The formula of solution to a nonlinear ODE with an undetermined coefficient and a positive integer power term of dependent variable have been obtained by the transformation of dependent variable and $(\frac{{G'}}{G})$-expansion method. The travelling wave reduction ODEs (perhaps, after integration and identical deformation) of a class of nonlinear evolution equations with a dissipative term and a positive integer power term of dependent variable that includes GKdV-Burgers equation, GKP-Burgers equation, GZK-Burgers equation, GBoussinesq equation and GKlein-Gordon equation, are all attributed to the same type of ODEs as the nonlinear ODE considered. The kink type of travelling wave solutions for these nonlinear evolution equations are obtained in terms of the formula of solution to the nonlinear ODE considered.
Citation: Lingxiao Li, Jinliang Zhang, Mingliang Wang. The travelling wave solutions of nonlinear evolution equations with both a dissipative term and a positive integer power term[J]. AIMS Mathematics, 2022, 7(8): 15029-15040. doi: 10.3934/math.2022823
The formula of solution to a nonlinear ODE with an undetermined coefficient and a positive integer power term of dependent variable have been obtained by the transformation of dependent variable and $(\frac{{G'}}{G})$-expansion method. The travelling wave reduction ODEs (perhaps, after integration and identical deformation) of a class of nonlinear evolution equations with a dissipative term and a positive integer power term of dependent variable that includes GKdV-Burgers equation, GKP-Burgers equation, GZK-Burgers equation, GBoussinesq equation and GKlein-Gordon equation, are all attributed to the same type of ODEs as the nonlinear ODE considered. The kink type of travelling wave solutions for these nonlinear evolution equations are obtained in terms of the formula of solution to the nonlinear ODE considered.
[1] | M. L. Wang, Exact solutions for a compound KdV-Burgers equation, Phys. Lett. A, 213 (1996), 279-287. https://doi.org/10.1016/0375-9601(96)00103-X doi: 10.1016/0375-9601(96)00103-X |
[2] | M. L. Wang, Exact solutions for the RLW-Burgers equation, Math. Appl., 8 (1995), 51-55. |
[3] | A. N. Dev, J. Sarma, M. K. Deha, A. P. Misra, A. C. Adhihary, Kadomtsev-Petviashvili Burgers equation in dusty negative ion plasmas: Evolution of dustion acoustic shocks, Commun. Theor. Phys., 62 (2014), 875-880. https://doi.org/10.1088/0253-6102/62/6/16 doi: 10.1088/0253-6102/62/6/16 |
[4] | A. R. Seadawy, Nonlinear wave solutions of the three dimensional Zakharov-Kuznetsov-Burgers equation in plasma, Physica A, 439 (2015), 124-131. https://doi.org/10.1016/j.physa.2015.07.025 doi: 10.1016/j.physa.2015.07.025 |
[5] | A. Esfahani, Instability of the stationary solutions of generalized dissipative Boussinesq equation, Appl. Math., 59 (2014), 345-358. https://doi.org/10.1007/s10492-014-0059-1 doi: 10.1007/s10492-014-0059-1 |
[6] | J. A. Gonzakz, A. Bellorin, L. E. Guerrero, Kink-soliton explosion in generalized Klein-Gordon equations, Chaos Soliton. Fract., 33 (2007), 143-155. https://doi.org/10.1016/j.chaos.2006.10.047 doi: 10.1016/j.chaos.2006.10.047 |
[7] | M. T. Darvishi, F. Khani, S. Kheybari, A numerical solution of the KdV-Burgers' equation by spectral collocation method and Darvishi's preconditionings, Int. J. Contemp. Math. Sci., 2 (2007), 1085-1095. |
[8] | M. T. Darvishi, S. Arbabi, M. Najafi, A. M. Wazwazet, Traveling wave solution of a (2+1)-dimensional Zakharov-like equation by the first integral method and the tanh method, Optik, 127 (2016), 6312-6321. https://doi.org/10.1016/j.ijleo.2016.04.033 doi: 10.1016/j.ijleo.2016.04.033 |
[9] | M. T. Darvishi, M. Najafi, A. M. Wazwaz, Soliton solutions for Boussinesq-like equations with spatio-temporal dispersion, Ocean Eng., 130 (2017), 228-240. https://doi.org/10.1016/j.oceaneng.2016.11.052 doi: 10.1016/j.oceaneng.2016.11.052 |
[10] | M. T. Darvishi, F. Khani, S. Hamedi-Nezhad, S. W. Ryu, New modification of the HPM for numerical solutions of the sine-Gordon and coupled sine-Gordon equations, Int. J. Comput. Math., 87 (2010), 908-919. https://doi.org/10.1080/00207160802247596 doi: 10.1080/00207160802247596 |
[11] | M. Li, W. K. Hu, C. F. Wu, Rational solutions of the classical Boussinesq-Burgers system, Nonlinear Dyn., 94 (2018), 1291-1302. https://doi.org/10.1007/s11071-018-4424-6 doi: 10.1007/s11071-018-4424-6 |
[12] | M. L. Wang, X. Z. Li, J. L. Zhang, The $ \left(\frac{G^{\prime}}{G}\right)$-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417-423. https://doi.org/10.1016/j.physleta.2007.07.051 doi: 10.1016/j.physleta.2007.07.051 |
[13] | M. T. Darvishi, M. Najafi. Traveling wave solutions for the (3+1)-dimensional breaking soliton equation by $ \left(\frac{G^{\prime}}{G}\right)$-expansion method and modified F-expansion method, Int. J. Comput. Math. Sci., 7 (2011), 1100-1105. https://doi.org/10.5281/zenodo.1078723 doi: 10.5281/zenodo.1078723 |
[14] | L. Akinyemi, M. Mirzazadeh, K. Hosseini, Solitons and other solutions of perturbed nonlinear Biswas-Milovic equation with Kudryashov's law of refractive index, Nonlinear Anal.-Model., 27 (2022), 479-495. https://doi.org/10.15388/namc.2022.27.26374 doi: 10.15388/namc.2022.27.26374 |
[15] | K. Hosseini, A. Zabihi, F. Samadani, R. Ansari, New explicit exact solutions of the unstable nonlinear Schrӧdinger's equation using the expa and hyperbolic function methods, Opt. Quant. Electron., 50 (2018), 1-8. https://doi.org/10.1007/s11082-018-1350-2 doi: 10.1007/s11082-018-1350-2 |
[16] | W. Yuan, F. Meng, Y. Huang, Y. Wu, All traveling wave exact solutions of the variant Boussinesq equations, Appl. Math. Comput., 268 (2015), 865-872. https://doi.org/10.1016/j.amc.2015.06.088 doi: 10.1016/j.amc.2015.06.088 |
[17] | W. Yuan, F. Meng, J. Lin, Y. Wu, All meromorphic solutions of an ordinary differential equation and its applications, Math. Meth. Appl. Sci., 39 (2016), 2083-2092. https://doi.org/10.1002/mma.3625 doi: 10.1002/mma.3625 |
[18] | Y. Gu, W. Yuan, N. Aminakbari, J. M. Lin, Meromorphic solutions of some algebraic differential equations related Painlevxe equation Ⅳ and its applications, Math. Meth. Appl. Sci., 41 (2018), 3832-3840. https://doi.org/10.1002/mma.4869 doi: 10.1002/mma.4869 |
[19] | Y. Gu, C. Wu, X. Yao, W. Yuan, Characterizations of all real solutions for the KdV equation and WR, Appl. Math. Lett., 107 (2020), 106446. https://doi.org/10.1016/j.aml.2020.106446 doi: 10.1016/j.aml.2020.106446 |
[20] | N. Kadkhoda, H. Jafari, Analytical solutions of the Gerdjikov-Ivanov equation by using exp(-ψ(ξ))-expansion method, Optik, 139 (2017), 72-76. https://doi.org/10.1016/j.ijleo.2017.03.078 doi: 10.1016/j.ijleo.2017.03.078 |
[21] | Y. Gu, N. Aminakbari, Two different systematic methods for constructing meromorphic exact solutions to the KdV-Sawada-Kotera equation, AIMS Math., 5 (2020), 3990-4010. https://doi.org/10.3934/math.2020257 doi: 10.3934/math.2020257 |
[22] | M. L. Wang, X. Z. Li, Various exact solutions of nonlinear Schrödinger equation with two nonlinear terms, Chaos Soliton. Fract., 31 (2007) 594-601. https://doi.org/10.1016/j.chaos.2005.10.009 doi: 10.1016/j.chaos.2005.10.009 |
[23] | C. H. Wu, Z. Q. Wang, The spectral collocation method for solving a fractional integro-differential equation, AIMS Math., 7 (2022) 9577-9587. https://doi.org/10.3934/math.2022532 doi: 10.3934/math.2022532 |
[24] | A. El-Ajou, Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach, Eur. Phys. J. Plus, 136 (2021), 229-251. https://doi.org/10.1140/epjp/s13360-020-01061-9 doi: 10.1140/epjp/s13360-020-01061-9 |