 7 e R,w € Q,
O, 7 - 1,0_,w, (o, vo)) = (U(T, T = 1, 0w, Uy), (7, T — £, 0_rw, vp)) (2.2.16)
=(u(t, T — 1,0_rw,up), E(T, T — 1,0_rw, &) + ezZ(w)u(t, T — t,0_, Uy)). -
This identity is useful when proving pullback asymptotic compactness of @. Next we make another
assumption.
Assumption II. We assume that o, 6, € and g(x, ¢) satisfy the following conditions:

1
o= > min{é, 6c,}, (2.2.17)
> 5
0 > O satisfies A+ 6~ — 3,0 >0, B; > 56 + , 2.2.18
satisfies B Bi 51+ 6= 5r0) ( )
(=2V8(y2y3 + 1) + J40(y2y3 +¥1)* + TOY20
le] < min ,
Y2 \E
—2Vo(y2ys + 1) + \A5(y2ys + 12 + ﬂévzcr} 22.19)
Y2 V7 ’ -
where Y1 = maX{l, %}, Y2 = 1+ m,)ﬁj = %6 + %,82 + 2ﬁ26 +1, Y4 = %(5 + %ﬁz + 2[326
Moreover,
0
f e”’|lg(-, 7+ s)llfds <oo, YTER, (2.2.20)
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and 0
lim f e‘”f lg(x, T+ $)*dxds =0, VT € R, (2.2.21)
—00 |x|>k

k—o0

where | - | denotes the absolute value of real number in R.

Given a bounded nonempty subset B of E, we write ||B|| = sup||¢||g. Let D = {D(t,w) : T€E R, w €
¢eB

Q} be a family of bounded nonempty subsets of E such that for every 7 € R, w € Q,
lim ¢™||D(t + 5, 6,w)|l = 0. (2.2.22)
Let D be the collection of all such families, that is,

D={D={D(r,w) : TeR,w e Q}: D satisfies (2.2.22)}. (2.2.23)

2.3. Uniform estimates of solutions

In this section, we conduct uniform estimates on the weak solutions of the stochastic plate Egs.
(2.2.1)—-(2.2.3) defined on R”", through the converted random Eq. (2.2.11)—(2.2.13), for the purposes
of showing the existence of a pullback absorbing sets and the pullback asymptotic compactness of the
cocycle.

We define a new norm || - || by

¥l = (WIP + (A + 6 = Bod)|ull® + |AulP)?, for ¥ = (u,v) € E. (23.1)

It is easy to check that || - || is equivalent to the usual norm || - ||2;z2 in (2.2.14). First we show that the
cocycle @ has a pullback D-absorbing set in D.

Lemma 2.3.1 Under Assumptions 1 and 1, for everyt e R,w € Q, D = {D(t,w) : Te R,w € Q} € D,
there exists T = T (1, w, D) > 0 such that for all t > T the solution of problem (2.2.11)—(2.2.13) satisfies

IY(,7 = 1,0_.w, D(T — t,0_,w)||% < Ri(, w),

and R (1, w) is given by

0
Ri(t.w) = M+ M f 2 b [rnelz0.0-r(10,0P +ysleli@w)) Jar
(g€, s + DIF + lellz(Bsw)l)dss (2.3.2)

where M is a positive constant independent of T, w, D and €.
Proof. Taking the inner product of (2.2.12) with v in L?>(R"), we find that

%%Hv”z — (8 — ez B)IVP + (A + 8w, v) + (Au,v) + (f(x, 1), V)

= &2(6,w)(30 — €z(6,w))(u, v) — (h(v + euz(6,w) — du),v) + (g(x, 1), v). 2.3.3)
By the first equation of (2.2.11), we have

v = u, — euz(6,w) + ou. 2.3.4)
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By (2.2.9) and Lagrange’s mean value theorem, we have

— (h(v + euz(6,w) — du),v)
= — (h(v + euz(6,w) — ou) — h(0),v)
=— (WM + euz(6,w) — du), v)
< = BilMIP = (W @) (euz(O,w) — 6u),v)
< = BilMIP + Balellz@w)lllulllvil + 7' (9)5(u, v), (2.3.5)

where ¢ is between 0 and v + euz(6,w) — ou.
By (2.2.9) and (2.3.4), we get
W ()o(u, v)
=h' (N6(u, u; — euz(6,w) + du)

1d
<B26 - 3 Ellull2 + Bo6”|ull” + Baolellz(Ge)llul>. (2.3.6)
Substituting (2.3.4) into the third and fourth terms on the left-hand side of (2.3.3), we find that
(u,v)
Z(Lt, I/t, - SMZ(eta)) + 6”) (2.3.7)

1d
25—l + Sl ~ lelle(@a)llull,

and
(Au,v) = (Au, Av) = (Au, Au; — ez(6,w)Au + 6Au)

1 d (2.3.8)
> AUl + SlAuIE = lellZ ) Aul’.

For the first term on the right-hand side of (2.3.3), by (2.3.5), using the Cauchy-Schwarz inequality
and Young’s inequality, we have

£2(6,w)(36 — e2(6,w))(u, v) + Balellz(Gw)ll[ull[VI]
=(3682(6iw) — £°2(6,w), v) + Bolellz(@,w)llulllIV]
<(3dlellz(Bw)| + lz(6,))lulllvi] + Balellz@.)lllulllIvi
=((36 + Blellz(Gw)l + &[z(6,)P)llulllIv]

1 1
<(7 (30 +Bo)lellz(Gw)] + 582IZ(Qtw)Iz)(IIMI|2 + VIR, (2.3.9)

and for the last term on the right-hand side of (2.3.3),

lgll =)
() < lglivl < 50— 6)+ﬁ12 vl (23.10)

Let F(x,u) = fRn F(x,u)dx. Then for the last term on the left-hand side of (2.3.3) we have
(f(x7 l/l), V) = (f(x’ I/l), Uy — 8Z(0t(,())l/l + é‘M)
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= %f(x, u) + 6(f(x,u), u) — ez(6,0)(f(x, u), u). (2.3.11)
By condition (2.2.4) and (2.2.6), we have

&z(6,w)(f (x, u), u)

<cilellz(6w)] f uP*'dx + |ellzGw)llign > + lellz(@ )l
Rn

<ci1c5lellz@w)l | (F(x,u) + ¢3)dx + |ellz(@,w)lllgr I + lellz(@w)llull®
Rn
S01€§1|8||Z(9zw)|f(x, u) + clellz(Gw)| + lellz(Gw)|llull. (2.3.12)

Substitute (2.3.5)—(2.3.12) into (2.3.3) and together with (2.2.5) to obtain

1d —
55(”"”2 + (A + 6% = Bo)lull* + | Aull* + 2F (x, u))
+ 5(IVIP + (A + 6% = Bod)ull® + |Aul?) + ScrF(x, u)
1 1
<c+ (5(35 + Bo)lellz(Bw)| + Eszlz(@ta))IZ)(llull2 +|vI%)

el BIMP + A+ & + Bl + 1Aull?) + lellz @)l
36 lgl?
_ﬁ1||v||2 + g—
2 281 - 9)

1 1
3(5(36 + Bo)lellz(6,w)] + Eszlz(@w)lz)(llullz £ IvP)

el @@)I(VIE + (A + 6 + Bodllull + 1Al + 2F(x, )

+lellz @)l + (1 + lIgl + ellz@w)). (2.3.13)

+ + 163 lellz(Bw)|F(x, u) + clellz(6,w)|

ciey!
where y; = max({1, —-}.
Leto = % min{J, éc,}, then

1d —
Ed—t(llvll2 + (A + 6 = Ba)llul® + N1 Aull® + 2F (x, u))

1
< —[o = yilellz(w)| - 72(582|Z(9tw)|2 + y3lellz(w)))]

(VP + (A + 6 = Bao) > + Aull® + 2F (x, )
+ (1 + gll® + lellz(Bw)), (2.3.14)

where y, = 1 + m, y3 =326+ 3B +2B6 + 1.
Let us denote

1
o(t,w) = o = yilellz(bw)| - 72(582|Z(9tw)|2 + y3lellz(@w))). (2.3.15)

Using the Gronwall inequality to integrate (2.3.14) over (r — ¢, 7) with 7 > 0, we get
V(7.7 = £, vO)IP + (A + 6% = BrO)lu(T, T — 1, w, uo)II*
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+ |Au(r, T = 1, 0, up)|* + 2F(x, u(t, 7 — t, w, up))

<(Ivoll + (A + 6% = Bod)lluol? + Auol? + 2F(x, ug))e* k-~ e(sxds

fe f 2R (1 4 o(, IP + lellz(6,0))ds.

—t

Replacing w by 6_.w in the above we obtain, for every r € R", 7 € R, and w € Q,

V(7,7 = 1,6_c, v)I* + (A + 82 = Bod)lu(t, T — 1, 6w, o) |I*
+ 1Au(T, T = 1, 6w, u)|I* + 2F(x, u(t, T — 1, 6w, u))

<(WolP + (A + 6% = Bad)lluol? + |Augl? + 2F (x, ug))e? e~ &=m)ds

T .
fe f AL eI (1 4 e, I + lellz(Bs o)),
T—1

then

V(7,7 = 1,0, vo)I* + (A + &% = Bad)lu(r, T = 1,6, uo)|I*
+ | Au(t, T — 1, 0_w, up)|I* + 2F (x, u(t, T — 1, 0_-w, uy))

<(Ivoll? + (A + 6% = Bad)llutoll® + 1 Auo|> + 2F (x, ug))e> b es:)ds

0
fe f 2RO o5+ DI + lellzBs0))ds.

t

Since |z(6,w)| is stationary and ergodic, from (2.2.10) and the ergodic theorem we can get

1 f’ 1
lim — | [2(6,w)|ldr = E(|z(6,w)]) = ;
t—oo t ), Vo
im b [ war = Bz = 5
- L)|*dr = Lw)|°) = —.
t—oo _t < < 26

By (2.3.19)—(2.3.20), there exists 7 (w) > 0 such that for all > T(w),

0 2 0 ) 1
|z(8,w)ldr < —— t, f |z(8,w)|°dr < = t.
It WT5 —t 0

Next we show that for any s < —T}
62 fos o(rw)dr < e(rs.

By using the two inequalities in (2.3.21), we have

* 1
f [(T - vilellz(6,w)] - 72(582|Z(0r0))|2 + y3lellz(0,w)l) |dr
0

2 1 2
ML yl= + yslel——=]s

2
Vs 279 Vs
Y2 »

2
=- &5 - —|[ys2 +yilels + os.

20 o

>os — g

(2.3.16)

(2.3.17)

(2.3.18)

(2.3.19)

(2.3.20)

(2.3.21)

(2.3.22)

(2.3.23)
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In order to have the inequality in (2.3.22) valid, we need

s 1 o
f [0 - yilellz(6,w)| - 7/2(582|z(9rw)|2 + yslellz@,w))) dr < .
0
Since s < —T, then it requires that

2 o
E 2 + —[’)/3’)/2 +’)/1]|8| - 5 <0.

&
26 o

Solving this quadratic inequality, € needs to satisfy (2.2.19) as we have assumed in Assumption II.
Since |z(6,w)| 1s tempered, by (2.2.20) and (2.3.22), we see that the following integral is convergent,

0 )
Rit,w)=c f b O le(-, s + DI + ellz(Bsw)l)ds. (2.3.24)

Note that (2.2.8) implies

F(x, up)dx < c(1 + ||uoll* + ||u0||2+21). (2.3.25)
RV!

Since D € D and (up, vo) € D(t — t,0_,w), for all t > Ty, we get from (2.3.24) and (2.3.25) that

2 2 2 2 [ 5 [ wd

(ol + (A + 6> = Bad)lluoll” + l1Auo|l> + 2F (x, ug))e> b s
- 2 2 +1
<ce (1 + Ivoll® + lluoll3s + Iluoll}5)

<ce™ (1 +||D(t = t,6_,w)|* + |ID(t - t,60_,w)|"™) = 0, as t — +oo. (2.3.26)
From (2.3.1), (2.3.18), (2.3.24) and (2.3.26), there exists T, = T»(7,w, D) > T, such for all that t > 75,
1Y (1,7 = 1,60, Yo(O_w))Il < c(1 + R3(1, w)),

thus the proof is completed. m|
The following lemmas will be used to show the uniform estimates of solutions as well as to establish

pullback asymptotic compactness.

Lemma 2.3.2 Under Assumptions 1 and 1, for everyt e R,w € Q, D = {D(t,w) : Te R,w € Q} € D,

there exists T = T(t,w, D) > 0 such that for allt > T, s € [—t,0], the solution of problem (2.2.11)—

(2.2.13) satisfies

Y (1 + 5,7 —t,0_.w,D(T — 1,0_,w))||z < M + Rs(x, w)ezfsﬂg(r"”)dr,

where (uy,vo)" € D(T —t,0_,w), M is a positive constant independent of T, w, D and €, and R3(t, w) is
a specific random variable.
Proof. Similar to (2.3.18), integrating (2.3.14) over (t —t,7 + s) with# > 0 and s € [, 0], we can
obtain

V(T + 5,7 = t,w, )l + (A + 6 = B2l + 5,7 — 1, w, up) |’

+ | Au(t + 5,7 — 1, w, uo)|I* + ZI::(x, u(t + 5,7 —t,w, uy))

<(IIvoll? + (A + 6> = Bad)lluol® + l|Auol? + 2F (x, ug))e? s €1
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T+s :
re f PRt 4 o, O + [ell@prw))dL

—t

<(Ivoll? + (A + 62 = Bad)lluoll* + 1Auoll® + 2F(x, ug))e> eredr

+c f S 2 [t o £+ DIP + lellz(0,0)])dL. (2.3.27)

t

Moreover we have the following estimates for the last integral term on the right-hand side of (2.3.27):

; f e 0dr (1 e 2+ DI + lellBr))dl

t

—T| S
:c[ f o2 [ atrenr | f ezf.f@md'](l+||g<-,4+r>||2+|s||z(egw)|)d§
—t =T
0 =T e
<ce? I etrorr f 2k QD] o, £ + DI + lelle(B,w))dl
—t

0
0 £
+ el etarir f & h 21 1 Ylg(, ¢ + TP + lellz(6w))dZ

T

-7
<ce? I etr f (1 + llgC, & + DI + lellz(B,w))de

t

0
+ ce? [ etraar f RO 1 ig(, ¢ + DI + lellzG;w))de

T,

SeZ J;O Q(r,w)drR4(T, (,()), (2328)
where

0
Ry(t,w) =c¢ f e (1 + g, ¢ + DI + lellz(G,w))dd

(o)

0
re f A (] o 2 + )P + lellzw))dL.

T,
Note that R4(7, w) is well defined by (2.2.20) and that z(6,w) is tempered. On the other hand, as in
(2.3.26), we find that there exists T3 = Tx(t, w, D) > T, such that for all t > Tj,

(voll? + (A + 6% = Bad)lluoll> + lAul? + 2F(x, ug)ye? ke
<ce? [ etwir 2 [} A (lygl2 + (A + 6> = Bab)lluol > + | Auoll* + 2F (x, ug)) (2.3.29)
<e? [N R (7, ),
It follows from (2.3.27)—(2.3.29) and (2.3.25) that, for all t > T3, s € [—t, 0], and ¢ satisfying (2.2.16),
V(T + 5.7 = 1,00, )II* + (A + 6 = BoO)lu(T + 5,7 — 1,0, o) ||’
0 (2.3.30)
+ | Au(t + 5,7 = 1,0_.w, up)|I* < 262, orwdrp (1, w).

The proof is completed. O
Lemma 2.3.3 Under Assumptions 1 and 11, for everyt e R,w € Q, D = {D(t,w) : Te R,w € Q} € D,
there exists T = T (1, w, D) > 0 such that for all t > T the solution of problem (2.2.11)—(2.2.13) satisfies

IATY (1,7 — 1, 0_w, D( — 1, 0_,w))|[% < Rs(t, w),
E
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and Rs(t, w) is given by
Rs(t,w) = RAT,w) + ce™ " (JA5 vl + A5 uol® + 1A% o), (2.3.31)

where (ug, vo)" € D(t — t,0_,w), ¢ is a positive constant independent of T, w, D and &, and Re(T, w) is a
specific random variable.
Proof. Taking the inner product of (2.2.12) with A?vin L*(R™), we find that

%%nAivnz — (6 = ezBIAVIP + (X + 67)(u, A2v) + (Au, ATv) + (f(x, 1), A2v)
= £2(6,w)(30 — £2(0,w))(u, A7v) — (h(v + euz(B,w) — Su), A7v) + (g(x, 1), A*v). (2.3.32)
Similar to the proof of Lemma 2.3.1, we have the following estimates:
- (h(v + euz(6,w) — 6u),Aév)
- (h(v + suz(6,0) — 61) — h(0), A%v)
=— (h’(ﬁ)(v + euz(6,w) — (5u),A%v)

< —ﬁ1||A%V||2 - (h'(ﬂ)(guz(g,w) - 5u),A%v)

< = BlIAVIP + Bolellz @)l A ulllA* V]| + K (9)6(u, A2v), (2.3.33)
W (9)S(u, AZv)

=h' ()S(u, A% u; — e2(6,w)A%u) + 5A2u)

1d 1 1 1

<B10 - EEHA‘I‘ ull* + ﬁzézllA‘l‘ull2 + Brolellz(G:w)lll A% ull?, (2.3.34)
(1, A?v)

:(u,A%ut — 8z(61w)A%u + 6A%u)
1d 1 1

> AU + A Ul ~ el B)lIA *ulP, (2.3.35)

(Au, A*v)
=(Au, AZu, — e2(6,w)Au + 6Au)

1d 3 3 3
>3 AR + SlATal ~ lelk@eliatul, (2.3.36)

£2(0,)(38 - £2(6,0)) (1, A>V) + Bolellz @A ull|A+v]
=(3062(0w) — £2(0,0))(1t, A2) + Balellz@)lIA* ull|A* ]
<(30lelz(O.w)| + O AT ulll AV + Balellz@w)lIA ulllA v

=(<36 + Bo)lellz(,w)] + 82|z<9tw>|2)||u||||v||

1 1 1 I
S(§(35 + Bo)lellz(Gw)| + Eszlz(&w)lz)(llz‘ﬁull2 + 1At (2.3.37)
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llglit B
B1 —9) "

For the last term on the left-hand side of (2.3.32), by (2.2.7), we have

1 1 -0, 1
(g,A%v)s||g||1||Aiv||s2 12 AT, (2.3.38)

~ (f(x,u), A™v)
d 1 0 1 1
=- —f(x,u) - A*vdx — —f(x,u) - A%u - A*vdx
R” 8.x R® au

8 1 1 1
< | I=fGowl-1A%vldx+ B | |A%ul - |A%vldx
rn OX

R}'l

< | Ial-1Avidx+8 | ATl - |ATv]dx

R R
<Ilpalll AV + BlIAT | ATv]
<cip + (5 ; F )||A%v||2 + L5+ 8 - paoylAtul. (2.3.39)
= 2601+ & — o) 2

Substitute (2.3.33)—(2.3.39) into (2.3.32) and together with (2.2.18) to obtain
1d
2 dt
+ (AP + (A + 6 = Bro)ATullP + A% ulP)

ATV + (A + 6> = B AT ul> + || AT ull?)

1 1 I 1
S(§(35 + Bo)lellz(6w)| + Eezlz(@a))lz)(llz‘\Htll2 + 1A%

2
lglli

+|g||z(ev,w)|(||A%vn2 + A+ 6%+ Bo)lATull* + ||A%u||2) + 26, o) (2.3.40)
L
Then
1d 1112 2 12 302
EE(IIAWII + (A + 6 = Bod)lATull” + [|A%ull)
1
< —[o - lellz(6w)| - *yz(iszlz(etw)l2 + yalellz(Gw)l)]
(AT + (1 + 6% = B ATull® + JATul?) + _elli (2.3.41)
2(B1 - 06)’ o
where y, = %6 + %,82 + 26,0.
Let us denote |
01(1, w) = o — |e||z(6,w)| — 72(582|Z(9tw)|2 + yalellz(Bw)l). (2.3.42)

Using the Gronwall inequality to integrate (2.3.42) over (7 — ¢, 7) with # > 0, we get

A5 v(r, 7 = 1, w, v)II* + (A + 6% = BaOIATu(t, T — 1, w, up)|* + AT u(r, T — 1, w, ug)|I?

1 1 3 " o1(s,w)ds
<(IA%voll? + (A + 6> = BaO)lIA gl + [|ATug|[P)e @15

+e f Q@ o 52 ds. (2.3.43)
Tt
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Replacing w by 6_,w in (2.3.43), forevery t e R*, 7 € R, and w € Q,

IATW(T, T = 1,0_cw, vo)|> + (A + 6% = BadATU(T, T — 1, 60, uo)|* + AT u(t, T — 1, 00, )|

1 1 3 Tt
<(IATo|P* + (A + 8% = BoO)IAT ug|? + [JATug|P)e? S @16-me)ds

+c f Qo 5| Bds, (2.3.44)

—t

then
A (T, T = 1, 6_0, vo)I* + (A + & = B2O)IATu(T, T — 1, 0_r0, o)
+ ||A%M(T, 7= 1,0_.0, up)|l’

1 1 3 - s,w)ds
<(IATo|> + (A + 82 = B ATug|? + JATug|P)e> b @162

0
+ 13 f b e o s 1 7)|Rds. (2.3.45)
—t

Next we show that for any s < —T}
b e < g (2.3.46)

In fact, using the two inequalities in (2.3.21), we have

$ 1
f [ff = lellz(8,w)| — 72(582|Z(9rw)|2 + valellz(6,w)|) |dr
0
1 .1 2
s—yz[—sz— + y4lel ]s

2
Vo 24 Vo

2
=— —=¢&"s — ——[yay2 + l]lels + Is.

20 o

In order to have the inequality in (2.3.46) valid, we need

>0s — &

5 1 o
f [0' — lellz(6,w)| — 72(582|Z(9rw)|2 + yalellz(B,w)|) |dr < PR
0

Since s < —T, then it requires that

2 o
L2t lyaya+ el - 7 <0

20 o

Solving this quadratic inequality, € needs to satisfy (2.2.19).
By (2.2.20) and (2.3.46), we see that the following integral is convergent,

0
Rr.w) = ¢ f P L OO g, s 4 D). (2.3.47)
For all r > T4, we get from (2.3.46) that

(AWl + (A +6” = Ba0lIA ol + 1A uplPye? b T

e 1o 5o (2.3.48)
<ce” " ([|A%voll” + llA%uo|” + [|A% uoll").
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From (2.3.1), (2.3.45), (2.3.47) and (2.3.48), there exists T4 = T4(7, w, D) > T; such for all that r > T},
A Y (37 = 1,60, Yo(O-r)Ilg < R(r. @) + ce (A vl + [A%uoll* + IASolP).  (23.49)

Thus the proof is completed. O
Next we conduct uniform estimates on the tail parts of the solutions for large space variables when

time is sufficiently large in order to prove the pullback asymptotic compactness of the cocycle

associated with Eqgs.(2.2.11)—(2.2.13) on the unbounded domain R".

Lemma 2.3.4 Under Assumptions 1 and 11, for everyn > 0,71 €e R,w € Q, D = {D(t,w) : T€ R,w €

Q} € D, there exists T = T(t,w,D,n) > 0,K = K(t,w,n) > 1 such that for allt > T, k > K, the

solution of problem (2.2.11)—(2.2.13) satisfies

\Y(r,7 - t,0_rw, D(t — 1, H—IQ)))llé(Rn\Bk) =7, (2.3.50)

where for k > 1, By = {x e R" : |x| < k} and R" \ By is the complement of B.
Proof. Choose a smooth function p, such that 0 < p < 1 for s € R, and

[0, ifo<]s<1,
o(s) _{ i 2, (2.3.51)

and there exist constants uy, (s, Uz, iy such that [p’(s)| < Ui, 1" ()| < wa, 10" ()] < 3, 07" (8)| < g
for s € R. Taking the inner product of (2.2.10) with p(| D) in L2(R"), we obtain

f <'x'2)|v|2dx G- sz60) | p 2>|v|2dx
2dt ! p

2 2 2
+(1+6%) (%)uvdx + (Au)p(u)vdx + f l | )f(x u)vdx
R’l k R” R

=£2(0,w)(36 — £z(6,w)) f (—)uvdx

2
— l | )(h(v+8uz(6’tw) §u)vdx+f p(| s )g(x, Hvdx. (2.3.52)
]R

First, by (2.2.9), similar to (2.3.5), we have

2
(| il Yh(v + euz(6,w) — du)vdx

2
= (u)(h(v + euz(6,w) — ou) — h(0))vdx

2 2
<-p f (u)|v|2d + I (o f p(u)uvdx

x>

+ falellz(6w)| p(—)IMIIVIdx (2.3.53)

Taking (2.3.53) into (2.3.52), we have

1 d 2 2
2 ). ('x' vPdx — (8 — e2(6,w) — Br) f ")|v|2dx
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2 2 2
+ (1 + 6% = K (9)6) (u)uvdx + f (Au)p(u)vdx + f l | —)f(x, u)vdx
R"

R?

2 2
<ez(0,w)(36 — ez(6,w)) f (u)uvdx+ f (l il )g(x, tyvdx
2
+ Balel|z(Gw) (u)IMIIVIdx
R)l

For the third term on the left-hand side of (2.3.54), we have

2
(A + 6% = I (9)0) u)uvdx
Rn

|x]?

=(1+ 6% - h’(ﬂ)é) ( )u(— + 6u — euz(6,w))dx

le2
R)L kz

1 d 2 2
2(/1+52—ﬁ25)(5d—t f p(' s + 5 f p(' al >|u|2dx)

—(A+ & - K (9)5) )( ; j 2 + (6 — s2(0,0))u )dx

2
~ (A + 8 + Brd)lellz(Ow)| p(u)IMIde

For the fourth term on the left-hand side of (2.3.54), we have

2
(Au)p( u)vdx
Rn

2
(A )P (| al )(— + ou — euz(6,w))dx

2
(A*u)p (' al )(— + 6u — ez(B,w)u)dx
Rn
( x> d
(Au)A (= )(— + ou — sz(@ta))u))dx

2 2
(Au)(( kzp (l)CI % M ))(— + ou — ez(6,w)u)

2|X| IXI2 |x]

2
)V(— + 0 - e20) + (o )A(— + 6u - 8z(0tw)u))

4 g
> - f B S v - [ @i
k<x<V2k k kexa 2k ¢

1d WP, We WE
+ EE ( NAu|“dx + 6 p( )NAu|“dx — ez(6,w) p( )NAu|“dx
2 1 d 2
=" f (Lg’“nm ldax - ‘f“‘ Au)(TV)ldx + == p(ﬁmmzdx
R . 2di

||2

2
f P AP ~ e2(6.0) o nuax

(2.3.54)

(2.3.55)
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+4 42 1d |2
>-H 2 #Z(IIAu||2+|Iv|I2) “‘IIA Vvl + 7 f (—)IAul2dx

2 2
f P Audx ~ e2(6.0) o iuax

i \/_/Jl

+
>-H 2 1 ull + IvIP) -

d X
(Aul® + [Vv|*) + Ed_f —)Aul"dx

2
~ (lellz6w)] - 5) fR n ) aupa.

For the fifth term on the left-hand side of (2.3.54), we have

2 2
f l | — ) f(x, uvdx = f l | —)f(x, u)(— + 6u — ez(6,w)u)dx

d i F dx+6 l i d
dt (—) (x,uw)dx + )f(x u)udx
|

2
— &z(6,w) | ) f(x, u)udx.
R

By (2.2.5), we see that

2 2
f i —)f(x, wudx = ¢, f p(';z—lz)F(x, u)dx + f (| i ) (x)dx,
R n
On the other hand, by (2.2.4) and (2.2.6),

2
ez(6,w) l | ) f(x, u)udx
R”
2 2
<clellz(Gw)l (u)F (x, u)dx + clel|z(6,w)| f (u)lulzdx
|x?

+ clellz(bw) (—)(I¢>1|2 + |¢3])dx.

R}

Similar to (2.3.9) and (2.3.10) in Lemma 2.3.1, we get

2 2
£2(6,w)(36 — e2(,w)) /O(| il Juvdx + Bolellz(6,w) f P(u)IIMIIVIdx

1 2
3(5(3(5 + B)lellz(6.w)| + ESQIZ(sz)IZ) p(l l )(ul® + [v[)dx.

2 1 2 -5 2
fp(l a )8(x, Nvdx < ———r 20 = ,0(| a g(x, 1)Pdx LA > f (| l IvPdx.

Assemble together (2.3.54)—(2.3.61) to obtain

1d |x|2

ST —=)(v P+ (A + 6% = Bab)ul® + |Aul® + 2F(x, u))dx

(2.3.56)

(2.3.57)

(2.3.58)

(2.3.59)

(2.3.60)

(2.3.61)
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x|

2
+6f l | )(|v| + (A + 6% = Bod)ul* + |Aul )dx+5czf (—)F(x u)dx

4 1
m; /Jz(IA P+ |v|2)+ 22, m(IA P+ |VV|2)+(_(35 + B)lellz(6,w)]
1 2
+§52|Z(9t0))|2)f p(u)(lul + vl )dx+cf ,o(| il Ne(x, HEdx

2 2
+ clel|z(6,w)| f /O(| al Y (x, w)dx + clel|z(6,w)| p( Nul*dx

||2

2
+ clellz(6w)| f p(l a )1 + I3)dx + ¢ f P(=5)pa2(x)dx

2
+lellz(w)| ' | )(|v|2 + (A + 6% + Bad)lul* + |Auf*)dx. (2.3.62)

Rn

Since that ¢; € L2(R"), ¢, ¢3 € L'(R"), for given n > 0, there exists Ky = Ky(17) > 1 such that for all
k > Ky,

2
f pCENUP + 19l + Il
2
—c f| ; PEEXU P + 1l + I

<c (1> + Igpal + |psdx

x>k

<n. (2.3.63)
Using the expression (2.3.15), we conclude from (2.3.62) that

1d |x|2

T )(|v|2 + (A + 6% = Bod)ul* + |Auf* + 2F (x, u))dx

|x[?
< -o(t,w) P(—2 YV + (A + 6 = Bod)ul® + |Aul® + 2F (x, u))dx
Rﬂ

; 23
# B G+ )+ 2L + 9P

f (u)lg(x DPdx + (1 + lellz(6w)). (2.3.64)
Integrating (2.3.64) over (7 —t,7) fort € R" and 7 € R, we get
f il (7 -tow, Vo)l + (A + 8 = Bad)|u(r, T — t, w, up)|*)dx
f p(ﬁ)(lAu(T T —t,w,up) + 2F(x, u(t, T — t, w, uo)))dx
< e fR n P(ljz—lz)ﬂvo(xﬂz + (446 = Brd)luo(x))dx
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Tt w |X|2
T fR P 1A + 2F (5 g (0)Jdx

T ) 2 T "
+e f ¢ ety f p<';§—'2>|g<x, s)Pdsdx +1 f ¢k (1 4 [gllz(O,w))ds
T R T—t

—t

+4 P
LM k2 = f Al ew O (\Au(s, T — 1,0, ug)P + (s, T — 1, w, vo)P)ds
Tt

2V?2 P
+ —\/k—'u] f 2k e m O (Au(s, 7 1, w, o) + [Vv(s, 7 = 1, w, vo)P)ds. (2.3.65)
Tt

Replacing w by 6_,w in (2.3.65) and by (2.3.51) we obtain, for every t € R*, e R, and w € Q,
fR p(ljz—f)(lv(‘r, T—1,0_,w,v)]* + (1 + 6 = Bad)lu(t, T — 1, 0_rw, up)|*)dx
+ L p(|])§—|22)(|AM(T, T —1,0_0, up)l* + 2F (x, u(t,7 — 1, 6_,w, uo)))dx
<e? i et fR n p(i—iz)(|vo<x>|2 + (A + 6 = Bod)luo(x)]*)dx

T—t —rw |X|2
LT fR Pt + 2 (5, ) Y

T s xz T s
+c f ¢ Jr etumred f p('k—'zng(x, s)Pdsdx +n f ¢ (] - 1e]|2(8,w)])ds
Tt R” Tt
+4, HEPEE
+ B f 2 O Au(s, T = 1,00, u)I2 + (s, T — 1,00, vo)IP)ds
T—t
2V2 i s
+ ‘/k_”‘ f &k b (| Ay(s, T — 1, 0_,w, up)l? + IVV(s, T — 1, 0_rw, vo)|[*)d's
Tt

<2 h’ 90*“”"“(||vo(x>||2 + (A + 6% = Bad)llug ()| + l|Auo(x)I* + 2F(x, uo<x>))dx

0o 2 0o
+ cf 2 ly eww)du f p(%)lg(x, s + 7)*dsdx + nf e h @i (1 4 \gl|z(sw)))d's
—t R~ —

t

+4 T
W HHE [ L.t = 1,000 + .7 = 00, PN
Tt

2 ‘/Zul
k

+ f 2 J e Ay T — 1,0_ w0, up)P + IVV(s, T = £, 6, vo)|[F)ds. (2.3.66)
Tt

It 1s similar to (2.3.26), for an arbitrarily given > 0, there exists T = T(7, w, D, n) such that for all
t>T,

ezfo"@“"w)d“(||vo<x>||2 + (A + 8% = Bad)llug(x)IP* + l|Auo(x)I* + 2F(x, uo(X)))dx <. (2.3.67)

For the second and third terms on the right-hand of (2.3.66), by Lemma 2.3.1 and Lemma 2.3.3, for all
t > max{T,, T4},

+4 T
IJI kZ /JZ f ezj; Q(M_va)d#(”Au(sa T— ta 9_7—(1), MO)”2 + ”V(S, T— t7 H_T(U, VO)”z)ds
Tt
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2 ‘/Zul
T
<n(R}(t, w) + Ri(1, w)). (2.3.68)

T
f 2 I e\ Ay (s, T — 1,0, ug)|* + IVV(s, T — 1, 0_,, vo)|[*)dss
Tt

For the fourth term on the right-hand side of (2.3.66), there exists K; = K (7, w) > 1 such that for all
k > K, by (2.3.22), we get

0o 2
f &2 by ow)dn f (—|)|g(x s + 7)*dsdx
—00 R~

_Tl s
< f ¢y ewdu f lg(x, s + ) dsdx
—o00 |x|=k
0 .
+ f 2 o ebwdu f lg(x, s + T)Izdsdx
x>k

T,
f f lg(x, s + T)|*dsdx + e f f lg(x, s + T)|*dsdx, (2.3.69)
x|k Ty |x|>k

where ¢* > 0 is a random variable independent of 7 € R and D € D, i.e.
«_ (9 1, 5
¢ = (5 *lel_max 1z(6,w)] + (58 _max (@) +yslel_max |Z(9ﬂw)|))T1

Therefore, by (2.2.21) there exists K»(7, w) > K; such that for all k > K,, we obtain
0 .
Cf o2 b olw)du f p(| X Yg(x, s + T)*dsdx

<e* f f lg(x, s + T)|*dsdx < 1. (2.3.70)
|x|>k

Let
Ri(1,w) = f b e (1 4 \gllz(0,w)))ds, (2.3.71)

by (2.3.22), we know that the integral of (2.3.71) is convergent.
Together with (2.3.66)—(2.3.70), we have

2
f (' i YT, T = 1, 0w, vo)I* + (A + 6% = Bob)|u(t, T — t, 0_r, up)[*)dx

2
f p(u)(lAu(T T 1,000, u) + 2F(t, 1(r, T — 1,00, 1p)))dx 2.3.72)

<2n(1 + Ri(1, w) + Ri(1, w) + Ry(1, w)).

It follows from (2.3.25) and (2.3.72) that there exists K3 = Kz(r,w) > K,, such for all k > Kj,
t> max{Tz, T4},

2
f (u)(w 7= 1,0, ) + (1 + 6% = Bad)lu(r, T — t,6_., up)|*)dx
[x|> V2k

2
f p(u)(lAu(TT t,0_w, uo)|*)dx

<Bn(l + Ri(t, w) + Ri(1, w) + Ry(1, w)),
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which implies (2.3.50). |
We now derive uniform estimates of solutions in bounded domains. These estimates will be used to
establish pullback asymptotic compactness. Let p = 1 — p with p given by (2.3.51). Fix k > 1, and set

W, 7, w, ) = oDt 7, w, uy),
{ 0= 0 (23.73)

— — 12
W, T, w, 75) = P V(T T, w, Vo).

By (2.2.11)—(2.2.13) we find that u and v satisfy the following system in By, = {x € R" : |x| < 2k}:

le—i;\ =V + guz(b,w) — Su, (2.3.74)
Fm P
d—: v+ (8 + A+ AV +p(|;§—|2)f(u)
__|x? __|x? _
:p(ﬁ)g(x, ) — p(ﬁ)h(v + euz(6,w) — Su) — e(v — 36u + guz(6,w))z(6,w)

anvi v+ 650 A + 45 AV + a2 2.3.75

+ p(?) u+ p(ﬁ) u+ p(ﬁ) U+u p(ﬁ, (2.3.75)
with boundary conditions
u=v=0 for |x|=2k. (2.3.76)

Let {e,}>”, be an orthonormal basis of L*(By;) such that Ae, = A,e, with zero boundary condition in
Bo. Given n, let X, = spanfey,--- ,e,} and P, : L*(By) — X, be the projection operator.

Lemma 2.3.5 Under Assumptions 1 and 11, for everyn > 0,1 e R,w € Q, D = {D(1,w) : T€e R,w €
Q} € D, there exists T = T(t,w,D,n) > 0,K = K(t,w,n) > 1 and N = N(t,w,n) > 1 such that for all
t>T, k> Kandn > N, the solution of problem (2.3.74)—(2.3.76) satisfies

I = PYY(1, 7T = 1,00, D(T — 1,025, < 71

Proof. Letu,; = P,u, u,n = (I — P)u, v,1 = P,v, Vo = (I — P,)v. Applying I — P, to (2.3.74), we
obtain

— d’IZn,Q

V2 =

+ Uy — ez(6,w0)u,, . (2.3.77)
Then applying I — P, to (2.3.75) and taking the inner product with v, , in L*(By), we have

1d —
Ea,—tll'v\n,zll2 — (6 = s2(6,)|nall* + (A + 6% + A) (@2, V02)

|« _
+(( - Pn)P(?)f(X, U), V)

2
=((I - Pn)ﬁ(ljz—lz)g(x, 1), V) + £2(0,w)(36 — £2(6,0)) (U2, Vn2)

2
- - Pn)ﬁ(i—lz)(h(v + e2(6,w) — 6u), vy )

a5 v + 6450 Au + 4V AV + a5 P T 2.3.78
+ ( P(ﬁ) U+ P(ﬁ) U+ P(ﬁ) u+u p(ﬁ)’vnl)- (2.3.78)
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Substituting v, in (2.3.77) into the third term on the left-hand side of (2.3.78), we have

(\n 2 vn 2) - (/\n 2’ + 6’\” 2= 8Z(0tw)7/t\n 2)

_Ed—lﬂzll + 6l 2l = lellz(@ )i, 21,

and then

—_— -~ — Jﬁn 2
(Aun,Z, Vn,Z) = (Aun 2 A

1d
> Ed—IIAunzII + 01|t 2P — lellz(Gw) AT .

For the fourth term on the left-hand side of (2.3.78), we have

2
(I-P )/O(| il )X, 1), Vn2)
2
=(U - P )/O(| l

Upp — SZ(Qtw)ﬁn 2)

2 2
=—((1 P )/0(| il )6 u), U 2) = (1 = Pn)P(| il ), Wty 4y 2)

__|xf?

+ (6 — ez(G,w)) (I - P, )p( (X, 1), 2).

For the third term on the right-hand side of (2.3.78), we have

2
-(U-P ),O(u)(h(v + ez(6w) — 6u), vy2)

Allz

— (= Pop(o7) (v + £2(6,w) — ou) — h(0),Vv2)
= Bilnal* + h (DS(ttn2, Vn2) + Balellz(O )ity 2V 2.

Using the Cauchy-Schwarz inequality and Young’s inequality, we get

£2(0,w)(36 — £2(6,0)) W2, Vn2) + Polellz @ity 2V
=(3682(0,w) — 2 (O,W)) Uy, Vn2) + Balellz(B: )ity NIV,
<@Bdlellz(@w)] + Xz w) w2 IVl + Bolellz@w)lI 2l |
=((36 + Bo)lellz(w)| + & [2(0,w)P) i 21V, 2

1 1
<(7 G0 +Bo)lellz(Gw)] + Ez-rzlz(ezw)lz)(lﬁTn,zII2 + |2l

and
|x[*
(- Pn)p( )8(X,1),V,2)

2
o - P )(’p‘(' T ote I,

ﬁ

(2.3.79)

(2.3.80)

(2.3.81)

(2.3.82)

(2.3.83)

(2.3.84)
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Now, we estimate the last term in (2.3.78)

I _aP I o AP
(4AVZ)\(?) -Vu + 6Ap(ﬁ) - Au+ 4Vi)\(?) - AVu + uA p(?), Vn,Z)
122, [P 8, | 2_, |xP
=(4VM'(7P (?)‘F?P (?))4‘6&!'(@9 (7)
4 P 8 R 12 . 482, |
tah G AV PO r Gl Ot e ()
16x*__,, |x*.
8 P (?))avnl)
16 V231 + 4413) 12(u; + 440)
< SVl - ol + %Mun-mn
8V2u, s 43y + 2445 + 1644)
+ = ATl - ol + == ) - [
8(48 6415)? 4(12 48115)? 51243
(B1 — O)kS B1 — O)k* By — O)k?
4121y + 9645 + 64114)? -0
+ “Z(ﬁ ’j;)kg Ha) g+ Il (2.3.85)
—

Assemble together (2.3.78)—(2.3.85) to obtain

1d _ _|x? _
Ed—t[lm,zﬂz + (A + 8 = Lo al* + | AT, 0> + 2((1 - Pn),D(lk—lz)f(X, u), up2)]

+ (6 = lellz@)DW,2ll* + (A + 6> = B8l + 1A% o1

|2

+ (U= PpC3)f (), Un )]

1 1
S(§(35 + B2 + 4B20)lellz(O,w)| + 5«92|Z(9;w)|2)(|Wn,zll2 + [t
2(12p1 + 48u,)°

2 A(48uy + 643 , 256p7 i
+ Vul|* + Aul|” + ——||A*®
(L Z il + = XA
2(12uy + 9643 + 64u4)? 1 |x|?
22 00 2 0% o Ly ey ek i)
k 2 k
36 — _x _
+ PGP 4 (1= PR i 0, T

It follows that

d - _|x? -
E[I@,zll2 + (A + 6 = Bad)tall* + 1AT, I + 2((T - Pn)p(?)f(x» u), un,2)]

1 1
S2( — 6 + lellz(Gw)| + 72(5(35 + B + 4B20)lel|z(biw)| + ESZIZ(sz)IZ))

2
. [Wn,zll2 + (A + 6 = Bod)lt o> + AT 2| + 2((1 — Pn)ﬁ(%)f(x, u)ﬁn,z)]

4 (4(48,¢2 + 64u3)? 2(12u; + 48u»)?

2
+ oy 6 [[Vul|* + T

1 Aulf?
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256,1l dP + 2(12u5 + 9643 + 64114)?

k8
a2 IxP
—||<1 PGB8 )+2(<I PR u)ut,unz)

=Ll el

+ 2(5 — lellz(6w)| - 72(5(35 + B2 + 4B20)lellz(6w)| + ESZIZ(Htw)IZ))

2
(U - Pn)p(l a )f(x, 1),y 2)

= 20(7, a))[l[@zll2 + (A + 6 = Bab)lltn > + 1A%, 51

2
+2(( - Pn>p<' 0 e, an)] + 2[ §+0 - (yi+7y2— 1)|s||z(0tw>|]

__|xf?

: [m,znz + (46 = Bad)Tnall? + |ATh ] + 21 = PaDC )5 0, T 2)

4 (4048 6415)? 2(12 4811,)?
+ ( (48uy + 64u3) ||Vu||2+ (12u; + 48uy)
B — kS k#

2(12/12 + 96/13 + 64/14)
k8

25 T
| Aul* + TIIIAWIIZ

2
P + 31~ PEC s D))

__|x?

1
+4(r =50 ((1 PR ) f (30, an) + 4[ - Lelz@w)

_
2

2
((1 P )p(' e, unz) (2.3.86)

( & lw) + ( (36 + B2 + 4520 + 4)|8”Z(0tw)|))]

Letd = Zg;i; Since 1 <y < 22, we find that 0 < @ < 1. Then by (2.2.4) and interpolation inequalities,

the last term on the right hand of (2.3.86) is bounded by

4[ - Dlellz(6)| - %(%sﬂz(e,w)ﬁ + (%(36 + B2+ 426 + 4)lellz<9fw>l>)]

__|xf?

(= PR 00, T02)
P

Sc(1+|z<9tw>|2)[c1 f P Ml ol + f L '2>|m<x>|rnz|dx]
<c(1 + 12O P)erlul, [ Goallysr + 1,2 1)

<c(1 + 120 P) el 18T, oI Gl + A2 Iy 14T, 1)
<c(1+ RO A, 18T lerd], Tl + i)

1 _ _
sg((s — DA + e (1 + |26w)' + 27, [lull! (2.3.87)

HZ(R"))
Similarly we have

__|xf?

Ao - —6)((1 PR ) f (3 0), an)
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<- ((5 U)IIAunzll + c/l,m(l + 10 +1”u”H2(R")) (2.3.88)
On the other hand, by (2.2.7), using Holder inequality and Young’s inequality, we obtain
|x?
21 = PR i T )
1 - _
<c©- ATy o> + A et
1 e _
<c(6- AT + A, (ldl® + VP + el + [2(8,0)1*). (2.3.89)
Then by (2.3.86)—(2.3.89), we obtain
d ) 5 |x*
o Wn2ll® + (A + 6 = Bad)ttnoll® + 1A%, I* + 2(U — P )p( ) f(x, 1), Uy, 2)
_ |
= 20(7, )[IVn2ll* + (A + 6% = Lot 2> + 18T o |I* + 2(( — P WP (%, u), Uy)]
+ e [+ VI + (1 + 45, DNl gy + 2G@)] + gIIVull + ﬁllAullz
c s |
+ EllAiull2 ||u||2 +cl(I-P )(p( )g(x, ). (2.3.90)

Note that 4, — co when n — oo. Therefore, given 7 > 0, by Lemma 2.3.1 and 2.3.3, we know there
exist Ny = Ni(n) > 1 and K, = K4(7) > 1 such forall n > N, and k > Ky,

d 2
o Wl + (A + 6 = Bad)llth ol + AT ol +2((1 - P )p(| l )f(x, 1), Uy )

__ |

= 20(7, W)IV,2l* + (A + 6% = Bad)lit olI* + AT, > +2((1 — P WP ) (X, ), Unp)]

2
+ (1 + VIS + el oy + 12Bi0)|™®) + €l = P )(p(| )86 D)I. (2.3.91)

Integrating (2.3.91) over (7 — ¢, 7) with > 0, we get for all n > N, and k > K4,
W2t T = L) + (A + 6% = Lot 2(7, T — £, W)I* + | A 2(7, T — 1, W)
(s )p(' A, w))
<ce? i OB(L 4 [l + gl )

]
+ Wf 2k B (lu(s, 7 — 1,0, )|}y + V(5. T = 1,0, v0)]|"®)ds
Tt
. f 2k (] 4 12(0,0)'®)ds
Tt

2
ve f w1 — ) ygtr, )P

Replacing w by 6_,w in the above we obtain, forevery t e R*, Te R, w € Q,n > Ny and k > Ky,

IWna(7, 7 = 1, 0_;w)|I* + (A + 6% = Lot 2(7, T — 1,6, )|>
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2
AT 2 (1,7 = 1,0 0)|] +2((1 P )p(' T b ), T (7 — r,e_fa»)

<ceF eI (L4 gl + gl k)

+n f &2 T (5, — 1,00, | g, + 1G5, T = 1,010, vo))ds
Tt

+n f & kUL 4 |2(0,w)]P)ds
T—t
I

+Cf o2 I o= we)du|| (] — P )(75( )g(x, $))|1°ds

<ceh OB 1wl + ol )

0
N nf Al QB y(s 41T — 1,00, uo)||Hz(Rn
-t

0
+ (s + 7,7 = 1,0_.w,vo)||'*)ds + 1 f 2 (1 4 120.0)")ds

—t

2
v [ eneena - py@ s +opfas 2392)

We now estimate every term on the right-hand side of (2.3. 92) For the first term, as in (2.3.26), we
find that there exists T = T(T w, D,n) > 0 such for all > T

ce* b (L 1 lvol + ol ) < 1 (2.3.93)

For the second term on the right-hand side of (2.3.92), by Lemma 2.3.2 we have

0
Uf 2 b b (ly(s + 1,7 — 1,6_ 0, Uy + V(s + 7,7 = 1,60, vo)l|'*)dls
-t
" 0
Sm’f e2f(j oww)du g ¢ 4 T]Rg(q-, w) f e—l6f0‘ o ] ¢
I )
0 ¢
Sncf heds + Lo RT ), (2.3.94)
o e

where R;(7, w) is the random variable given in Lemma 2.3.2. Note that by (2.3.22) the above integral
is well defined, and so is the following one

0 !
f 2 b g(u,w)d/l(l + |z(93w)|18)ds < o0, (2.3.95)

(%)

For the last term on the right-hand side of (2.3.92), by (2.2.20) and (2.3.22), since g € L*(R"), there
exists N, = N,(1,w,n) > Ny, such that for all n > N>,

|xf?

f o2 etwarduy g _ p NP8 s + D)Ids <. (2.3.96)
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According to (2.3.92)—(2.3.96) we find that, forevery 7€ R, w € Q, t > T,n>N,and k > Ky,

[Wn2(7, T = 1, 0_W)|I* + (A + 6% = o)t 2(7, T — 1, 0_ )|

2
+ 1AL o (1, T = 1, 6_w)|I + 2((T - Pn)ﬁ(lz_lz)f (%, 1), Un 2 (1,7 — 1,0 w)) (2.3.97)
<nR3(7, w),
where Rg(7, w) is a positive random variable. The proof is completed by (2.2.4) and (2.3.97). O
3. Results

In this section, we prove existence and uniqueness of 9- pullback attractors for the stochastic system
(2.2.11)—(2.2.13). First we apply the Lemmas shown in Section 4 to prove the asymptotic compactness
of solutions of (2.2.11)—(2.2.13) in E.

Lemma 3.1 Under Assumptions 1 and 11, for every 1 € R, w € Q, the sequence of weak solutions
of 22.11)—2.2.13), {Y(7,7 — ty, 0_cw, Yo(0_,,w))}>_, has a convergent subsequence in E whenever
ty — oo and Yy(0-, w) € D(t —t,,0_, w) with D € D.

Proof. Lett, — oo and Yy(0-, w) € D(t —t,,0_, w) with D € O. By Lemma 2.3.1, there exists
m; = my (T, w, D) > 0 such for all m > m;, we have

1Y (7,7 = t, 0w, Yo(6_,, 0))I[z < R (T, w). (3.1)

By Lemma 2.3.4, for every n > 0, there exist ky = ko(7,w,n) > 1 and m, = my(7, w, D,n7) > m; such
for all m > m,,

1Y (7,7 = 1,6, D(T — 1,005, ) < 7- (3.2)

By Lemma 2.3.5, there exist k; = ki(7, w,n) > ko and m3 = m3(r, w, D,n7) > my and ny = ny(t,w,n) >0
such for all m > m;,

I = P)Y(x, 7= 1,00, D(T = 1,005z, , < 7- (3.3)

Using (2.3.73) and (3.1), we get
IP.Y(7,7 = 1,0, D(T = 1,0}, 45, ) < CoRI(T, ), (3.4)

which together with (3.3) implies that {Y (7, 7 —1,,, 0_;w, Yo(6-,,w))} 1s precompact in E(By, ). Note that
Z)\(Iz—f) = 1 for |x| < k. Therefore, {Y (7,7 — t,, 0_-w, Yo(0_,,w))} is precompact in E(By, ), which along
with (5.2) shows the precompactness of this sequence in E. O
Theorem 3.1 Under Assumptions 1 and 11, the random dynamical system ® generated by the stochastic
plate Eq. (2.2.11)—~(2.2.13) has a unique pullback D-attractor A = {A(t,w) : T€R, w e Q} € Din
the space E.

Proof. Note that the cocycle @ is pullback D-asymptotically compact in £ by Lemma 3.1. On the
other hand, the cocycle ® has a pullback D-absorbing set by Lemma 2.3.1. Then the existence and

uniqueness of a pullback D-attractor of @ follow from Proposition 2.1.8 immediately. O
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4. Conclusion

Using the uniform estimates on the tails of solutions and the splitting technique as well as the
compactness methods, we obtained the existence of pullback attractor for the problem (1.1)—(1.2). It
is well-known that the pullback random attractors are employed to describe long-time behavior for an
non-autonomous dynamical system with random term, while the D-pullback attractor that we obtained
can characterize the asymptotic behavior of the equation like (1.1)—(1.2), which is featured with both
stochastic term and non-autonomous term.
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