Research article Special Issues

Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel

  • Received: 21 April 2022 Revised: 29 May 2022 Accepted: 09 June 2022 Published: 14 June 2022
  • MSC : 26A51, 26A33, 26D10

  • The aim of this research is to combine the concept of inequalities with fractional integral operators, which are the focus of attention due to their properties and frequency of usage. By using a novel fractional integral operator that has an exponential function in its kernel, we establish a new Hermite-Hadamard type integral inequality for an LR-convex interval-valued function. We also prove new fractional-order variants of the Fejér type inequalities and the Pachpatte type inequalities in the setting of pseudo-order relations. By showing several numerical examples, we further validate the accuracy of the results that we have derived in this study. We believe that the results, presented in this article are novel and that they will be beneficial in encouraging future research in this field.

    Citation: Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja. Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel[J]. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824

    Related Papers:

  • The aim of this research is to combine the concept of inequalities with fractional integral operators, which are the focus of attention due to their properties and frequency of usage. By using a novel fractional integral operator that has an exponential function in its kernel, we establish a new Hermite-Hadamard type integral inequality for an LR-convex interval-valued function. We also prove new fractional-order variants of the Fejér type inequalities and the Pachpatte type inequalities in the setting of pseudo-order relations. By showing several numerical examples, we further validate the accuracy of the results that we have derived in this study. We believe that the results, presented in this article are novel and that they will be beneficial in encouraging future research in this field.



    加载中


    [1] M. A. El Shaed, Fractional Calculus Model of Semilunar Heart Valve Vibrations, International Mathematica Symposium, London, UK, 2003.
    [2] A. Atangana, Application of fractional calculus to epidemiology, Fractional Dynamics, 2015 (2015), 174–190.
    [3] V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Engrg., 124 (2002), 803–806. https://doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062
    [4] D. Baleanu, Z. B. Güvenç, J. A. T. Machado, Eds., New Trends in Nanotechnology and Fractional Calculus Applications, New York: Springer, 2010.
    [5] M. Caputo, Modeling social and economic cycles, In: Alternative Public Economics, F. Forte, P. Navarra, R. Mudambi, Eds., Elgar, Cheltenham, UK, 2014.
    [6] R. L. Magin, Fractional Calculus in Bio-Engineering, Begell House Inc. Publishers, Danbury, USA, 2006.
    [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
    [8] H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Engrg. Comput., 5 (2021), 135–166.
    [9] H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520.
    [10] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [11] I. Işcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Studia Univ. Babeş-Bolyai Sect. A Math., 60 (2015), 355–366.
    [12] F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals, Ital. J. Pure Appl. Math., 33 (2014), 299–306.
    [13] A. Guessab, Generalized barycentric coordinates and approximations of convex functions on arbitrary convex polytopes, Comput. Math. Appl., 66 (2013), 1120–1136. https://doi.org/10.1016/j.camwa.2013.07.014 doi: 10.1016/j.camwa.2013.07.014
    [14] A. Guessab, G. Schmeisser, Two Korovkin-type theorems in multivariate approximation, Banach J. Math. Anal., 2 (2008), 121–128. https://doi.org/10.15352/bjma/1240336298 doi: 10.15352/bjma/1240336298
    [15] O. Alabdali, A. Guessab, G. Schmeisser, Characterizations of uniform convexity for differentiable functions, Appl. Anal. Discret. Math., 13 (2019), 721–732. https://doi.org/10.2298/AADM190322029A doi: 10.2298/AADM190322029A
    [16] A. Guessab, O. Nouisser, G. Schmeisser, Enhancement of the algebraic precision of a linear operator and consequences under positivity, Positivity, 13 (2009), 693–707. https://doi.org/10.1007/s11117-008-2253-4 doi: 10.1007/s11117-008-2253-4
    [17] A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., 44 (2021), 8414–8431.
    [18] H. Ogulmus, M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Filomat, 35 (2021), 2425–2436. https://doi.org/10.2298/FIL2107425O doi: 10.2298/FIL2107425O
    [19] M. Andrić, J. Pečarič, I. Perić, A multiple Opial type inequality for the Riemann-Liouville fractional derivatives, J. Math. Inequal., 7 (2013), 139–150.
    [20] H. Ahmad, M. Tariq, S.K. Sahoo, J. Baili, C. Cesarano, New estimations of Hermite-Hadamard type integral inequalities for special functions. Fractal Fract. 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
    [21] S. K. Sahoo, M. Tariq, H. Ahmad, B. Kodamasingh, A. A. Shaikh, T. Botmart, et al., Some novel fractional integral inequalities over a new class of generalized convex function, Fractal Fract., 6 (2022), article ID 42, 1–22. https://doi.org/10.3390/fractalfract6010042
    [22] S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator, Fractal Fract., 6 (2022), 171. https://doi.org/10.3390/fractalfract6030171 doi: 10.3390/fractalfract6030171
    [23] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for $(h_1, h_2) $-convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), Article ID 149, 1–21.
    [24] R. E. Moore, Interval Analysis, Prentice Hall: Englewood Cliffs, NJ, USA, 1966.
    [25] H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741
    [26] B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comput. Appl. Math., 353 (2019), 120–129.
    [27] D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003
    [28] T. M. Costa, H. Román-Flores, Y. Chalco-Cano, Opial-type inequalities for interval-valued functions, Fuzzy Set. Syst., 358 (2019), 48–63. https://doi.org/10.1016/j.fss.2018.04.012 doi: 10.1016/j.fss.2018.04.012
    [29] Y. Chalco-Cano, W. Lodwick, W. Condori-Equice, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 475–472.
    [30] H. Román-Flores, Y. Chalco-Cano, W. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2016), 1306–1318. https://doi.org/10.1007/s40314-016-0396-7 doi: 10.1007/s40314-016-0396-7
    [31] D. Zhao, M. A. Ali, G. Murtaza, Z. Zhang, On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions, Adv. Differ. Equ., 2020 (2020), Article ID 570, 1–14.
    [32] E. R. Nwaeze, M. A. Khan, Y. M. Chu, Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1–17.
    [33] H. Kara, H. Budak, M. A. Ali, M. Z. Sarikaya, Y. M. Chu, Weighted Hermite-Hadamard type inclusions for products of co-ordinated convex interval-valued functions, Adv. Differ. Equ., 2021 (2021), 1–16.
    [34] H. Budak, H. Kara, M. A. Ali, S. Khan, Y. M. Chu, Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions, Open Math., 19 (2021), 1081–1097.
    [35] H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, D. Baleanu, B. Kodamasingh, Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators, Int. J. Comput. Intel. Syst., 15 (2022), Article ID 8, 1–12. https://doi.org/10.1007/s44196-021-00061-6
    [36] N. Sharma, S. K. Singh, S. K. Mishra, A. Hamdi, Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals, J. Inequal. Appl., 98 (2021).
    [37] H. Zhou, M. S. Saleem, W. Nazeer, A. F. Shah, Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals, AIMS Math., 7 (2022), 2602–2617. https://doi.org/10.3934/math.2022146 doi: 10.3934/math.2022146
    [38] K. Lai, S. K. Mishra, J. Bisht, M. Hassan, Hermite-Hadamard type inclusions for interval-valued coordinated preinvex functions, Symmetry, 14 (2022), 771. https://doi.org/10.3390/sym14040771 doi: 10.3390/sym14040771
    [39] H. Kalsoom, M. A. Latif, Z. A. Khan, M. Vivas-Cortez, Some new Hermite-Hadamard-Fejér fractional type inequalities for h-Convex and Harmonically h-Convex interval-valued functions, Mathematics, 10 (2022), 74. https://doi.org/10.3390/math10010074 doi: 10.3390/math10010074
    [40] F. Shi, G. Ye, D. Zhao, W. Liu, Some integral inequalities for coordinated log-h-convex interval-valued functions, AIMS Math., 7 (2022), 156–170. https://doi.org/10.3934/math.2022009 doi: 10.3934/math.2022009
    [41] M. B. Khan, M. A. Noor, M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo-order relation, Math. Meth. App. Sci., 2022 (2022).
    [42] M. B. Khan, H. G. Zaini, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, Riemann-Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon pseudo order relation, Mathematics, 10 (2022), Article ID 204, 1–17.
    [43] M. B. Khan, M. A. Noor, K. I. Noor, K. S. Nisar, K. A. Ismail, A. Elfasakhany, Some inequalities for LR-$\left(h_{1}, h_{2} \right)$ convex interval-valued functions by means of pseudo order relation, Int. J. Comput. Intel. Syst., 14 (2021), Article ID 180, 1–15.
    [44] M. B. Khan, H. M. Srivastava, P. O. Mohammed, J. E. Macías-Diaz, Y. S. Hamed, Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation, Alexandria Engrg. J., 61 (2022), 7089–7101. https://doi.org/10.1016/j.aej.2021.12.052 doi: 10.1016/j.aej.2021.12.052
    [45] M. B. Khan, H. M. Srivastava, P. O. Mohammed, L. L. G. Guirao, T. M. Jawa, Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions, Math. Biosci. Engrg., 19 (2022), 812–835. http://doi.org/10.3934/mbe.2022037 doi: 10.3934/mbe.2022037
    [46] M. B. Khan, P. O. Mohammed, K. Nonlaopon, Y. S. Hamed, Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions, AIMS Math., 7 (2022), 4338–4358. https://doi.org/10.3934/math.2022241 doi: 10.3934/math.2022241
    [47] M. B. Khan, S. Treanţǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard-Fejér type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), Article ID 6, 1–16. https://doi.org/10.3390/fractalfract6010006
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1534) PDF downloads(84) Cited by(16)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog