Research article

Fractional physical models based on falling body problem

  • Received: 19 December 2019 Accepted: 26 February 2020 Published: 12 March 2020
  • MSC : 26A33, 97M50, 70E17

  • This article is devoted to investigate the fractional falling body problem relied on Newton's second law. We analyze this physical model by means of Atangana-Baleanu fractional derivative in the sense of Caputo (ABC), generalized fractional derivative introduced by Katugampola and generalized ABC containing the Mittag-Leffler function with three parameters $\mathbb{E}_{\alpha, \mu}^{\gamma}(.)$. For that purpose, the Laplace transform (LT) is utilized to obtain fractional solutions. In order to maintain the dimensionality of the physical parameter in the model, we employ an auxiliary parameter $\sigma$ having a relation with the order of fractional operator. Moreover, simulation analysis is carried out by comparing the underlying fractional derivatives with traditional one to grasp the virtue of the results.

    Citation: Bahar Acay, Ramazan Ozarslan, Erdal Bas. Fractional physical models based on falling body problem[J]. AIMS Mathematics, 2020, 5(3): 2608-2628. doi: 10.3934/math.2020170

    Related Papers:

  • This article is devoted to investigate the fractional falling body problem relied on Newton's second law. We analyze this physical model by means of Atangana-Baleanu fractional derivative in the sense of Caputo (ABC), generalized fractional derivative introduced by Katugampola and generalized ABC containing the Mittag-Leffler function with three parameters $\mathbb{E}_{\alpha, \mu}^{\gamma}(.)$. For that purpose, the Laplace transform (LT) is utilized to obtain fractional solutions. In order to maintain the dimensionality of the physical parameter in the model, we employ an auxiliary parameter $\sigma$ having a relation with the order of fractional operator. Moreover, simulation analysis is carried out by comparing the underlying fractional derivatives with traditional one to grasp the virtue of the results.


    加载中


    [1] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 204 (2006).
    [2] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst.-S, 13 (2020), 709-722. doi: 10.3934/dcdss.2020039
    [3] F. Jarad, T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., 1 (2018), 88-98.
    [4] E. Bonyah, A. Atangana, M. Chand, Analysis of 3D IS-LM macroeconomic system model within the scope of fractional calculus, Chaos, Solitons Fractals: X, 2 (2019), 100007.
    [5] M. Yavuz, N. Ozdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal Fractional, 2 (2018), 1-11.
    [6] A. Atangana, S. I. Araz, Fractional stochastic modelling illustration with modified Chua attractor, Eur. Phys. J. Plus, 134 (2019), 1-23. doi: 10.1140/epjp/i2019-12286-x
    [7] S. Qureshi, A. Yusuf, Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu Chaos, Solitons Fractals, 122 (2019), 111-118.
    [8] S. Qureshi, A. Yusuf, Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator, Chaos, Solitons Fractals, 126 (2019), 32-40. doi: 10.1016/j.chaos.2019.05.037
    [9] M. Yavuz, E. Bonyah, New approaches to the fractional dynamics of schistosomiasis disease model, Phys. A: Stat. Mech. Appl., 525 (2019), 373-393. doi: 10.1016/j.physa.2019.03.069
    [10] F. A. Rihan, Q. M. Al-Mdallal, H. J. AlSakaji, et al. A fractional-order epidemic model with time-delay and nonlinear incidence rate, Solitons Fractals, 126 (2019), 97-105. doi: 10.1016/j.chaos.2019.05.039
    [11] E. Bas, R. Ozarslan, Real world applications of fractional models by Atangana-Baleanu fractional derivative, Chaos, Solitons Fractals, 116 (2018), 121-125. doi: 10.1016/j.chaos.2018.09.019
    [12] E. Bas, B. Acay, R. Ozarslan, Fractional models with singular and non-singular kernels for energy efficient buildings, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 023110.
    [13] A. Atangana, E. Bonyah, Fractional stochastic modeling: New approach to capture more heterogeneity, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 013118.
    [14] T. Abdeljawad, Fractional operators with boundary points dependent kernels and integration by parts, Discrete Contin. Dyn. Syst.-S, 13 (2019), 1098-1107.
    [15] Q. M. Al-Mdallal, On fractional-Legendre spectral Galerkin method for fractional Sturm-Liouville problems, Chaos, Solitons Fractals, 116 (2018), 261-267. doi: 10.1016/j.chaos.2018.09.032
    [16] B. Acay, E. Bas, T. Abdeljawad, Non-local fractional calculus from different viewpoint generated by truncated M-derivative, J. Comput. Appl. Math., 366 (2019), 112410.
    [17] E. Bas, B. Acay, R. Ozarslan, The price adjustment equation with different types of conformable derivatives in market equilibrium, AIMS Math., 4 (2019), 805-820. doi: 10.3934/math.2019.3.805
    [18] N. Sene, Stability analysis of the generalized fractional differential equations with and without exogenous inputs, J. Nonlinear Sci. Appl., 12 (2019), 562-572. doi: 10.22436/jnsa.012.09.01
    [19] M. Al-Refai, M. A. Hajji, Analysis of a fractional eigenvalue problem involving Atangana-Baleanu fractional derivative: A maximum principle and applications, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 013135.
    [20] E. Bas, R. Yilmazer, E. Panakhov, Fractional Solutions of Bessel Equation with N-Method, Sci. World J., 2013 (2013), 1-9.
    [21] M. G. Sakar, O. Saldır, Improving variational iteration method with auxiliary parameter for nonlinear time-fractional partial differential equations, J. Optim. Theory Appl., 174 (2017), 530-549. doi: 10.1007/s10957-017-1127-y
    [22] M. G. Sakar, Numerical solution of neutral functional-differential equations with proportional delays, Int. J. Optim. Control: Theory Appl. (IJOCTA), 7 (2017), 186-194. doi: 10.11121/ijocta.01.2017.00360
    [23] E. Bas, R. Ozarslan, D. Baleanu, et al. Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular operators, Adv. Differ. Equations, 2018 (2018), 1-19. doi: 10.1186/s13662-017-1452-3
    [24] S. A. A. Shah, M. A. Khan, M. Farooq, et al., A fractional order model for Hepatitis B virus with treatment via Atangana-Baleanu derivative, Phys. A: Stat. Mech. Appl., 538 (2020), 122636.
    [25] E. O. Alzahrani, M. A. Khan, Comparison of numerical techniques for the solution of a fractional epidemic model, Eur. Phys. J. Plus, 135 (2020), 1-28. doi: 10.1140/epjp/s13360-019-00059-2
    [26] M. A. Khan, O. Kolebaje, A. Yildirim, et al. Fractional investigations of zoonotic visceral leishmaniasis disease with singular and non-singular kernel, Eur. Phys. J. Plus, 134 (2019), 1-29. doi: 10.1140/epjp/i2019-12286-x
    [27] M. A. Khan, A. Khan, A. Elsonbaty, et al. Modeling and simulation results of a fractional dengue model, Eur. Phy. J. Plus, 134 (2019), 1-15. doi: 10.1140/epjp/i2019-12286-x
    [28] S. Ullah, M. A. Khan, M. Farooq, et al. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative, Discrete Contin. Dyn. Syst.-S, 13 (2019), 937-956.
    [29] M. A. Khan, S. Ullah, M. Farhan, The dynamics of Zika virus with Caputo fractional derivative, AIMS Math., 4 (2019), 134-146. doi: 10.3934/Math.2019.1.134
    [30] J. R. Garcia, M. G. Calderon, J. M. Ortiz, et al. Motion of a particle in a resisting medium using fractional calculus approach, Proc. Romanian Acad. A, 14 (2013), 42-47.
    [31] S. Salahshour, A. Ahmadian, F. Ismail, et al. A fractional derivative with non-singular kernel for interval-valued functions under uncertainty, Optik, 130 (2017), 273-286. doi: 10.1016/j.ijleo.2016.10.044
    [32] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87-92.
    [33] T. Abdeljawad, Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 023102.
    [34] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 1-13.
    [35] A. Atangana, D. Baleanu, New fractional derivatives with non-local and nonsingular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
    [36] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.
    [37] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619. doi: 10.22436/jnsa.010.05.27
    [38] S. Liang, R. Wu, L. Chen, Laplace transform of fractional order differential equations. Electron. J. Differ. Equations, 139 (2015), 1-15.
    [39] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), 1-5.
    [40] T. Abdeljawad, Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos, Solitons Fractals, 126 (2019), 315-324. doi: 10.1016/j.chaos.2019.06.012
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4156) PDF downloads(486) Cited by(16)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog