Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel

  • The aim of this research is to combine the concept of inequalities with fractional integral operators, which are the focus of attention due to their properties and frequency of usage. By using a novel fractional integral operator that has an exponential function in its kernel, we establish a new Hermite-Hadamard type integral inequality for an LR-convex interval-valued function. We also prove new fractional-order variants of the Fejér type inequalities and the Pachpatte type inequalities in the setting of pseudo-order relations. By showing several numerical examples, we further validate the accuracy of the results that we have derived in this study. We believe that the results, presented in this article are novel and that they will be beneficial in encouraging future research in this field.

    Citation: Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja. Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel[J]. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824

    Related Papers:

    [1] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [2] Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283
    [3] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [4] Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan . Some well known inequalities on two dimensional convex mappings by means of Pseudo $ \mathcal{L-R} $ interval order relations via fractional integral operators having non-singular kernel. AIMS Mathematics, 2024, 9(6): 16061-16092. doi: 10.3934/math.2024778
    [5] Hongling Zhou, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals. AIMS Mathematics, 2022, 7(2): 2602-2617. doi: 10.3934/math.2022146
    [6] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [7] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [8] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Mathematics, 2022, 7(1): 1507-1535. doi: 10.3934/math.2022089
    [9] Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121
    [10] Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306
  • The aim of this research is to combine the concept of inequalities with fractional integral operators, which are the focus of attention due to their properties and frequency of usage. By using a novel fractional integral operator that has an exponential function in its kernel, we establish a new Hermite-Hadamard type integral inequality for an LR-convex interval-valued function. We also prove new fractional-order variants of the Fejér type inequalities and the Pachpatte type inequalities in the setting of pseudo-order relations. By showing several numerical examples, we further validate the accuracy of the results that we have derived in this study. We believe that the results, presented in this article are novel and that they will be beneficial in encouraging future research in this field.



    Fractional calculus has become increasingly important in domains such as inequality theory, applied mathematics, sciences, and engineering in recent years. Fractional integrals are used to describe the attributes of many physical processes, such as those in physics and medicine [1], epidemiology [2], fluid mechanics [3], nanotechnology [4], economy [5], bioengineering [6], and so on.

    It is worth emphasizing that the concept of fractional calculus was first put forward by Leibniz and L'Hôpital (1695). Nevertheless, additional contributions to the topic of fractional calculus and its numerous applications were made by such other mathematicians as Riemann, Liouville, Grunwald, Letnikov, Erdélyi, Kober, and others. Fractional calculus has drawn the attention of many physical and engineering professionals due to its behaviour and capacity to tackle a wide range of real-world problems (see, for details, [7]; see also the recent survey-cum-expository review articles [8,9]).

    For fractional integrals, various integral inequalities have been found. These integrals are useful for generalizing important and well-known integral inequalities. One kind of integral inequalities is the Hermite-Hadamard integral inequality. It is widely used in the literature, and it specifies both the necessary and sufficient conditions for a function to be convex. Sarikaya et al. [10] generalized the Hermite-Hadamard inequalities using Riemann-Liouville fractional integrals. The conclusions by Sarikaya et al. [10] were also extended to Hermite-Hadamard-Fejér type inequalities by Iscan [11]. Chen [12] used the methodology of Sarikaya et al. [10] and established fractional Hermite-Hadamard type integral inequalities by using the product of two convex functions. Guessab [13] proposed Jensen type inequalities on convex polytopes and investigated the error in convex function approximation. Guessab et al. [14] discovered a Korovkin-type theorem that shows that a series of operators does not have to have an identity limit. Guessab also worked on the concepts such as higher order convexity [15] and bivariate Hermite interpolant (see [16]). The presentation of several well-known integral inequalities by employing various novel concepts of fractional integral operators has grown increasingly popular among mathematicians in recent years. In this regard, one can consult the results described in [10,17,18,19,20,21,22].

    Interval analysis is subdivided into the set-valued analysis. There is no doubting the importance of interval analysis in both pure and applied research. One of the early uses of interval analysis was the error limits of numerical solutions of finite state machines. However, in recent times, interval analysis has been a crucial component of mathematical and computer models for addressing interval uncertainty.

    To generate more generalised results, we used a new fractional integral operator in this study. This is due to the fact that this fractional operator has an exponential kernel. The aforementioned fractional analogues of functional inequalities do not follow from our conclusions, which is a distinction between our results and existing generalisations. Many experts have presented extensions of the Hermite-Hadamard inequality with various fractional integral operators, but there is no exponential characteristic in their results. This research sparked an interest in creating more generalised fractional inequalities with an exponential function as the kernel. Moreover, the application of interval valued analysis to the main findings brings a new direction to the field of inequalities. We have incorporated the concepts of a Pseudo-order relation with Interval valued analysis to present new inequalities. Although we can find many studies on the growth of fractional order integral inequalities involving convex functions, there are still numerous gaps to be filled for fractional integral inequalities involving various types of convex functions. As a result, the primary goal of this study is to establish novel Hermite-Hadamard, Pachppate and Fejér type inequalities for LR-convex interval-valued function utilizing fractional integral operators.

    We denote by MC the collection of all closed and bounded intervals of R, given by

    MC={[Λ,Λ]:Λ,ΛRandΛΛ}.

    If Λ0, then we say the inerval [Λ,Λ] is positive interval. The set of all positive intervals is denoted by M+C and is given as

    M+C={[Λ,Λ]:Λ,ΛMCandΛ0}.

    Let us now study how the intervals behave under some arithmetic operations such as addition, multiplication and scalar multiplication. If [Λ,Λ],[Λ,Λ]MC and κR, then

    [Λ,Λ]+[Λ,Λ]=[Λ+Λ,Λ+Λ]
    [Λ,Λ]×[Λ,Λ]=[min{ΛΛ,ΛΛ,ΛΛ,ΛΛ},max{ΛΛ,ΛΛ,ΛΛ,ΛΛ}]
    κ.[Λ,Λ]={[κΛ,κΛ](κ>0){0}(κ=0)[κΛ,κΛ](κ<0),

    respectively.

    For [Λ, Λ],  [Λ, Λ]MC, the inclusion "⊆" is given as follows

    [Λ, Λ][Λ, Λ], if and only if, ΛΛ, ΛΛ.

    Khan et al. [23] presented the following properties of the newly introduced idea (LR-conex interval valued functions).

    Remark 2.1 (see [23]). 1. The pseudo order relation "p" defined on MC by [Λ,Λ]p[Λ,Λ] holds true if and only if ΛΛ,ΛΛ, for all [Λ,Λ],[Λ,Λ]MC,. The relation [Λ,Λ]p[Λ,Λ] similar to [Λ,Λ][Λ,Λ] on MC.

    2. It is easily seen that "p" looks same as that of "left and right" on the real line R, and hence can also be called as "LR" order.

    Moore [24] is credited for introducing the concept of the Riemann integral for interval valued functions, which is defined as follows:

    Theorem 2.1. Let S:[g,p]RMC be an I-V-F on such that

    S(υ)=[S(υ),S(υ)].

    Then S is Riemann integrable over [g,p] iff both S and S are Riemann integrable over [g,p].

    (IR)pgS(υ)dυ=[(R)pgS(υ)dυ,(R)pgS(υ)dυ].

    Let us denote the Riemann integrable functions and Riemann integrable interval valued functions by R[g,p] and IR[g,p], respectively.

    Definition 2.1 (see [10]; see also [7,25]) Let SL([g,p],M+C). Then the left- and right- interval Riemann-Liouville fractional integral of order α>0 is defined by

    Iαg+S(υ)=1Γ(α)υg(υr)α1S(r)dr,(υ>g)

    and

    IαpS(υ)=1Γ(α)pυ(rυ)α1S(r)dr,(υ<p),

    respectively, where

    Γ(υ)=0rυ1erdr,

    is the Euler gamma function.

    We now recall a potentially useful fractional integral operator, introduced by Ahmad et al. [26], that has an exponential function in its kernel.

    Definition 2.2 (see, for details, [26]). Let SL[g,p]. Then the fractional integrals Iαg+ and Iαp of order α>0 are defined as

    Iαg+S(υ):=1αυge1αα(υr)S(r)dr(0g<υ<p),

    and

    IαpS(υ):=1αpυe1αα(rυ)S(r)dr(0g<υ<p),

    respectively.

    Definition 2.3 (see [27]). The interval valued function S:JM+C is said to be Left-Right-convex interval valued function on convex set J iff

    S(rg+(1r)p)prS(g)+(1r)S(p), (2.1)

    holds true for all g, pJ and r[0, 1].

    S is said to be LR-concave on J, if inequality (2.1) is reversed, and if S is both LR-convex and LR-concave function, then it is said to be affine.

    Theorem 2.2 (see [27]). Let J be a convex set and S:JM+C be an interval valued function such that

    S(υ)=[S(υ), S(υ)],  υJ,

    for all υJ. Then S is said to be left-right-convex interval valued function on J, if and only if both S(υ) and S(υ) are convex functions.

    Budak et al. [25] examined the Hermite-Hadamard and Pachpatte type inequalities for interval-valued convex functions via fractional integrals. The following are some connected outcomes:

    Theorem 2.3. Let S:[g,p]R+I be an interval-valued convex function with

    S(υ)=[S(υ),S(υ)].

    Then, the fractional-order H-H integral inequality of order α>0 for interval-valued functions is given by

    S(g+g2)Γ(α+1)2(pg)α[Iα(g)+S(p)+Iα(p)S(g)]S(g)+S(p)2.

    Theorem 2.4. If S,Y:[g,p]R+I are two interval-valued convex functions with

    S(υ)=[S(υ),S(υ)],

    and

    Y(υ)=[Y(υ),Y(υ)],

    then the fractional-order H-H type inequality for α>0 holds true as follows:

    Γ(α+1)2(pg)α[Iα(g)+S(p)Y(p)+Iα(p)S(g)Y(g)][12α(α+1)(α+2)]Ψ(g,p)+[α(α+1)(α+2)]Ω(g,p),

    where

    Ψ(g,p)=[S(g)Y(g)+S(p)Y(p)],

    and

    Ω(g,p)=[S(g)Y(p)+S(p)Y(g)].

    Theorem 2.5. Let S,Y:[g,p]R+I be two interval-valued convex functions with

    S(υ)=[S(υ),S(υ)],

    and

    Y(υ)=[Y(υ),Y(υ)].

    Then the fractional-order H-H type inequality for α>0 is given as

    2S(g+p2)Y(g+p2)Γ(α+1)2(pg)α[Iα(g)+S(p)Y(p)+Iα(p)S(g)Y(g)]+[12α(α+1)(α+2)]Ω(g,p)+[α(α+1)(α+2)]Ψ(g,p).

    Many scientists have linked integral inequalities with interval-valued functions (IVFs) in recent decades, giving numerous important findings. Costa [28] postulated Opial-type inequalities as a basis for IVF inequalities. The generalized Hukuhara derivative was used by Chalco-Cano [29] to look into Ostrowski type inequalities for interval-valued functions. In [30], Roman-Flores deduced the Minkowski type inequalities and Beckenbach's type inequalities for interval-valued functions. Zhao et al. [31] recently improved the concept by introducing HH type inequalities for interval-valued coordinated functions. The idea of interval-valued analysis was applied to reinforce this inequality via some innovative concepts such as coordinated convexity [33,34], and preinvex functions [35,36,37]. Recently, Lai et al. [38] extended the concept of interval valued preinvex functions to interval valued coordinated preinvex function. Kalsoom et al. [39] proved some Hermite-Hadamard-Fejér type fractional inequalities for h-convex and Harmonically h-convex interval valued functions. Shi et al. [40] investigated some related inequalities employing coordinated log-h-convex interval valued functions.

    Khan and his colleagues recently extended this (apparently new) concept to include LR-convex interval valued functions and fuzzy convex interval-valued functions, both of which take a pseudo-order relation into account. To illustrate inequalities of the Hermite-Hadamard, Hermite-Hadamard-Fejér, and Pachpatte types, his team utilised LR-h-convex interval-valued functions (see [41]), LR-χ-preinvex functions (see [42]), and LR-(h1,h2)-convex interval-valued functions (see [43]). For various recent achievements related to the notion of fuzzy interval-valued analysis of some well-known integral inequalities, we refer to Khan et al. [44,45,46].

    Motivated by the above articles, we generalize the Hermite-Hadamard inequality for LR-convex interval valued functions and product of two LR-convex interval valued functions. Moreover, we also prove Hermite-Hadamard-Fejér type inequalities.We believe that our findings will motivate more researchers to work in this subject, particularly in the area of interval valued concepts.

    The following is a breakdown of our current investigation. After reviewing the pre-requisite and relevant facts regarding the related inequalities and the interval-valued analysis in Section 2, we derive some new versions of the interval-valued H-H type inequalities and Pachpatte type inequalities in Section 3. Inequalities of the Hermite-Hadamard-Fejér type in the frame of LR interval-valued functions are also established in Section 4. Some examples are also reviewed to determine whether the established consequences are useful. In Section 5, a brief conclusion is offered, as well as potential areas for future research that are related to the findings presented in this paper.

    This section is devoted towards the main results of our manuscript, where different new versions of the Hermite-Hadamard type inequalities incorporated with LR-convex interval valued functions are discussed.

    For brevity we will denote μ=1αα(pg).

    Theorem 3.1. Let S:[g,p]M+C be an LR-convex I-V-F on [g,p], which is given by

    S(υ)=[S(υ), S(υ)],

    for all υ[g,p]. If SL([g,p],M+C), then

    S(g+p2)p1α2(1eμ)[Iαg+ S(p)+Iαp S(g)]pS(g)+S(p)2.

    Proof. ince S is an LR-convex I-V-F, we have

    2S(g+p2)pS(rg+(1r)p)+S((1r)g+rp).

    Therefore, we have

    2S(g+p2)S(rg+(1r)p)+S((1r)g+rp), (3.1)

    and

    2S(g+p2)S(rg+(1r)p)+S((1r)g+rp). (3.2)

    Multiplying both sides of the equations (3.1) and (3.2) by e1αα(pg)r and then integrating with respect to r over [0,1], we obtain

    210e1αα(pg)rS(g+p2)dr10e1αα(pg)rS(rg+(1r)p)dr+10e1αα(pg)rS((1r)g+rp)dr,

    and

    210e1αα(pg)rS(g+p2)dr10e1αα(pg)rS(rg+(1r)p)dr+10e1αα(pg)rS((1r)g+rp)dr,

    respectively.

    Now, if we let τ=rg+(1r)p and υ=(1r)g+rp, then we have

    1eμμS(g+p2)12(pg) pge1αα(pτ)S(τ)dτ+12(pg)pge1αα(υg)S(υ)dυ=α2(pg)[Iαg+ S(p)+Iαp S(g)],

    and

    1eμμS(g+p2) 12(pg) pge1αα(pτ)S(τ)dτ+12(pg)pge1αα(υg)S(υ)dυ=α2(pg)[Iαg+ S(p)+Iαp S(g)].

    That is

    1eμμ[S(g+p2),S(g+p2)]pα2(pg)[[Iαg+S(p)+IαpS(g)],[Iαg+S(p)+Iαp S(g)]],

    which readily yields

    1eμμS(g+p2) pα2(pg)[Iαg+ S(p)+Iαp S(g)]. (3.3)

    Similarly, we have

    α2(pg)[Iαg+ S(p)+Iαp S(g)]pS(g)+S(p)2. (3.4)

    From the Eqs (3.3) and (3.4), we have

    1eμμS(g+p2) pα2(pg)[Iαg+ S(p)+Iαp S(g)]pS(g)+S(p)2.

    This concludes the proof of Theorem 3.1.

    Corollary 3.1. Let S:[g,p]M+C be an LR-concave I-V-F on [g,p], which is given by

    S(υ)=[S(υ), S(υ)],

    for all υ[g,p]. If SL([g,p],M+C), then

    S(g+p2)p1α2(1eμ)[Iαg+ S(p)+Iαp S(g)]pS(g)+S(p)2.

    Remark 3.1. If we choose α1, then Theorem 3.1 reduces to the following inequality for LR-convex interval valued function given in [47]:

    S(g+p2)p1pgpgS(υ)dυpS(g)+ S(p)2.

    If we choose S(υ)=S(υ) in Theorem 3.1, we recapture the the following fractional integral Hermite-Hadamard type inequality, presented by Ahmad et al. (see [26]).

    S(g+p2) 1α2(1eμ)[Iαg+ S(p)+Iαp S(g)]S(g)+S(p)2.

    If we choose α1 and S(υ)=S(υ) in Theorem 3.1. Then the classical Hermite-Hadamard type inequality is recovered and is given as follows:

    S(g+p2)1pgpgS(υ)dυS(g)+ S(p)2.

    Example 3.1. If we take α=12,υ[0,2] and the following interval valued function S(υ)=[1, 2](υ2). Since, the left and right end points S(υ)=υ2, S(υ)=2υ2 are LR convex interval valued functions, then S(υ) is LR-convex I-V-F. Thus, we obtain

    S(g+p2)=1,
    S(g+p2)=2,
    S(g)+S(p)2 =2,

    and

    S(g)+S(p)2=4.

    We also note that

    1α2(1eμ)[Iαg+ S(p)+Iαp S(g)]1.373,

    and

    1α2(1eμ)[Iαg+ S(p)+Iαp S(g)]2.746.

    Therefore, we have

    [1,2]p[1.373,2.746]p[2,4].

    This evidently verifies Theorem 3.1.

    Pachpatte type fractional inequalities in interval valued settings

    In the next two theorems, we establish Hermite-Hadamard related inequalities employing product of two LR-convex interval valued functions.

    Theorem 3.2. Let S,Y:[g,p]M+C be two LR-convex I-V-Fs on [g,p], such that

    S(υ)=[S(υ), S(υ)] and Y(υ)=[Y(υ), Y(υ)],

    for all υ[g,p]. If S.YL([g,p],M+C), then

    α(pg)[Iαg+ S(p)Y(p)+IαpS(g)Y(g)]pμ22μ+4(μ2+2μ+4)eμμ3(g,p)+2μ4+(2μ+4)eμμ3(g,p),

    where

    (g,p)=S(g)Y(g)+S(p)Y(p),
    (g,p)=S(g)Y(p)+S(p)Y(g)

    and

    (g,p)=[(g,p),(g,p)],
    (g,p)=[(g,p),(g,p)].

    Proof. Considering S and Y as LR-convex interval valued functions, we have

    S(rg+(1r)p)rS(g)+(1r)S(p),
    S(rg+(1r)p)rS(g)+(1r)S(p),
    Y(rg+(1r)p)rY(g)+(1r)Y(p),

    and

    Y(rg+(1r)p)rY(g)+(1r)Y(p).

    It follows from the definition of LR convex function that 0pS(υ) and 0pY(υ), which implies

    S(rg+(1r)p)Y(rg+(1r)p)[rS(g)+(1r)S(p)][rY(g)+(1r)Y(p)]=r2S(g)Y(g)+(1r)2S(p)Y(p)+r(1r)S(g)Y(p)+r(1r)S(p)Y(g),

    and

    S(rg+(1r)p)Y(rg+(1r)p)[rS(g)+(1r)S(p)][rY(g)+(1r)Y(p)]=r2S(g)Y(g)+(1r)2S(p)Y(p)+r(1r)S(g)Y(p)+r(1r)S(p)Y(g).

    Similarly, we have

    S((1r)g+rp)Y((1r)g+rp)(1r)2S(g)Y(g)+r2S(p)Y(p)+r(1r)S(g)Y(p)+r(1r)S(p)Y(g),

    and

    S((1r)g+rp)Y((1r)g+rp)(1r)2S(g)Y(g)+r2S(p)Y(p)+r(1r)S(g)Y(p)+r(1r)S(p)Y(g).

    It follows from the above developments that

    S(rg+(1r)p)Y(rg+(1r)p)+S((1r)g+rp)Y((1r)g+rp)[r2+(1r)2][S(g)Y(g)+S(p)Y(p)]+2r(1r)[S(p)Y(g)+S(g)Y(p)], (3.5)

    and

    S(rg+(1r)p)Y(rg+(1r)p)+S((1r)g+rp)Y((1r)g+rp)[r2+(1r)2][S(g)Y(g)+S(p)Y(p)]+2r(1r)[S(p)Y(g)+S(g)Y(p)]. (3.6)

    Multiplying both the Eqs (3.5) and (3.6) by (e1αα(pg)r) and then integrating with respect to r over [0, 1], we obtain

    10e1αα(pg)rS(rg+(1r)p)Y(rg+(1r)p)dr+10e1αα(pg)rS((1r)g+rp)Y((1r)g+rp)dr(g,p)10e1αα(pg)r[r2+(1r)2]dr+2(g,p)10e1αα(pg)rr(1r)dr ,

    and

    10e1αα(pg)rS(rg+(1r)p)Y(rg+(1r)p)dr+10e1αα(pg)rS((1r)g+rp)Y((1r)g+rp)dr (g,p)10e1αα(pg)r[r2+(1r)2]dr+2(g,p)10e1αα(pg)rr(1r)dr.

    In view of the above developments, we have

    α(pg)[Iαg+ S(p)Y(p)+Iαp S(g)Y(g)](g,p)μ22μ+4(μ2+2μ+4)eμμ3+(g,p)2μ4+(2μ+4)eμμ3, (3.7)

    and

    α(pg)[Iαg+ S(p)Y(p)+Iαp S(g)Y(g)](g,p)μ22μ+4(μ2+2μ+4)eμμ3+(g,p)2μ4+(2μ+4)eμμ3. (3.8)

    It follows from the above Eqs (3.7) and (3.8) that

    α(pg)[Iαg+S(p)Y(p)+IαpS(g)Y(g),Iαg+S(p)Y(p)+IαpS(g)Y(g)]pμ22μ+4(μ2+2μ+4)eμμ3[(g,p), (g,p)]+2μ4+(2μ+4)eμμ3[(g,p), (g,p)].

    Consequently, we have

    α(pg)[Iαg+ S(p)Y(p)+IαpS(g)Y(g)]pμ22μ+4(μ2+2μ+4)eμμ3(g,p)+2μ4+(2μ+4)eμμ3(g,p).

    This concludes the proof of Theorem 3.2.

    Remark 3.2. If we choose S(υ)=S(υ) in Theorem 3.2, we have the following fractional integral inequality for LR-convex interval valued functions as given in [26].

    α(pg)[Iαg+ S(p)Y(p)+IαpS(g)Y(g)]μ22μ+4(μ2+2μ+4)eμμ3(g,p)+2μ4+(2μ+4)eμμ3(g,p),

    where (g,p) and (g,p) are defined as Theorem 3.2.

    Example 3.2. If we let, [g,p]=[0,2 ],α=12. Also, let the interval valued functions be given as

    S(υ)=[υ,2υ] and Y(υ)=[υ2,2υ2].

    Since, the left and the right end point functions S(υ)=υ, S(υ)=2υ, Y(υ)=υ2 and Y(υ)=2υ2 are LR-convex functions, both S(υ) and Y(υ) are LR-convex interval valued functions. Then, we have S(υ)Y(υ)L([g,p],M+C) and

    (α)pg[Iαg+ S(p)Y(p)+Iαp S(g)Y(g)]1.8346.
    αpg[Iαg+ S(p)Y(p)+Iαp S(g)Y(g)]7.338.

    Also, note that

    (μ22μ+4(μ2+2μ+4)eμμ3)(g,p)=[S(g)Y(g)+S(p)Y(p)]=13.556,
    (μ22μ+4(μ2+2μ+4)eμμ3)(g,p)=[S(g)Y(g)+S(p)Y(p)]=54.224,
    (2μ4+(2μ+4)eμμ3)(g,p)=[S(g)Y(p)+S(p)Y(g)]=0,
    (2μ4+(2μ+4)eμμ3)(g,p)=[S(g)Y(p)+S(p)Y(g)]=0.

    Therefore, we have

    (μ22μ+4(μ2+2μ+4)eμμ3)(g,p)+(2μ4+(2μ+4)eμμ3)(g,p)=[13.556,54.224]

    It follows from the above developments that

    [1.8346,7.338]p[13.556,54.224],

    and this evidently verifies Theorem 3.2.

    Theorem 3.3. Let S,Y:[g,p]M+C be two LR-convex interval valued functions, such that S(υ)=[S(υ), S(υ)] and Y(υ)=[Y(υ), Y(υ)] for all υ[g,p]. If SYL([g,p],M+C), then

    2S(g+p2)Y(g+p2)p(1α)2(1eμ)[Iαg+ S(p)Y(p)+Iαp S(g)Y(g)]+μ22μ+4(μ2+2μ+4)eμ2μ2(1eμ)(g,p)+μ2+(μ+2)eμμ2(1eμ)(g,p), (3.9)

    where

    (g,p)=S(g)Y(g)+S(p)Y(p), (g,p)=S(g)Y(p)+S(p)Y(g),

    and

    (g,p)=[(g,p),(g,p)], (g,p)=[(g,p), (g,p)].

    Proof. Consider S,Y:[g,p]M+C are LR-convex interval valued functions. Then we have

    S(g+p2 )Y(g+p2)14[S(rg+(1r)p)Y(rg+(1r)p)+S(rg+(1r)p)Y((1r)g+rp)]+14[S((1r)g+rp)Y(rg+(1r)p)+S((1r)g+rp)Y((1r)g+rp)]14(S(rg+(1r)p)Y(rg+(1r)p)+S((1r)g+rp)Y((1r)g+rp))+14((rS(g)+(1r)S(p))((1r)Y(g)+rY(p))+((1r)S(g)+rS(p))(rY(g)+(1r)Y(p)))=14(S(rg+(1r)p)Y(rg+(1r)p)+S((1r)g+rp)Y((1r)g+rp))+14({r2+(1r)2}(g,p)+{r(1r)+(1r)r}(g,p)),

    and

    S(g+p2 )Y(g+p2)14[S(rg+(1r)p)Y(rg+(1r)p)+S(rg+(1r)p)Y((1r)g+rp)]+14[S((1r)g+rp)Y(rg+(1r)p)+S((1r)g+rp)Y((1r)g+rp)]14(S(rg+(1r)p)Y(rg+(1r)p)+S((1r)g+rp)Y((1r)g+rp))+14((rS(g)+(1r)S(p))((1r)Y(g)+rY(p))+((1r)S(g)+rS(p))(rY(g)+(1r)Y(p)))=14(S(rg+(1r)p)Y(rg+(1r)p)+S((1r)g+rp)Y((1r)g+rp))+14({r2+(1r)2}(g,p)+{r(1r)+(1r)r}(g,p)).

    Upon multiplying the above developments by e1αα(pg)r and then integrating the obtained result over [0,1], we get

    1eμμ S(g+p2)Y(g+p2)α4(pg)[Iαg+ S(p)Y(p)+Iαp S(g)Y(g)]+(g,p)μ22μ+4(μ2+2μ+4)eμ4μ3+μ2+(μ+2)eμ2μ3(g,p) (3.10)

    and

    1eμμ S(g+p2)Y(g+p2)α4(pg)[Iαg+ S(p)Y(p)+Iαp S(g)Y(g)]+(g,p)μ22μ+4(μ2+2μ+4)eμ4μ3+μ2+(μ+2)eμ2μ3(g,p). (3.11)

    In view of the above Eqs (3.10) and (3.11), we have

    2S(g+p2)Y(g+p2)p(1α)2(1eμ)[Iαg+ S(p)Y(p)+Iαp S(g)Y(g)]+μ22μ+4(μ2+2μ+4)eμ2μ2(1eμ)(g,p)+μ2+(μ+2)eμμ2(1eμ)(g,p).

    This concludes the proof of Theorem 3.3.

    Remark 3.3. If S(υ)=S(υ), then, from Theorem 3.3 we obtain the following fractional integral inequality for LR-convex I-V-Fs as given in [26].

    2S(g+p2)Y(g+p2)(1α)2(1eμ)[Iαg+ S(p)Y(p)+Iαp S(g)Y(g)]+μ22μ+4(μ2+2μ+4)eμ2μ2(1eμ)(g,p)+μ2+(μ+2)eμμ2(1eμ)(g,p), (3.12)

    where (g,p)=S(g)Y(g)+S(p)Y(p), (g,p)=S(g)Y(p)+S(p)Y(g).

    Theorem 4.1. Let S:[g,p]M+C be an LR-convex interval valued function with (g<p) and given by S(υ)=[S(υ),S(υ)] for all υ[g,p]. Let SL([g,p],M+C) and Y:[g,p]R,Y(υ)0, symmetric with respect to g+p2. Then

    [Iαg+ SY(p)+Iαp SY(g)]pS(g)+S(p)2[Iαg+Y(p)+IαpY(g)]. (4.1)

    Proof. Since S be an LR-convex interval valued function and

    e1αα(pg)rY(rg+(1r)p)0.

    We have

    e1αα(pg)rS(rg+(1r)p)Y((1r)g+rp)e1αα(pg)r(rS(g)+(1r)S(p))Y((1r)g+rp),
    e1αα(pg)rS(rg+(1r)p)Y((1r)g+rp)e1αα(pg)r(rS(g)+(1r)S(p))Y((1r)g+rp),
    e1αα(pg)rS((1r)g+rp)Y((1r)g+rp)e1αα(pg)r((1r)S(g)+rS(p))Y((1r)g+rp),

    and

    e1αα(pg)rS((1r)g+rp)Y((1r)g+rp)e1αα(pg)r((1r)S(g)+rS(p))Y((1r)g+rp).

    Consequently, from the above developments, we have

    10e1αα(pg)rS(rg+(1r)p)Y((1r)g+rp)dr+10e1αα(pg)rS((1r)g+rp)Y((1r)g+rp)dr10e1αα(pg)rS(g){rY((1r)g+rp)+(1r)Y((1r)g+rp)}+e1αα(pg)rS(p){(1r)Y((1r)g+rp)+rY((1r)g+rp)}dr=S(g)10e1αα(pg)rY((1r)g+rp)dr+S(p)10e1αα(pg)rY((1r)g+rp)dr,

    and

    10e1αα(pg)rS((1r)g+rp)Y((1r)g+rp)dr+10e1αα(pg)rS(rg+(1r)p)Y((1r)g+rp)dr 10e1αα(pg)rS(g){rY((1r)g+rp)+(1r)Y((1r)g+rp)}+e1αα(pg)rS(p){(1r)Y((1r)g+rp)+rY((1r)g+rp)}dr=S(g)10e1αα(pg)rY((1r)g+rp)dr+S(p)10e1αα(pg)rY((1r)g+rp)dr.

    Since Y is symmetric, and using the fact that

    Iαg+Y(p)=IαpY(g)=12[Iαg+Y(p)+IαpY(g)],

    we have,

    S(g)10e1αα(pg)rY((1r)g+rp)dr+S(p)10e1αα(pg)rY((1r)g+rp)dr=[S(g)+S(p)]10e1αα(pg)rY((1r)g+rp)dr=S(g)+S(p)2αpg[Iαg+Y(p)+IαpY(g)]

    and

    S(g)10e1αα(pg)rY((1r)g+rp)dr+S(p)10e1αα(pg)rY((1r)g+rp)dr.=[S(g)+S(p)]10e1αα(pg)rY((1r)g+rp)dr.=S(g)+S(p)2αpg[Iαg+Y(p)+IαpY(g)].

    We also have

    10e1αα(pg)rS(rg+(1r)p)Y((1r)g+rp)dr+10e1αα(pg)rS((1r)g+rp)Y((1r)g+rp)dr=1pgpge(1αα(υg))S(g+pυ)Y(υ)dυ+1pg)pge(1αα(υg))S(υ)Y(υ)dυ=1pgpge(1αα(pz))S(z)Y(g+pz)dz+1pgpge(1αα(υg))S(υ)Y(υ)dυ=αpg[Iαg+SY(p)+IαpSY(g)],

    and

    10e1αα(pg)rS(rg+(1r)p)Y((1r)g+rp)dr+10e1αα(pg)rS((1r)g+rp)Y((1r)g+rp)dr=1pg pge(1αα(υg))S(g+pυ)Y(υ)dυ+1pg) pge(1αα(υg))S(υ)Y(υ)dυ=1pg pge(1αα(pz))S(z)Y(g+pz)dz+1pg pge(1αα(υg))S(υ)Y(υ)dυ=αpg[Iαg+ SY(p)+Iαp SY(g)]. 

    It follows from the above developments that

    αpg[Iαg+SY(p)+IαpSY(g)]S(g)+S(p)2α(pg)[Iαg+Y(p)+IαpY(g)],

    and

    α(pg)[Iαg+SY(p)+IαpSY(g)]S(g)+S(p)2α(pg)[Iαg+Y(p)+IαpY(g)].

    Consequently,

    [Iαg+SY(p)+IαpSY(g)],[Iαg+SY(p)+Iαp SY(g)]p[S(g)+S(p)2, S(g)+S(p)2][Iαg+Y(p)+IαpY(g)],

    which readily follows

    [Iαg+SY(p)+IαpSY(g)]pS(g)+S(p)2[Iαg+Y(p)+IαpY(g)].

    This concludes the proof of Theorem 4.1.

    Corollary 4.1. Let S:[g,p]M+C be an LR-concave function with g<p, and S L([g,p]) defined by S(υ)=[S(υ), S(υ)] for all υ[g,p]. If Y:[g,p]R, Y(υ)0, is symmetric with respect to g+p2. Then the following inequality holds true.

    [Iαg+SY(p)+IαpSY(g)]pS(g)+S(p)2[Iαg+Y(p)+IαpY(g)].

    Theorem 4.2. Let S:[g,p]M+C be an LR-convex interval valued function with g<p, and defined by S(υ)=[S(υ), S(υ)] for all υ[g,p]. If S L([g,p],M+C) and Y:[g,p]R, Y(υ)0, symmetric with respect to g+p2, then

    S(g+p2)[Iαg+Y(p)+IαpY(g)]p[Iαg+ SY(p)+Iαp SY(g)]. (4.2)

    Proof. If we utilize the definition of LR-convex interval valued function, then we have

    S(g+p2)12(S(rg+(1r)p)+S((1r)g+rp)),andS(g+p2)12(S(rg+(1r)p)+S((1r)g+rp)). (4.3)

    Since, Y(rg+(1r)p)=Y((1r)g+rp), then multiplying the above Eq (4.3) by e1αα(pg)rY((1r)g+rp) and integrate it with respect to r over [0, 1], we obtain

    S(g+p2)10e1αα(pg)rY((1r)g+rp)dr12(10e1αα(pg)rS(rg+(1r)p)Y((1r)g+rp)dr+10e1αα(pg)rS((1r)g+rp)Y((1r)g+rp)dr),

    and

    S(g+p2)10e1αα(pg)rY((1r)g+rp)dr12(10e1αα(pg)rS(rg+(1r)p)Y((1r)g+rp)dr+10e1αα(pg)rS((1r)g+rp)Y((1r)g+rp)dr).

    Let υ=(1r)g+rp. Then we have

    10e1αα(pg)rS(rg+(1r)p)Y((1r)g+rp)dr+10e1αα(pg)rS((1r)g+rp)Y((1r)g+rp)dr=1pg pge(1αα(υg))S(g+pυ)Y(υ)dυ +1pg) pge(1αα(υg))S(υ)Y(υ)dυ=1pg pge(1αα(pz))S(z)Y(g+pz)dz+1pg pge(1αα(υg))S(υ)Y(υ)dυ=αpg[Iαg+ SY(p)+Iαp SY(g)],

    and

    10e1αα(pg)rS(rg+(1r)p)Y((1r)g+rp)dr+10e1αα(pg)rS((1r)g+rp)Y((1r)g+rp)dr=1pg pge(1αα(υg))S(g+pυ)Y(υ)dυ +1pg) pge(1αα(υg))S(υ)Y(υ)dυ=1pg pge(1αα(pz))S(z)Y(g+pz)dz+1pg pge(1αα(υg))S(υ)Y(υ)dυ=αpg[Iαg+ SY(p)+Iαp SY(g)]. 

    Also,

    S(g+p2)10e1αα(pg)rY((1r)g+rp)dr=α(pg)S(g+p2)[Iαg+Y(p)+IαpY(g)],andS(g+p2)10e1αα(pg)rY((1r)g+rp)dr=α(pg)S(g+p2)[Iαg+Y(p)+IαpY(g)].

    In view of the above developments, we have

    [S(g+p2),  S(g+p2)][Iαg+Y(p)+IαpY(g)]p[ Iαg+ SY(p)+Iαp SY(g),  Iαg+ SY(p)+Iαp SY(g)].

    It readily follows

    S(g+p2)[Iαg+Y(p)+IαpY(g)]p [Iαg+ SY(p)+Iαp SY(g)υ].

    This concludes the proof of Theorem 4.2.

    Corollary 4.2. Let S:[g,p]M+C be an LR-concave function with g<p, and S L([g,p]) defined by S(υ)=[S(υ), S(υ)] for all υ[g,p]. If Y:[g,p]R, Y(υ)0, is symmetric with respect to g+p2. Then the following inequalities hold true:

    S(g+p2)[Iαg+Y(p)+IαpY(g)]p[Iαg+ SY(p)+Iαp SY(g)]. (4.4)

    Remark 4.1. If we choose S(υ)=S(υ) in the above Theorem 4.1 and Theorem 4.2, we obtain the following fractional H-H-F inequality (see [26]).

    S(g+p2)[Iαg+Y(p)+IαpY(g)]p[Iαg+ SY(p)+Iαp SY(g)]pS(g)+S(p)2[Iαg+Y(p)+IαpY(g)].

    Example 4.1. If let α=12 and The LR-convex I-V-Fs S:[0, 2]M+C be given by S(υ)=[υ2,2υ2]. If

    Y(υ)={υ,      υ[0,1],2υ,   υ(1, 2],  

    then Y(2υ)=Y(υ)0, for all υ[0, 2]. We clearly observe that:

    [Iαg+ SY(p)+Iαp SY(g)]pS(g)+S(p)2[Iαg+Y(p)+IαpY(g)].
    S(g)+S(p)2[Iαg+Y(p)+IαpY(g)]3.1966,
    S(g)+S(p)2[Iαg+Y(p)+IαpY(g)]6.3932,
    [Iαg+ SY(p)+Iαp SY(g)]1.8948,
     [Iαg+ SY(p)+Iαp SY(g)]3.7896.

    It follows from the above developments that [1.8948,3.7896]p[3.1966,6.3932].

    This evidently verifies Theorem 4.1.

    Next, for Theorem 4.2, we have the following computations:

    S(g+p2)[Iαg+Y(p)+IαpY(g)]=1.5983,

    and

    S(g+p2)[Iαg+Y(p)+IαpY(g)]=3.1966,

    which readily follows

    [1.5983,3.1966]p[1.8948,3.7896].

    Hence, Theorem 4.2 is also verified.

    In this study, we have obtained the Hermite-Hadamard type fractional inclusions for LR-convex interval-valued functions. Following that, we have shown fractional-order Pachpatte type inclusions for the product of two LR-convex interval-valued functions, as well as the Hermite-Hadamard-Fejér type fractional-order inclusions for symmetric functions. We can look into the LR-convex interval-valued functions on coordinates and the quantum (or q-) calculus in the future. The new work is intended to inspire scholars in fractional calculus, interval analysis, and other relevant fields.

    We choose to conclude our current investigation by commenting that, in numerous recent scientific articles, fractional-order analogues of many different well-known integral inequalities have been regularly investigated by utilizing some trivial or redundant parametric variations of some widely- and extensively-studied fractional integral and fractional derivative operators (see [9] for detailed observation about the triviality and inconsequential aspect of the so-called "post quantum" calculus involving a redundant or superficial forced-in parameter).

    This Research was supported by Taif University Researchers Supporting Project Number (TURSP-2020/217), Taif University, Taif, Saudi Arabia and the National Science, Research, and Innovation Fund (NSRF), Thailand.

    The authors declare they have no conflicts of interest.



    [1] M. A. El Shaed, Fractional Calculus Model of Semilunar Heart Valve Vibrations, International Mathematica Symposium, London, UK, 2003.
    [2] A. Atangana, Application of fractional calculus to epidemiology, Fractional Dynamics, 2015 (2015), 174–190.
    [3] V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Engrg., 124 (2002), 803–806. https://doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062
    [4] D. Baleanu, Z. B. Güvenç, J. A. T. Machado, Eds., New Trends in Nanotechnology and Fractional Calculus Applications, New York: Springer, 2010.
    [5] M. Caputo, Modeling social and economic cycles, In: Alternative Public Economics, F. Forte, P. Navarra, R. Mudambi, Eds., Elgar, Cheltenham, UK, 2014.
    [6] R. L. Magin, Fractional Calculus in Bio-Engineering, Begell House Inc. Publishers, Danbury, USA, 2006.
    [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
    [8] H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Engrg. Comput., 5 (2021), 135–166.
    [9] H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520.
    [10] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [11] I. Işcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Studia Univ. Babeş-Bolyai Sect. A Math., 60 (2015), 355–366.
    [12] F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals, Ital. J. Pure Appl. Math., 33 (2014), 299–306.
    [13] A. Guessab, Generalized barycentric coordinates and approximations of convex functions on arbitrary convex polytopes, Comput. Math. Appl., 66 (2013), 1120–1136. https://doi.org/10.1016/j.camwa.2013.07.014 doi: 10.1016/j.camwa.2013.07.014
    [14] A. Guessab, G. Schmeisser, Two Korovkin-type theorems in multivariate approximation, Banach J. Math. Anal., 2 (2008), 121–128. https://doi.org/10.15352/bjma/1240336298 doi: 10.15352/bjma/1240336298
    [15] O. Alabdali, A. Guessab, G. Schmeisser, Characterizations of uniform convexity for differentiable functions, Appl. Anal. Discret. Math., 13 (2019), 721–732. https://doi.org/10.2298/AADM190322029A doi: 10.2298/AADM190322029A
    [16] A. Guessab, O. Nouisser, G. Schmeisser, Enhancement of the algebraic precision of a linear operator and consequences under positivity, Positivity, 13 (2009), 693–707. https://doi.org/10.1007/s11117-008-2253-4 doi: 10.1007/s11117-008-2253-4
    [17] A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., 44 (2021), 8414–8431.
    [18] H. Ogulmus, M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Filomat, 35 (2021), 2425–2436. https://doi.org/10.2298/FIL2107425O doi: 10.2298/FIL2107425O
    [19] M. Andrić, J. Pečarič, I. Perić, A multiple Opial type inequality for the Riemann-Liouville fractional derivatives, J. Math. Inequal., 7 (2013), 139–150.
    [20] H. Ahmad, M. Tariq, S.K. Sahoo, J. Baili, C. Cesarano, New estimations of Hermite-Hadamard type integral inequalities for special functions. Fractal Fract. 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
    [21] S. K. Sahoo, M. Tariq, H. Ahmad, B. Kodamasingh, A. A. Shaikh, T. Botmart, et al., Some novel fractional integral inequalities over a new class of generalized convex function, Fractal Fract., 6 (2022), article ID 42, 1–22. https://doi.org/10.3390/fractalfract6010042
    [22] S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator, Fractal Fract., 6 (2022), 171. https://doi.org/10.3390/fractalfract6030171 doi: 10.3390/fractalfract6030171
    [23] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for (h1,h2)-convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), Article ID 149, 1–21.
    [24] R. E. Moore, Interval Analysis, Prentice Hall: Englewood Cliffs, NJ, USA, 1966.
    [25] H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741
    [26] B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comput. Appl. Math., 353 (2019), 120–129.
    [27] D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003
    [28] T. M. Costa, H. Román-Flores, Y. Chalco-Cano, Opial-type inequalities for interval-valued functions, Fuzzy Set. Syst., 358 (2019), 48–63. https://doi.org/10.1016/j.fss.2018.04.012 doi: 10.1016/j.fss.2018.04.012
    [29] Y. Chalco-Cano, W. Lodwick, W. Condori-Equice, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 475–472.
    [30] H. Román-Flores, Y. Chalco-Cano, W. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2016), 1306–1318. https://doi.org/10.1007/s40314-016-0396-7 doi: 10.1007/s40314-016-0396-7
    [31] D. Zhao, M. A. Ali, G. Murtaza, Z. Zhang, On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions, Adv. Differ. Equ., 2020 (2020), Article ID 570, 1–14.
    [32] E. R. Nwaeze, M. A. Khan, Y. M. Chu, Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1–17.
    [33] H. Kara, H. Budak, M. A. Ali, M. Z. Sarikaya, Y. M. Chu, Weighted Hermite-Hadamard type inclusions for products of co-ordinated convex interval-valued functions, Adv. Differ. Equ., 2021 (2021), 1–16.
    [34] H. Budak, H. Kara, M. A. Ali, S. Khan, Y. M. Chu, Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions, Open Math., 19 (2021), 1081–1097.
    [35] H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, D. Baleanu, B. Kodamasingh, Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators, Int. J. Comput. Intel. Syst., 15 (2022), Article ID 8, 1–12. https://doi.org/10.1007/s44196-021-00061-6
    [36] N. Sharma, S. K. Singh, S. K. Mishra, A. Hamdi, Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals, J. Inequal. Appl., 98 (2021).
    [37] H. Zhou, M. S. Saleem, W. Nazeer, A. F. Shah, Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals, AIMS Math., 7 (2022), 2602–2617. https://doi.org/10.3934/math.2022146 doi: 10.3934/math.2022146
    [38] K. Lai, S. K. Mishra, J. Bisht, M. Hassan, Hermite-Hadamard type inclusions for interval-valued coordinated preinvex functions, Symmetry, 14 (2022), 771. https://doi.org/10.3390/sym14040771 doi: 10.3390/sym14040771
    [39] H. Kalsoom, M. A. Latif, Z. A. Khan, M. Vivas-Cortez, Some new Hermite-Hadamard-Fejér fractional type inequalities for h-Convex and Harmonically h-Convex interval-valued functions, Mathematics, 10 (2022), 74. https://doi.org/10.3390/math10010074 doi: 10.3390/math10010074
    [40] F. Shi, G. Ye, D. Zhao, W. Liu, Some integral inequalities for coordinated log-h-convex interval-valued functions, AIMS Math., 7 (2022), 156–170. https://doi.org/10.3934/math.2022009 doi: 10.3934/math.2022009
    [41] M. B. Khan, M. A. Noor, M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo-order relation, Math. Meth. App. Sci., 2022 (2022).
    [42] M. B. Khan, H. G. Zaini, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, Riemann-Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon pseudo order relation, Mathematics, 10 (2022), Article ID 204, 1–17.
    [43] M. B. Khan, M. A. Noor, K. I. Noor, K. S. Nisar, K. A. Ismail, A. Elfasakhany, Some inequalities for LR-(h1,h2) convex interval-valued functions by means of pseudo order relation, Int. J. Comput. Intel. Syst., 14 (2021), Article ID 180, 1–15.
    [44] M. B. Khan, H. M. Srivastava, P. O. Mohammed, J. E. Macías-Diaz, Y. S. Hamed, Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation, Alexandria Engrg. J., 61 (2022), 7089–7101. https://doi.org/10.1016/j.aej.2021.12.052 doi: 10.1016/j.aej.2021.12.052
    [45] M. B. Khan, H. M. Srivastava, P. O. Mohammed, L. L. G. Guirao, T. M. Jawa, Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions, Math. Biosci. Engrg., 19 (2022), 812–835. http://doi.org/10.3934/mbe.2022037 doi: 10.3934/mbe.2022037
    [46] M. B. Khan, P. O. Mohammed, K. Nonlaopon, Y. S. Hamed, Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions, AIMS Math., 7 (2022), 4338–4358. https://doi.org/10.3934/math.2022241 doi: 10.3934/math.2022241
    [47] M. B. Khan, S. Treanţǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard-Fejér type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), Article ID 6, 1–16. https://doi.org/10.3390/fractalfract6010006
  • This article has been cited by:

    1. Alina Alb Lupaş, Georgia Irina Oros, Differential sandwich theorems involving Riemann-Liouville fractional integral of $ q $-hypergeometric function, 2022, 8, 2473-6988, 4930, 10.3934/math.2023246
    2. Soubhagya Kumar Sahoo, Muhammad Amer Latif, Omar Mutab Alsalami, Savin Treanţă, Weerawat Sudsutad, Jutarat Kongson, Hermite–Hadamard, Fejér and Pachpatte-Type Integral Inequalities for Center-Radius Order Interval-Valued Preinvex Functions, 2022, 6, 2504-3110, 506, 10.3390/fractalfract6090506
    3. Vuk Stojiljković, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, Stojan Radenović, Riemann-Liouville Fractional Inclusions for Convex Functions Using Interval Valued Setting, 2022, 10, 2227-7390, 3491, 10.3390/math10193491
    4. Daniel Breaz, Çetin Yildiz, Luminiţa-Ioana Cotîrlă, Gauhar Rahman, Büşra Yergöz, New Hadamard Type Inequalities for Modified h-Convex Functions, 2023, 7, 2504-3110, 216, 10.3390/fractalfract7030216
    5. Bandar Bin-Mohsin, Sehrish Rafique, Clemente Cesarano, Muhammad Zakria Javed, Muhammad Uzair Awan, Artion Kashuri, Muhammad Aslam Noor, Some General Fractional Integral Inequalities Involving LR–Bi-Convex Fuzzy Interval-Valued Functions, 2022, 6, 2504-3110, 565, 10.3390/fractalfract6100565
    6. Ammara Nosheen, Maria Tariq, Khuram Ali Khan, Nehad Ali Shah, Jae Dong Chung, On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s, m)-Convex Functions, 2023, 7, 2504-3110, 187, 10.3390/fractalfract7020187
    7. Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Donal O’ O’Regan, Muhammad Tariq, Kamsing Nonlaopon, New Hermite–Hadamard Type Inequalities in Connection with Interval-Valued Generalized Harmonically (h1,h2)-Godunova–Levin Functions, 2022, 14, 2073-8994, 1964, 10.3390/sym14101964
    8. Çetin Yildiz, Luminiţa-Ioana Cotîrlă, Examining the Hermite–Hadamard Inequalities for k-Fractional Operators Using the Green Function, 2023, 7, 2504-3110, 161, 10.3390/fractalfract7020161
    9. Jaya Bisht, Nidhi Sharma, Shashi Kant Mishra, Abdelouahed Hamdi, Some new integral inequalities for higher-order strongly exponentially convex functions, 2023, 2023, 1029-242X, 10.1186/s13660-023-02952-y
    10. Yu Peng, Serap Özcan, Tingsong Du, Symmetrical Hermite–Hadamard type inequalities stemming from multiplicative fractional integrals, 2024, 183, 09600779, 114960, 10.1016/j.chaos.2024.114960
    11. Asfand Fahad, Ammara Nosheen, Khuram Ali Khan, Maria Tariq, Rostin Matendo Mabela, Ahmed S.M. Alzaidi, Some novel inequalities for Caputo Fabrizio fractional integrals involving (α,s)-convex functions with applications, 2024, 30, 1387-3954, 1, 10.1080/13873954.2023.2301075
    12. Serap Kemali, Gültekin Tinaztepe, İlknur Yeşilce Işik, Sinem Sezer Evcan, NEW INTEGRAL INEQUALITIES FOR s-CONVEX FUNCTIONS OF THE SECOND SENSE VIA THE CAPUTO FRACTIONAL DERIVATIVE AND THE CAPUTO–FABRIZIO INTEGRAL OPERATOR, 2023, 53, 0035-7596, 10.1216/rmj.2023.53.1177
    13. Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Some New Fractional Hadamard and Pachpatte-Type Inequalities with Applications via Generalized Preinvexity, 2023, 15, 2073-8994, 1033, 10.3390/sym15051033
    14. Muhammad Samraiz, Saima Naheed, Ayesha Gul, Gauhar Rahman, Miguel Vivas-Cortez, Innovative Interpolating Polynomial Approach to Fractional Integral Inequalities and Real-World Implementations, 2023, 12, 2075-1680, 914, 10.3390/axioms12100914
    15. Khuram Ali Khan, Iqra Ikram, Ammara Nosheen, Ndolane Sene, Y. S. Hamed, Midpoint-type integral inequalities for ( s , m )-convex functions in the third sense involving Caputo fractional derivatives and Caputo–Fabrizio integrals , 2024, 32, 2769-0911, 10.1080/27690911.2024.2401854
    16. Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon, Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator, 2023, 8, 2473-6988, 25572, 10.3934/math.20231306
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1878) PDF downloads(84) Cited by(16)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog