Citation: Bahar Acay, Ramazan Ozarslan, Erdal Bas. Fractional physical models based on falling body problem[J]. AIMS Mathematics, 2020, 5(3): 2608-2628. doi: 10.3934/math.2020170
[1] | A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 204 (2006). |
[2] | F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst.-S, 13 (2020), 709-722. doi: 10.3934/dcdss.2020039 |
[3] | F. Jarad, T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., 1 (2018), 88-98. |
[4] | E. Bonyah, A. Atangana, M. Chand, Analysis of 3D IS-LM macroeconomic system model within the scope of fractional calculus, Chaos, Solitons Fractals: X, 2 (2019), 100007. |
[5] | M. Yavuz, N. Ozdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal Fractional, 2 (2018), 1-11. |
[6] | A. Atangana, S. I. Araz, Fractional stochastic modelling illustration with modified Chua attractor, Eur. Phys. J. Plus, 134 (2019), 1-23. doi: 10.1140/epjp/i2019-12286-x |
[7] | S. Qureshi, A. Yusuf, Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu Chaos, Solitons Fractals, 122 (2019), 111-118. |
[8] | S. Qureshi, A. Yusuf, Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator, Chaos, Solitons Fractals, 126 (2019), 32-40. doi: 10.1016/j.chaos.2019.05.037 |
[9] | M. Yavuz, E. Bonyah, New approaches to the fractional dynamics of schistosomiasis disease model, Phys. A: Stat. Mech. Appl., 525 (2019), 373-393. doi: 10.1016/j.physa.2019.03.069 |
[10] | F. A. Rihan, Q. M. Al-Mdallal, H. J. AlSakaji, et al. A fractional-order epidemic model with time-delay and nonlinear incidence rate, Solitons Fractals, 126 (2019), 97-105. doi: 10.1016/j.chaos.2019.05.039 |
[11] | E. Bas, R. Ozarslan, Real world applications of fractional models by Atangana-Baleanu fractional derivative, Chaos, Solitons Fractals, 116 (2018), 121-125. doi: 10.1016/j.chaos.2018.09.019 |
[12] | E. Bas, B. Acay, R. Ozarslan, Fractional models with singular and non-singular kernels for energy efficient buildings, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 023110. |
[13] | A. Atangana, E. Bonyah, Fractional stochastic modeling: New approach to capture more heterogeneity, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 013118. |
[14] | T. Abdeljawad, Fractional operators with boundary points dependent kernels and integration by parts, Discrete Contin. Dyn. Syst.-S, 13 (2019), 1098-1107. |
[15] | Q. M. Al-Mdallal, On fractional-Legendre spectral Galerkin method for fractional Sturm-Liouville problems, Chaos, Solitons Fractals, 116 (2018), 261-267. doi: 10.1016/j.chaos.2018.09.032 |
[16] | B. Acay, E. Bas, T. Abdeljawad, Non-local fractional calculus from different viewpoint generated by truncated M-derivative, J. Comput. Appl. Math., 366 (2019), 112410. |
[17] | E. Bas, B. Acay, R. Ozarslan, The price adjustment equation with different types of conformable derivatives in market equilibrium, AIMS Math., 4 (2019), 805-820. doi: 10.3934/math.2019.3.805 |
[18] | N. Sene, Stability analysis of the generalized fractional differential equations with and without exogenous inputs, J. Nonlinear Sci. Appl., 12 (2019), 562-572. doi: 10.22436/jnsa.012.09.01 |
[19] | M. Al-Refai, M. A. Hajji, Analysis of a fractional eigenvalue problem involving Atangana-Baleanu fractional derivative: A maximum principle and applications, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 013135. |
[20] | E. Bas, R. Yilmazer, E. Panakhov, Fractional Solutions of Bessel Equation with N-Method, Sci. World J., 2013 (2013), 1-9. |
[21] | M. G. Sakar, O. Saldır, Improving variational iteration method with auxiliary parameter for nonlinear time-fractional partial differential equations, J. Optim. Theory Appl., 174 (2017), 530-549. doi: 10.1007/s10957-017-1127-y |
[22] | M. G. Sakar, Numerical solution of neutral functional-differential equations with proportional delays, Int. J. Optim. Control: Theory Appl. (IJOCTA), 7 (2017), 186-194. doi: 10.11121/ijocta.01.2017.00360 |
[23] | E. Bas, R. Ozarslan, D. Baleanu, et al. Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular operators, Adv. Differ. Equations, 2018 (2018), 1-19. doi: 10.1186/s13662-017-1452-3 |
[24] | S. A. A. Shah, M. A. Khan, M. Farooq, et al., A fractional order model for Hepatitis B virus with treatment via Atangana-Baleanu derivative, Phys. A: Stat. Mech. Appl., 538 (2020), 122636. |
[25] | E. O. Alzahrani, M. A. Khan, Comparison of numerical techniques for the solution of a fractional epidemic model, Eur. Phys. J. Plus, 135 (2020), 1-28. doi: 10.1140/epjp/s13360-019-00059-2 |
[26] | M. A. Khan, O. Kolebaje, A. Yildirim, et al. Fractional investigations of zoonotic visceral leishmaniasis disease with singular and non-singular kernel, Eur. Phys. J. Plus, 134 (2019), 1-29. doi: 10.1140/epjp/i2019-12286-x |
[27] | M. A. Khan, A. Khan, A. Elsonbaty, et al. Modeling and simulation results of a fractional dengue model, Eur. Phy. J. Plus, 134 (2019), 1-15. doi: 10.1140/epjp/i2019-12286-x |
[28] | S. Ullah, M. A. Khan, M. Farooq, et al. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative, Discrete Contin. Dyn. Syst.-S, 13 (2019), 937-956. |
[29] | M. A. Khan, S. Ullah, M. Farhan, The dynamics of Zika virus with Caputo fractional derivative, AIMS Math., 4 (2019), 134-146. doi: 10.3934/Math.2019.1.134 |
[30] | J. R. Garcia, M. G. Calderon, J. M. Ortiz, et al. Motion of a particle in a resisting medium using fractional calculus approach, Proc. Romanian Acad. A, 14 (2013), 42-47. |
[31] | S. Salahshour, A. Ahmadian, F. Ismail, et al. A fractional derivative with non-singular kernel for interval-valued functions under uncertainty, Optik, 130 (2017), 273-286. doi: 10.1016/j.ijleo.2016.10.044 |
[32] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87-92. |
[33] | T. Abdeljawad, Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 023102. |
[34] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 1-13. |
[35] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and nonsingular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A |
[36] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865. |
[37] | F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619. doi: 10.22436/jnsa.010.05.27 |
[38] | S. Liang, R. Wu, L. Chen, Laplace transform of fractional order differential equations. Electron. J. Differ. Equations, 139 (2015), 1-15. |
[39] | A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), 1-5. |
[40] | T. Abdeljawad, Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos, Solitons Fractals, 126 (2019), 315-324. doi: 10.1016/j.chaos.2019.06.012 |