Loading [MathJax]/jax/output/SVG/jax.js
Research article

Modulational instability, multiple Exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation

  • The multiple Exp-function method is employed for seeking the multiple soliton solutions to the generalized (3+1)-dimensional Kadomtsev-Petviashvili (gKP) equation, where contains one-wave, two-wave, and triple-wave solutions. The periodic wave including (exponential, cosh hyperbolic, and cos periodic), cross-kink containing (exponential, sinh hyperbolic, and sin periodic), and solitary containing (exponential, tanh hyperbolic, and tan periodic) wave solutions are obtained. In continuing, the modulation instability is engaged to discuss the stability of obtained solutions. Also, the semi-inverse variational principle is applied for the gKP equation with four major cases. The physical phenomena of these received multiple soliton solutions are analyzed and demonstrated in figures by choosing the specific parameters. By means of symbolic computation these analytical solutions and corresponding rogue waves are obtained with the help of Maple software. Via various three-dimensional, curve, and density charts, dynamical characteristics of these waves are exhibited.

    Citation: Junjie Li, Gurpreet Singh, Onur Alp İlhan, Jalil Manafian, Yusif S. Gasimov. Modulational instability, multiple Exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation[J]. AIMS Mathematics, 2021, 6(7): 7555-7584. doi: 10.3934/math.2021441

    Related Papers:

    [1] Boyu Wang . A splitting lattice Boltzmann scheme for (2+1)-dimensional soliton solutions of the Kadomtsev-Petviashvili equation. AIMS Mathematics, 2023, 8(11): 28071-28089. doi: 10.3934/math.20231436
    [2] Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163
    [3] Cheng Chen . Hyperbolic function solutions of time-fractional Kadomtsev-Petviashvili equation with variable-coefficients. AIMS Mathematics, 2022, 7(6): 10378-10386. doi: 10.3934/math.2022578
    [4] Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Jalil Manafian, Khaled H. Mahmoud, Kottakkaran Sooppy Nisar, Wafaa B. Rabie . Derivation of some solitary wave solutions for the (3+1)- dimensional pKP-BKP equation via the IME tanh function method. AIMS Mathematics, 2024, 9(10): 27704-27720. doi: 10.3934/math.20241345
    [5] Wafaa B. Rabie, Hamdy M. Ahmed, Taher A. Nofal, Soliman Alkhatib . Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(11): 31882-31897. doi: 10.3934/math.20241532
    [6] Gulnur Yel, Haci Mehmet Baskonus, Wei Gao . New dark-bright soliton in the shallow water wave model. AIMS Mathematics, 2020, 5(4): 4027-4044. doi: 10.3934/math.2020259
    [7] Jamilu Sabi'u, Sekson Sirisubtawee, Surattana Sungnul, Mustafa Inc . Wave dynamics for the new generalized (3+1)-D Painlevé-type nonlinear evolution equation using efficient techniques. AIMS Mathematics, 2024, 9(11): 32366-32398. doi: 10.3934/math.20241552
    [8] Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426
    [9] A. K. M. Kazi Sazzad Hossain, M. Ali Akbar . Solitary wave solutions of few nonlinear evolution equations. AIMS Mathematics, 2020, 5(2): 1199-1215. doi: 10.3934/math.2020083
    [10] Zhe Ji, Yifan Nie, Lingfei Li, Yingying Xie, Mancang Wang . Rational solutions of an extended (2+1)-dimensional Camassa-Holm- Kadomtsev-Petviashvili equation in liquid drop. AIMS Mathematics, 2023, 8(2): 3163-3184. doi: 10.3934/math.2023162
  • The multiple Exp-function method is employed for seeking the multiple soliton solutions to the generalized (3+1)-dimensional Kadomtsev-Petviashvili (gKP) equation, where contains one-wave, two-wave, and triple-wave solutions. The periodic wave including (exponential, cosh hyperbolic, and cos periodic), cross-kink containing (exponential, sinh hyperbolic, and sin periodic), and solitary containing (exponential, tanh hyperbolic, and tan periodic) wave solutions are obtained. In continuing, the modulation instability is engaged to discuss the stability of obtained solutions. Also, the semi-inverse variational principle is applied for the gKP equation with four major cases. The physical phenomena of these received multiple soliton solutions are analyzed and demonstrated in figures by choosing the specific parameters. By means of symbolic computation these analytical solutions and corresponding rogue waves are obtained with the help of Maple software. Via various three-dimensional, curve, and density charts, dynamical characteristics of these waves are exhibited.



    Nonlinear evolution equations (NLEEs) play an important part in the study of nonlinear science, particular in plasma physics, quantum field theory, nonlinear wave propagation and nonlinear optical fibers so that it attracted the attention of a large number of scholars. The extended auxiliary equation technique [1], the Bernoulli's equation approach [2], the Exp-function technique [3], the homotopy analysis technique [4], the homotopy perturbation technique [5], the improved tan(ϕ/2)-expansion technique ([6,7]), the Hirota's bilinear technique [8,9,10,11,12,13,14,15], the He's variational principle [16,17], the binary Darboux transformation [18], the Lie group analysis [19,20], the Bäcklund transformation method [21], optimal galerkin-homotopy asymptotic method applied [22], and the multiple rogue waves method ([23,24]) have been proposed to solve NLEEs. By using these approaches, various exact solutions including soliton solution, lump solution, rogue wave solution, periodic solution, interaction solution, rational solution and high-order rational solution were obtained ([25,26]).

    In this paper, we mainly consider the following dynamical model, which can be used to describe some interesting (3+1)-dimensional waves of physics, namely, the generalized Kadomtsev-Petviashvili (gKP) equation [27]. That is

    (Ψt+6ΨΨx+Ψxxx)x+aΦyy=0, (1.1)

    and also above equation is integrable. Author of [28] introduced the modification of KP (mKP) equation [29] given

    4Ψt6Ψ2Ψx+Ψxxx+6Ψx1xΨy+Ψ1xΦyy=0. (1.2)

    The generalized KP (gKP) equation has been researched by some scholars [30,31,32] in which is given as

    (Ψt+αΨx+βΨΨx+γΨΨxxt)x+Ψyy=0. (1.3)

    The another type of gKP equation is given in [33] as below

    Ψxxxy+3(ΨxΨy)x+Ψtx+Ψty+ΨtzΨzz=0. (1.4)

    We first present the bilinear form for Eq (1.4), by taking the following first-order logarithmic transformation

    Ψ=2(lnf)x, (1.5)

    then, Eq (1.4) is turned into the bilinear form

    (D3xDy+DxDt+DyDt+DzDtD2z)f.f=0, (1.6)

    in which Dt,Dx,Dy and Dz are Hirota's bilinear frames. Cao [34] investigated the generalized B-type KP equation as follows

    Ψxxxy+3(ΨxΨy)x3ΨxzΨty=0. (1.7)

    Guan et al. [35] derived a (3+1)-dimensional gKP equation in below form

    Ψxxxy+3(ΨxΨy)x+αΨxxxz+3α(ΨxΨz)x+λ1Ψxt+λ2Φyt+λ3Φzt+ω1Φxz+ω2Φyz+ω3Φzz=0, (1.8)

    and some lump soliton solutions have been constructed using the Hirota bilinear method in [36]. Via transformation Ψ=2(lnf)x, the bilinear form of equation (1.8) reads:

    (D3xDy+αD3xDz+λ1DxDt+λ2DyDt+λ3DzDt+ω1DxDz+ω2DyDz+ω3D2z)f.f=0. (1.9)

    Most classical test functions for solving NLPDEs by using the several particular functions can be constructed via Hirota bilinear technique. In other words, Hirota operator covers most of the classical hypothesis function method. For example, the fractional generalized CBS-BK equation [37], the generalized Bogoyavlensky-Konopelchenko equation [38], the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation [39], and the (2+1)-dimensional generalized variable-coefficient KP-Burgers-type equation [40]. Diverse kinds of studies on solve NLPDEs were perused via mighty authors in which some of them can be stated, for instance, multivariate rogue wave to some PDEs [41], interaction lump solutions the gKP equation [42], the (1+1)-dimensional coupled integrable dispersionless equations [43]. Therefore, we embark on the new research topic of constructing the analytic solutions of nonlinear PDEs by exploring the bilinear method. According to recent studies, we can obtain some of the new exact analytic solutions of nonlinear PDEs by way of constructing their corresponding bilinear differential equations in [44,45,46,47]. Here, we will study the multiple Exp-function method (MEFM) for determining the multiple soliton solutions (MSSs). The MEFM employed by some of powerful authors for various nonlinear equations have been surveyed in more studies in [31,48,49,50]. Authors of [51] utilized the reduced differential transform method for solving partial differential equations. Also, Yu and Sun [52] studied the dimensionally reduced generalized KP equations by help of Hirita bilinear method and obtained of lump solutions.

    The outline of our paper is as follows: the multiple Exp-function scheme has been summarized in section 2. In sections 3, the KP equation, will investigate to finding 1-wave, 2-wave, and three-wave solutions. The Sections 4-6 devote to determined the periodic, cross-kink, and solitary wave solutions. Moreover, in Section 7, the modulation instability analysis is investigated. Finally in Section 8, the SIVP technique is considered with four cases for finding the solitary, bright, dark and singular wave solutions. A few of conclusions and outlook will be given in the final section.

    This method was summarized and improved for achieving the analytic solutions of NLPDEs:

    Step 1. Assume a nonlinear PDE is given in general frame as follows

    N(x,y,t,Ψ,Ψx,Ψy,Ψz,Ψt,Ψxx,Ψtt,...)=0. (2.1)

    Take the novel variables ξi=ξi(x,y,z,t),1in, by differentiable frames:

    ξi,x=αiξi,  ξi,y=βiξi,  ξi,z=γiξi,  ξi,t=δiξi,  1in, (2.2)

    where αi,βi,γi,1in, are unfound amounts. It noted that one can get as the following function

    ξi=ϖieθi,  θi=αix+βiy+γizδit,  1in, (2.3)

    where ϖi,1in, unspecified amounts.

    Step 2. Assuming the solution of the Eq (2.1) is function of variables ξi,1in:

    Ψ=Δ(ξ1,ξ2,...,ξn)Ω(ξ1,ξ2,...,ξn),  Δ=nr,s=1Mi,j=0Δrs,ijξirξjs,  Ω=nr,s=1Ni,j=0Ωrs,ijξirξjs,   (2.4)

    in which Δrs,ij and Ωrs,ij are amounts to be remained. Replacing Eq (2.4) into Eq (2.1) can be achieved the below form as:

    Ψ=Δ(ϖ1eα1x+β1y+γ1zδ1t,...,ϖneαnx+βny+γnzδnt)Ω(ϖ1eα1x+β1y+γ1zδ1t,...,ϖneαnx+βny+γnzδnt), (2.5)

    and also we have

    Δt=ni=1Δξiξi,t,  Ωt=ni=1Ωξiξi,t,  Δx=ni=1Δξiξi,x,  Ωx=ni=1Ωξiξi,x,  Δy=ni=1Δξiξi,y,  Δz=ni=1Δξiξi,z, Ωy=ni=1Ωξiξi,y,  Ωz=ni=1Ωξiξi,z,  (2.6)
       Ψt=Ωni=1Δξiξi,tΔni=1Ωξiξi,tΩ2,  Ψx=Ωni=1Δξiξi,xΔni=1Ωξiξi,xΩ2,
    Ψy=Ωni=1Δξiξi,yΔni=1Ωξiξi,yΩ2,  Ψz=Ωni=1Δξiξi,zΔni=1Ωξiξi,zΩ2.

    The one-wave function of the solution will be reduced as below form

    Ψ=2Δ1Ω1,  Ω1=1+ρ1+ρ2 eα1x+β1y+γ1zδ1t,  Δ1=σ1+σ2 eα1x+β1y+γ1zδ1t, (3.1)

    in which ρ1,ρ2,σ1 and σ2 are unspecified amounts. Substituting (3.1) into Eq (1.8), the below cases will be concluded as:

    Case I:

    α1=α1,  β1=β1,  ρ1=ρ1,  ρ2=  σ2(ρ1+1)σ1  ,  σ1=σ1,  σ2=σ2,  δ1=δ1,  γ1=γ1,  γ2=γ2. (3.2)

    Case II:

    α1=α1,  β1=  αα1  3γ1α1δ1λ1+α1γ1ω1δ1γ1λ3+γ12ω3  α13δ1λ2+γ1ω2,  ρ1=1,  ρ2=ρ2,   (3.3)
    σ1=σ1,  σ2=σ2,  δ1=δ1,  γ1=γ1,  γ2=γ2.

    Case III:

    α1=  γ1(αδ1λ2αγ1ω2δ1λ3+γ1ω3)δ1λ1γ1ω1,  β1=αγ1,  ρ1=ρ1,  ρ2=ρ2,   (3.4)
    σ1=σ1,  σ2=σ2,  δ1=δ1,    γ1=γ1,  γ2=γ2.

    Case IV:

    α1=ϑ,  β1=β1, or  β1=αγ1,   ρ1=1,  ρ2=ρ2,  σ1=σ1,  σ2=σ2, δ1=ϑ3+γ1ω2λ2,  γ1=γ1,  γ2=γ2,  (3.5)

    in which ϑ, solves the equation λ1ϑ4+(γ1λ3αγ1λ2)ϑ3+(γ1λ1ω2γ1λ2ω1)ϑγ21ω3λ2+γ21λ3ω2=0.

    For example, the 1-wave solution for Case III will be considered as

    Ψ=2σ1+σ2e  γ1(αδ1λ2αγ1ω2δ1λ3+γ1ω3)δ1λ1γ1ω1  xαγ1y+γ1zδ1t1+ρ1+ρ2e  γ1(αδ1λ2αγ1ω2δ1λ3+γ1ω3)δ1λ1γ1ω1    xαγ1y+γ1zδ1t. (3.6)

    The two-wave function of the solution will be reduced as below form

    Ψ=2Δ2Ω2, (3.7)
    Ω2=1+σ1eα1x+β1y+γ1zδ1t+σ2eα2x+β2y+γ2zδ2t+σ1σ2σ12e(α1+α2)x+(β1+β2)y+(γ1+γ2)z(δ1+δ2)t,   (3.8)
    Δ2=ρ1eα1x+β1y+γ1zδ1t+ρ2eα2x+β2y+γ2zδ2t+ρ1ρ2ρ12e(α1+α2)x+(β1+β2)y+(γ1+γ2)z(δ1+δ2)t.

    Substituting (3.7) in terms of (3.8) into Eq (1.8), the below cases will be resulted as:

    Case I:

    α1=0,  α2=α2,  β1=β1,  β2=αγ2,  δ1=  γ1(β1ω2+ω3γ1)β1λ2+γ1λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=0,  ρ2=ρ2, (3.9)
      ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case II:

    α1=α1,  α2=0,  β1=αγ1,  β2=β2,  δ1=  γ1(αγ1ω 2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3,  δ2=  γ2(β2ω2+γ2ω3)β2λ2+γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=0,  (3.10)
     ρ2=ρ2,  ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case III:

    α1=α1,  α2=α2,  β1=αγ1,  β2=αγ2,  δ1=  γ1(αγ1ω 2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=0, (3.11)
      ρ2=ρ2,  ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case IV:

    α1=0,  α2=α2,  β1=β1,  β2=αγ2,  δ1=  γ1(β1ω2+ω3γ1)β1λ2+γ1λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=ρ1,  ρ2=0, (3.12)
      ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case V:

    α1=α1,  α2=α2,  β1=αγ1,  β2=αγ2,  δ1=  γ1(αγ1ω 2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=ρ1,  ρ2=0, (3.13)
      ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=1.

    Case VI:

    α1=α1,  α2=α2,  β1=αα1γ2  α2,  β2=αγ2,  δ1=  α1γ2(αγ 2ω2α2ω1γ2ω3)α2(αγ2λ2α2λ1γ2λ3),  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=γ1,  γ2=γ2,  ρ1=ρ1,  ρ2=0, (3.14)
      ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=σ12.

    Case VII:

    α1=α1,  α2=α2,  β1=αα1γ2  α2,  β2=αγ2,  δ1=  α1γ2(αγ 2ω2α2ω1γ2ω3)α2(αγ2λ2α2λ1γ2λ3),  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=  α1γ2  α2  ,  γ2=γ2,  ρ1=ρ1,  ρ2=ρ2, (3.15)
      ρ12=ρ12,  σ1=0,  σ2=σ2,  σ12=σ12.

    Case VIII:

    α1=12α2,  α2=α2,  β1=12αγ2,  β2=αγ2,  δ1=12  γ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,  δ2=  γ2(αγ2ω 2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3,γ1=12γ2,  γ2=γ2,  ρ1=ρ1,  (3.16)
     ρ2=ρ2,  ρ12=ρ12,  σ1=σ1,  σ2=σ2,  σ12=0.

    For instance, the 2-wave solution for Case I will be taken as

    Ψ1=2ρ2e  tγ2(αγ 2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  /(1+σ1etγ1(β1ω2+ω3γ1)β1λ2+γ1λ3  +yβ1+zγ1  + (3.17)
    σ2e  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  +σ1σ2e  tγ1(β1ω2+ω3γ1)β1λ2+γ1λ3    tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2+yβ1yαγ2+zγ1+zγ2).

    Also, the 2-wave solution for Case III will be considered as

    Ψ2=2ρ2e  tγ2(αγ 2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  /(1+σ1etγ1(αγ1ω2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3  +xα1yαγ1+zγ1  + (3.18)
    σ2e  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  +σ1σ2e  tγ1(αγ1ω2α1ω1ω3γ1)αγ1λ2α1λ1γ1λ3    tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα1+xα2yαγ1yαγ2+zγ1+zγ2).

    And finally, the resulting two-wave solution for Case VIII will be read as

    Ψ3(x,y,z,t)=2(ρ1e12  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +12xα212yαγ2+12zγ2  +ρ2e  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  + (3.19)
    ρ1ρ2ρ12 e32tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +32xα232yαγ2+32zγ2  )/(1+σ1e12  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +12xα212yαγ2+12zγ2  
    +σ2e  tγ2(αγ2ω2α2ω1γ2ω3)αγ2λ2α2λ1γ2λ3  +xα2yαγ2+zγ2  ).

    The triple-wave function of the solution will be reduced as below form

    Ψ=Δ3Ω3, (3.20)
    Ω3=1+ρ1eΛ1+ρ2eΛ2+ρ3eΛ3+ρ1ρ2ρ12eΛ1+Λ2+ρ1ρ3ρ13eΛ1+Λ3+ρ2ρ3ρ23eΛ2+Λ3+ρ1ρ2ρ3ρ12ρ13ρ23eΛ1+Λ2+Λ3,   (3.21)
    Δ3=2σ1eΛ1+2σ2eΛ2+2σ1σ2σ12eΛ1+Λ2+2σ1σ3σ13eΛ1+Λ3+2σ2σ3σ23eΛ2+Λ3+
    2σ1σ2σ3σ12σ13σ23eΛ1+Λ2+Λ3,

    in which Λi=αix+βiy+γixδit,i=1,2,3. Inserting (3.20) in terms of (3.21) into Eq (1.8), the below case will be reached:

    αi=αi,  γi=γi,  σi=σi,  ρ1=0,  ρ2=ρ2,  ρ3=ρ3,  βi=αγi,  δi=  γi(αγiω 2αiω1ω3γi)αγiλ2αiλ1γiλ3,  i=1,2,3,  ρij=ρij,  σij=1,  i,j=1,2,3, ij. (3.22)

    Then, the solution is

    Ψ1=2σ1eΛ1+2σ2eΛ2+2σ1σ2eΛ1+Λ2+2σ1σ3eΛ1+Λ3+2σ2σ3eΛ2+Λ3+2σ1σ2σ3eΛ1+Λ2+Λ3  1+ρ2eΛ2+ρ3eΛ3+ρ2ρ3ρ23eΛ2+Λ3  , (3.23)

    in which Λi=αixαγiy+γixγi(αγiω 2αiω1ω3γi)αγiλ2αiλ1γiλ3  t,i=1,2,3 and Ψ=Ψ(x,y,z,t).

    The triangular periodic waves for Eq (1.8) can be assumed as below:

    f=exp(τ1)+a16exp(τ1)+cosh(τ2)+cos(τ3)+a17,   τ1=4i=1aixi+a5,   τ2=9i=6aixi5+a10,    (4.1)
    τ3=14i=11aixi10+a15,  (x1,x2,x3,x4)=(x,t)=(x,y,z,t),   Ψ(x,t)=v0+2ln(f)x, (4.2)

    in which ai,i=1,...,17 are unfound values. Substituting (4.1) and (4.2) into Eq (1.8) the below consequences will be gained:

    Case I:

    f=ea4t+a1x  y(a3a14ω3a4a12ω2a4a13ω3)a14ω2  +a3z+a5  +cosh(a9ty(a8a14ω3a9a12ω2a 9a13ω3)a14ω2  +a8z+a 10)+cos(ta14+ya12+za13+a15). (4.3)

    Appending (4.3) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) as below will be achieved:

    Ψ1=v0+2a1ea4t+a1x  y(a3a14ω3a4a12ω2a4a13ω3)a14ω2  +a3z+a5  f. (4.4)

    By selecting the suitable values of parameters including

    a1=1,a3=1.5,a4=2,a5=1.5,a8=2,a9=1.5,a10=1,a12=2,a13=2.5,a14=1,a15=3.2,ω2=1.5,ω3=1.2,

    the graphical display of soliton-periodic wave solution is offered in Figure 1 such as 3D plot and density plot.

    Figure 1.  The soliton-periodic solution (4.4) at (f1, f2) x=2,y=2, (f3, f4) x=0,y=0, and (f5, f6) x=2,y=2.

    Case II:

    f=ea4t+a1x+ya2  (a1  3a 14a4a13ω2)za14ω2  +a5  +cosh(a9t+ya7+  a9a13za14  +a10)+cos(ta14+ya12+za13+a 15). (4.5)

    Plugging (4.5) into (4.1) and (4.2), obtain a soliton-periodic wave solution of Eq (1.8) as below case:

    Ψ2=v0+2a1ea4t+a1x+ya2  (a13a14a4a13ω2)za14ω2  +a5  f. (4.6)

    Case III:

    f=ea4t+a1x  y(a3ω3+a4λ3)ω2  +a3z+a5  +cosh(a9t  y(a8ω3+a9λ3)ω2  +a8z+a10)+cos(  a13ω3yω2  +za13+a15). (4.7)

    Incorporating (4.7) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be gained as below:

    Ψ3=v0+2a1ea4t+a1x  y(a3ω3+a4λ3)ω2  +a3z+a5  f. (4.8)

    Case IV:

    f=ea4t  y(a3a9ω3a4a7ω2a4a8ω3)a9ω2  +a3z+a5  +cosh(a9t+ya7+a8z+a10)+cos(xa11+a15). (4.9)

    Plugging (4.9) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be achieved as below:

    Ψ4=v02sin(xa11+a15)a11f. (4.10)

    Case V:

    f=ea4t+ya2+  a4a8za9  +a5+cosh(a9t+ya7+a8z+a10)+cos(xa11  (a112ω3+ω 1ω2)a11yω22  +  a 11  3zω2  +a15). (4.11)

    Incorporating (4.11) into (4.1) and (4.2), we capture a soliton-periodic wave solution of Eq (1.8) as below:

    Ψ5=v02sin(xa11  (a11  2ω3+ω1ω2)a11yω2  2  + a113zω2  +a15)a11f. (4.12)

    Case VI:

    f=ea4t+  ω2(a3a9a4a8)xa9a112  13  y(2αa9a116ω2+2a9a11  6ω3+3αa32a9ω2  33αa3a4a8ω23+2a9a114ω1ω2)ω23(a3a9a4a8)  +a3z+a5+cosh(a9t13  yΩa4ω2  3(a3a9a4a8)(a92a116+ω22(a3a9a4a8)2)+a8z+a10)+cos(xa11  αa113yω2  +a113zω2  +a15), (4.13)
    Ω=3αa4a8ω25(a3a9a4a8)3+αa92a116ω23(a3a9+2a4a8)(a3a9a4a8)a92a114ω22(a3a9a4a8)2(a112ω3+ω1ω2)a92a1112(3a42a9  2)(αω2ω3).

    Appending (4.13) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be obtained as below:

    Ψ5=v0+2f[  ω2(a3a9a4a8)a9a112ea4t+  ω2(a3a9a4a8)xa9a112  13  y(2αa9a116ω2+2a9a116ω3+3αa32a9ω233αa3a4a8ω23+2a9a114ω1ω2)ω23(a3a9a4a8)+a3z+a5  +sin(xa11+  αa113yω2    a113zω2  a15)a11]. (4.14)

    By selecting suitable values of parameters including

    α=0.5,a3=1,a4=1.5,a5=2,a8=2,a9=1.5,a10=1,a11=2,a13=2.5,a14=1,a15=3.2,ω1=1.5,ω2=1.2,ω3=1.5,

    the graphical display of soliton-periodic wave solution is offered in Figure 2 such as 3D chart and density chart.

    Figure 2.  The soliton-periodic solution (4.14) at (f1, f2) x=2,y=2, (f3, f4) x=0,y=0, and (f5, f6) x=2,y=2.

    Case VII:

    f=e  Ωa9ta113  +a1x16  y(6a14a115ω33a14a113ω1ω2+2a117ω1ω2+6Ωa1a8a112ω2ω3+3Ωa1a8ω1ω2  2)a115ω22a1  +  (a13a113+Ωa8ω2)za11  3ω2  +a5  + (4.15)
    cosh(a9t+ya7+a8z+a10)+cos(xa1112  (2a112ω3+ω1ω2)a11yω22  +  a113zω2  +a15),
    Ω=a162a14a112+a116.

    Incorporating (4.15) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be received as below:

    Ψ5=v0+2f[a1e  Ωa9ta113  +a1x16  y(6a14a115ω33a14a11  3ω1ω2+2a117ω1ω2+6Ωa1a8a112ω2ω3+3Ωa1a8ω1ω22)a115ω22a1  +  (a13a11  3+Ωa8ω2)za113ω2  +a5  sin(xa1112  (2a11  2ω3+ω1ω2)a11yω22  +  a113zω2  +a15)a11]. (4.16)

    By selecting the specific amounts of parameters including

    α=0.5,a1=1,a4=a9=ω1=ω3=1.5,,a5=2,a7=1.5,a8=2,a10=1,a11=2,a13=2.5,a14=1,a15=3.2,ω2=1.2,

    the graphical display of soliton-periodic wave solution is offered in Figure 3 such as 3D chart, density chart, and 2D chart and below cases:

    (f3) y=1,2,3,  (f6) y=1,2,3, and  (f9) y=1,2,3.
    Figure 3.  The soliton-periodic solution (4.16) at (f1, f2) z=2,t=2, (f4, f5) z=0,t=0, and (f7, f8) z=2,t=2.

    Three function containing exponential, hyperbolic, and triangular periodic waves for Eq (1.8) can be assumed as the following:

    f=exp(τ1)+a16exp(τ1)+sinh(τ2)+sin(τ3)+a17,   τ1=4i=1aixi+a5,   τ2=9i=6aixi5+a10, (5.1)
    τ3=14i=11aixi10+a15,  (x1,x2,x3,x4)=(x,t)=(x,y,z,t),   Ψ(x,t)=v0+2ln(f)x, (5.2)

    in which ai,i=1,...,17 are unfound values. Substituting (5.2) into Eq (1.8) the below consequences will be gained:

    Case I:

    f=ea4t+a1x  (a3a14ω3a4a12ω2a4a13ω3)ya14ω2  +a3z+a5  +sinh(a9t  (a8a14ω3a9a12ω2a9a13ω3)ya14ω2  +a8z+a10) (5.3)
    +sin(ta14+ya12+za13+a15).

    Substituting (5.3) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be gained as the following:

    Ψ1=v0+2a1ea4t+a1x  (a3a14ω3a4a12ω2a4a13ω3)ya14ω2  +a3z+a5  f. (5.4)

    By selecting the suitable values of parameters including

    a1=1,a3=3,a4=2,a5=1.5,a8=1.7,a9=1.5,a10=1.5,a12=2.5,a13=1.1,a14=2.1,a15=3.2,ω2=1,ω3=1.5,

    the graphical representation of cross-kink wave solution is offered in Figure 4 such 3D plot and density plot.

    Figure 4.  The cross-kink wave solution (5.4) at (f1, f2) x=3,y=2, (f3, f4) x=0,y=2, and (f5, f6) x=3,y=2.

    Case II:

    f=ea4t+a1x+a2y  (a1  3a14a4a13ω2)za14ω2  +a5  +sinh(a9t+a7y+  a9a13za14  +a10)+sin(ta14+ya12+za13+a15). (5.5)

    Putting (5.5) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be received as the following:

    Ψ2=v0+2a1ea4t+a1x+a2y(a13a14a4a13ω2)za14ω2  +a5  f. (5.6)

    By selecting the suitable values of parameters including

    a1=1,a3=3,a4=2,a5=1.5,a8=1.7,a9=1.5,a10=1.5,a12=2.5,a13=1.1,a14=2.1,a15=3.2,ω2=1,ω3=1.5,

    the graphical exhibition of cross-kink solution is offered in Figure 5 such as 3D chart and density chart.

    Figure 5.  The cross-kink wave solution (5.6) at (f1, f2) x=3,y=2, (f3, f4) x=0,y=2, and (f5, f6) x=3,y=2.

    Case III:

    f=ea4t+a1x  (a3ω3+a4λ3)yω2  +a3z+a5  +sinh(a9t  (a8ω3+a9λ 3)yω2  +a8z+a10)+sin(  a13ω3yω2  +a13z+a15). (5.7)

    Plugging (5.7) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be obtained as the following:

    Ψ3=v0+2a1ea4t+a1x  (a3ω3+a4λ3)yω2  +a3z+a5  f. (5.8)

    Case IV:

    f=e  a9(a112(ω3a12ω1ω2)(a1  3+a3ω2)a15ω1ω2)ta12a7a112ω22  +a1x  a3(ω3a12ω1ω2)ya12ω2  +a3z+a5  +sin(xa11+a15)+sinh(a9t+a7y  (a13+a3ω2)a12a7a112ω2za11  2(ω3a12ω1ω2)(a13+a3ω2)a15ω1ω2  +a10). (5.9)

    Inserting (5.9) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be gained as the following:

    Ψ4=v0+2a1e  a9(a11  2(ω3a12ω1ω2)(a13+a3ω2)a15ω1ω2)ta12a7a112ω2  2  +a1x  a3(ω3a12ω1ω2)ya12ω2  +a3z+a5  +cos(xa11+a15)a11  f. (5.10)

    Case V:

    f=ea4t+a2y+  a4a8za9  +a5  +sinh(a9t+a7y+a8z+a10)+sin(xa11  a11(a112ω3+ω1ω2)yω22  +  a113zω2  +a15). (5.11)

    Substituting (5.11) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be received as the following:

    Ψ5=v0+2cos(xa11  a11(a112ω3+ω1ω2)yω22+  a113zω2  +a15)a11  f. (5.12)

    By selecting the suitable values of parameters including

    a1=1,a3=3,a4=2,a5=1.5,a8=1.7,a9=1.5,a10=1.5,a12=2.5,a13=1.1,a14=2.1,a15=3.2,ω2=1,ω3=1.5,

    the graphical exhibition of cross-kink solution is offered in Figure 6 such as 3D chart and density chart.

    Figure 6.  The cross-kink wave solution (5.6) at (f1, f2) x=3,y=2, (f3, f4) x=0,y=2, and (f5, f6) x=3,y=2.

    Case VI:

    f=e  Ωa9ta113  +a1x112  (3Ωa1a8ω2(4a112ω3+3ω1ω2)12a14a115ω3a113ω1ω2(9a142a112a122a11  4))ya115ω22a1  +  (a13a113+Ωa8ω2)zω2a113  +a5  sinh(a9t+a7y+a8z+a10)+sin(xa11112  a11(12a112ω3+7ω1ω2)yω22  +  a311zω2+a15), (5.13)
    Ω=3a164a14a112+a116.

    Putting (5.13) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be concluded as the following:

    Ψ5=v0+2f[a1e  Ωa9ta113  +a1x112  (3Ωa1a8ω2(4a112ω3+3ω1ω2)12a14a11  5ω3a113ω1ω2(9a1  42a112a122a114))ya115ω22a1  +  (a13a11  3+Ωa8ω2)zω2a113  +a5  +cos(xa11112  a11(12a112ω3+7ω1ω2)yω2  2  +  a113zω2  +a15)a11]. (5.14)

    By selecting suitable values of parameters including

    α=0.5,a3=1,a4=a9=ω1=ω3=1.5,a5=2,a8=2,a10=1,a11=2,a13=2.5,a14=1,a15=3.2,ω2=1.2,

    the graphical representation of cross-kink solution is offered in Figure 7 such as 3D chart and density chart.

    Figure 7.  The cross-kink wave solution (5.14) at (f1, f2) x=2,y=2, (f3, f4) x=0,y=0, and (f5, f6) x=2,y=2.

    Case VII:

    f=e  Ωa9ta113  +a1x16 y(6a14a115ω33a14a113ω1ω2+2a11  7ω1ω2+6Ωa1a8a11  2ω2ω3+3Ωa1a8ω1 ω22)a115ω22a1  + (a13a113+Ωa8ω2)za113ω2  +a5  +cosh(a9t+ya7+a8z+a10)+cos(xa 1112  (2a112ω3+ω1ω2)a11yω22  +  a113zω2  +a15), (5.15)
    Ω=a162a14a112+a116.

    Inserting (5.15) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be gained as the following:

    Ψ5=v0+2f[a1e  Ωa9ta113  +a1x16  y(6a14a115ω33a14a11  3ω1ω2+2a117ω1ω2+6Ωa1a8a112ω2ω3+3Ωa1a8ω1ω22)a115ω22a1  +  (a13a11  3+Ωa8ω2)za113ω2  +a5  sin(xa1112  (2a11  2ω3+ω1ω2)a11yω22  +  a113zω2  +a15)a11]. (5.16)

    By selecting suitable values of parameters including

    α=0.5,a1=1,a5=1.5,a8=2,a9=0.5,a10=1.5,a15=3.2,ω1=1.5,ω2=1.2,ω3=1.5,

    the graphical representation of cross-kink solution is offered in Figure 8 such as 3D chart and density chart.

    Figure 8.  The lump-periodic solution (5.16) at (f1, f2) z=2, (f4, f5) z=0, and (f7, f8) z=2.

    Three function containing exponential, hyperbolic, and triangular periodic waves for Eq (1.8) can be assumed as the following:

    f=exp(τ1)+a16exp(τ1)+tanh(τ2)+tan(τ3)+a17,   τ1=4i=1aixi+a5,   τ2=9i=6aixi5+a10,    (6.1)
    τ3=14i=11aixi10+a15,  (x1,x2,x3,x4)=(x,t)=(x,y,z,t),   Ψ(x,t)=v0+2ln(f)x, (6.2)

    in which ai,i=1,...,17 are unfound values. Substituting (6.2) into Eq (1.8) the below consequences will be gained:

    Case I:

    f=ea4t+a1x+a2y  (a1  3+a4λ2)zω2  +a5  +tanh(ya7+a10)+tan(ya12+a15)+a17. (6.3)

    Substituting (6.3) into (6.1) and (6.2), we can capture a solitary wave solution of Eq (1.8) as the following:

    Ψ1=v0+2a1ea4t+a1x+a2y(a13+a4λ2)zω2  +a5  f. (6.4)

    Case II:

    f=ea1x+a2y  a13zω2  +a5  +tanh(ya7+a10)+tan(ya12+a15)+a17. (6.5)

    Inserting (6.5) into (6.1) and (6.2), we can capture a solitary wave solution of Eq (1.8) as below:

    Ψ2=v0+2a1ea1x+a2y  a13zω2  +a5  f. (6.6)

    Case III:

    f=ea4t+a1x+a2y  (a1  3ω3+a4λ3ω2)zω2ω3  +a5  +tanh(ta9+ya7  za9λ3  ω3  +a10)+tan(ya12+a15)+a17. (6.7)

    Putting (6.7) into (6.1) and (6.2), the solitary wave solution of Eq (1.8) can be indicated as below:

    Ψ3=v0+2a1ea4t+a1x+a2y(a13ω3+a4λ3ω2)zω2ω3  +a5  f. (6.8)

    Case IV:

    f=ea4t+a1x+a2y+za3+a5  tanh(  ya8ω3  ω2  za8a10)tan(  ya13ω3  ω2  a13za15)+a17. (6.9)

    Putting (6.9) into (6.1) and (6.2), the solitary wave of Eq (1.8) can be stated as the following:

    Ψ4=v0+2a1ea4t+a1x+a2y+za3+a5  f. (6.10)

    By selecting the suitable values of parameters including

    a1=1,a2=1.5,a3=2,a4=2,a5=1.5,a8=2,a9=1.5,a10=1.5,a13=2,a13=1.1,a15=3.2,a17=2,ω2=1.5,
    ω3=1.2,λ2=1,λ3=1.5,x=2,t=2,

    with the following components

    α=  a13ω3a1ω1ω2a2ω22a3ω2ω3+a4λ2ω3a4λ3ω2  ω2a13  ,  λ1=  a13a2ω2+a13a3ω3+a2a4λ2ω2+a3a4λ2ω3  a1a4ω2,

    the graphical representation of rational solitary solution is offered in Figure 9 such as 3D chart and density chart.

    Figure 9.  The rational solitary wave solution (6.10) at (f1) z=0, (f2) z=1, and (f3) z=3.

    Case V:

     f=ea1x  a3ω3yω2  +za3+a5  tanh(  ya8ω3  ω2za8a10)tan(  ya13ω3  ω2  a13za15)+a17. (6.11)

    Incorporating (6.11) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be gained as below:

    Ψ5=v0+2a1ea1x  a3ω3yω2  +za3+a5  f,  α=  a12ω3ω1ω2  a12ω2  . (6.12)

    Case VI:

    f=ea4t+a1x  (a3ω3+a4λ3)yω2  +za3+a5  +tanh(ta9  y(a8ω3+a9λ3)ω2  +za8+a10)tan( ya13ω3  ω2  a13za15)+a17. (6.13)

    Appending (6.13) into (6.1) and (6.2), the solitary solution of Eq (1.8) can be written as the following:

    Ψ6=v0+2a1ea4t+a1x  (a3ω 3+a4λ3)yω2  +za3+a5  f,  α=  a12ω3ω1ω2  a12ω2  . (6.14)

    Case VII:

    f=ea4t+a1x  a3ω3yω2  +za3+a5  +tanh(ta9  ya8ω3  ω2  +za8+a10)tan(  ya13ω3  ω2  a13za15)+a17. (6.15)

    Appending (6.15) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be obtained as below:

    Ψ7=v0+2a1ea4t+a1x  a3ω3yω2  +za3+a5  f,  α=  a12ω3ω1ω2  a1  2ω2,  λ2=  λ3ω2  ω3  . (6.16)

    By choosing the specific amounts of parameters including

    a1=1,a2=1.5,a3=2,a4=2,a5=1.5,a8=2,a9=1.3,a10=1.5,a13=2,a13=2,a15=3.2,a17=2,ω2=1.5,ω3=1.2,λ2=1,λ3=1.5,x=2,t=2,

    the graphical representation of rational solitary solution is offered in Figure 10 such as 3D chart and density chart.

    Figure 10.  The rational solitary wave solution (6.16) at (f1) z=0, (f2) z=1, and (f3) z=3.

    Case VIII:

    f=ea4t+a1x+a2y  (a1  3a 14a4a13ω2)za14ω2  +a5  +tanh(ta9+ya7+  za9a13  a14  +a10)+tan(ta14+ya12+a13z+a 15)+a17. (6.17)

    Incorporating (6.17) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be received as below:

    Ψ8=v0+2a1ea4t+a1x+a2y(a13a14a4a13ω2)za14ω2  +a5  f,  α=  a1  2ω3ω1ω2  a12ω2,  λ2=  a13ω2  a14,  λ3=a13ω3  a14  . (6.18)

    Case IX:

    f=ea4t+a1x  (a3a14ω3a4a12ω2a4a13ω3)ya14ω2  +a3z+a5   (6.19)
    +tanh(ta9  y(a8a14ω3a9a12ω2a 9a13ω3)a14ω2  +za8+a 10) (6.20)
    +tan(ta14+ya12+za13+a15)+a17. (6.21)

    Appending (6.21) into (6.1) and (6.2), the solitary solution of Eq (1.8) can be reached as below:

    Ψ9=v0+2a1ea4t+a1x  (a3a14ω3a4a12ω2a4a13ω3)ya14ω2  +a3z+a5  f, α=  a12ω3ω1ω2  a12ω2,  (6.22)
    λ1=  a12(a12ω2+a 13ω3)a14ω2, λ3=  a12ω2+a13ω3  a 14  .

    Case X:

    f=ea4t+a1x  a3ω3yω2+a3z+a5  +tanh(  ya8ω3ω2  +za8+a10)+tan(ta14 ya13ω3  ω2  +za13+a15)+a17. (6.23)

    Inserting (6.21) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be gained as below form:

    Ψ10=v0+2a1ea4t+a1x  a3ω3yω2  +a3z+a5  f, α=a12ω3ω1ω2  a1  2ω2  , λ2=  λ3ω2  ω3  . (6.24)

    By choosing the specific amounts of parameters including

    a1=1,a3=1.5,a4=2,a5=1.5,a7=2,a8=2,a9=2.1,a10=1.5,a13=2,a13=2,a14=2.5,a15=3.2,a17=2,ω2=1.5,ω3=1.2,λ3=1.5,x=2,t=2,

    the graphical representation of rational solitary solution is offered in Figure 11 such as 3D chart and density chart.

    Figure 11.  The rational solitary wave solution (6.24) at (f1) z=2, (f2) z=0, and (f3) z=2.

    Case XI:

    f=ea4t+a1x+a2y  (a1  3a 14a4a13ω2)za14ω2  +a5  +tanh(  ta14a8  a13  +ya7+za8+a10)+tan(ta14+za13+a15)+a17. (6.25)

    Inserting (6.25) into (6.1) and (6.2), the solitary solution of Eq (1.8) can be stated as below case:

    Ψ11=v0+2a1ea4t+a1x+a2y(a13a14a4a13ω2)za14ω2  +a5  f, α=  a1  3a2+a1a3ω1+a2a3ω2+a3  2ω3  a13a3, (6.26)
    λ1=  a13a2a12a13a1  3a3a122+a2a3a12a13ω2+a2a3a132ω3+a2a3a13a14λ3  a3a12a1a14  +a32a122ω2a32a12a13ω3a32a12a14λ3  a3a12a1a14  ,
    λ2=  a13(a12ω2+a13ω3+a14λ3)a12a14  .

    Case XII:

    f=ea4t+a1x  a3ω3yω2  +a3z+a5  +tanh(ta9+ya7  za7ω2  ω3  +a10)+tan(ta14 ya13ω3  ω2  +za13+a15)+a17. (6.27)

    Inserting (6.27) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be gained as below form:

    Ψ12=v0+2a1ea4t+a1x  a3ω3yω2  +a3z+a5  f, α=a13a2+a1a3ω1+a2a3ω2+a32ω3  a13a3, (6.28)
    λ1=  a13a2a12a13a1  3a3a122+a2a3a12a13ω2+a2a3a132ω3+a2a3a13a14λ3  a3a12a1a14  +a32a122ω2a32a12a13ω3a32a12a14λ3  a3a12a1a14  ,
    λ2=  a13(a12ω2+a13ω3+a14λ3)a12a14  .

    In the current section, we will analyze the continuous modulational instability of the nonlinear generalized KP equation. In addition, the feasibility of the localized waves in the present system is certified by linear stability analysis. First, we search the perturbed solution for the giving Eq (1.8) of the form

    Ψ(x,y,z,t)=ζ+δ Θ, (7.1)

    where Θ=Θ(x,y,z,t) and ζ is a steady state solution. Inserting (7.1) into Eq (1.8), become

    δ  4x3yΘ+αδ  4x3zΘ+3δ2(  2x2  Θ) yΘ+3δ2(xΘ)  2xyΘ+3αδ2(  2x2  Θ)  zΘ+ (7.2)
    3αδ2(  xΘ) 2xzΘ+λ1δ  2txΘ+λ2δ2tyΘ+λ3δ 2tzΘ+ω1δ2xzΘ+ω2δ2yzΘ+ω3δ 2z2  Θ=0,

    by linerization Eq (7.2), one gets

    δ  4x3yΘ+αδ  4x3zΘ+λ1δ  2txΘ+λ2δ  2tyΘ+λ3δ  2tzΘ+ω1δ  2xzΘ+ω2δ  2yzΘ+ω3δ  2z2  Θ=0. (7.3)

    Theorem 7.1. Assume that the solution of Eq (7.3) has the following case as

    Θ(x,y,z,t)=ρ1 ei(Mx+Ny+Pz+Bt), (7.4)

    in which M,N,P are the normalized wave numbers, by plugging (7.4) into Eq (7.3), separation the coefficients of ei(Mx+Ny+Pz+Wt) one gets

    B(M,N,P)=  M3Pα+M3NMPω1NPω2P2ω3  Mλ1+Nλ2+Pλ3  . (7.5)

    Proof. By putting (7.4) into (7.3), becomes

    δ  4x3y¯Θ+αδ  4x3z¯Θ+λ1δ  2tx¯Θ+λ2δ  2ty¯Φ+λ3δ  2tz¯Θ+ω1δ  2xz¯Θ+ω2δ  2yz¯Θ+ω3δ  2z2  ¯Θ (7.6)
    =ei(Mx+Ny+Pz+Bt)δρ1(M3Pα+M3NMPω1MBλ1NPω2NBλ2P2ω3PBλ3),

    in which ¯Θ=Θ(x,y,z,t). By solving and simplifying we can determine the function of B(M,N,P) as the following

    B(M,N,P)=  M3Pα+M3NMPω1NPω2P2ω3  Mλ1+Nλ2+Pλ3  . (7.7)

    Accordingly, the considered solution was obtained. Thereupon the proof is perfect.

    It is easy to notice that modulation stability occurs when Mλ1+Nλ2+Pλ30. So, the modulation stability achieve spectrum Υ(B) will be as below form:

    Υ(B)=  M3Pα+M3NMPω1NPω2P2ω3  Mλ1+Nλ2+Pλ3  . (7.8)

    In Figures 12-14 can be discovered that while the sign of B(M,N,P) is positive for all quantity of M. Furthermore, in Figure 12 can be observed if the B(M,N,P) is positive or negative for some quantities of M. Finally, in Figure 13 and 14 can be perceived that while the sign of B(M,N,P) is positive for all quantity of M.

    Figure 12.  The graphic representation Υ(B) for the wave number M via considering the diverse quantities λ1=1,λ2=1.5,λ3=2,ω1=2.2,ω2=2,ω3=3,α=0.5.
    Figure 13.  The graphic representation Υ(B) for the wave number M via considering the diverse quantities λ1=1,λ2=1.5,λ3=2,ω1=2.2,ω2=2,ω3=3,α=0.5.
    Figure 14.  The graphic representation Υ(B) for the wave number M via considering the diverse quantities λ1=1,λ2=1.5,λ3=2,ω1=2.2,ω2=2,ω3=3,α=0.5.

    Via employing the wave alteration ξ=k(x+ay+bzct) in Eq (1.8) once can gain to the below ODE as

    k2(αb+a)Ψ+6k(αb+a)ΨΨ+(abω2acλ2+b2ω3bcλ3+bω1cλ1)Ψ=0, (8.1)

    in which Ψ=Ψ(ξ) and Ψ=dΨdξ. According to the SIVP [16,17] and by multiplying Eq (8.1) with Ψ and integrating once respect to ξ, the following stationary integral will be arises

    J=0[A1(ΨΨ12(Ψ2)+13A2(Ψ3+12A3(Ψ2]dξ, (8.2)

    in which

    A1=k2(αb+a),   A2=6k(αb+a),   A3=abω2acλ2+b2ω3bcλ3+bω1cλ1.

    We utilize the solitary wave function as the following

    u(ξ)=δ sech(μξ). (8.3)

    Hence, the stationary integral transforms to

    J=130k2δ2μ21αbk2μ221ak2μ28αbδkμ8aδkμ+5abω25acλ2+5b2ω35bcλ 3+5bω15cλ1). (8.4)

    Based on the SIVP and using derivative J respect to A and B, one get

    JA=115k2δμ21αbk2μ221ak2μ28αbδkμ8aδkμ+5abω25acλ2+5b2ω35bcλ3+5bω15cλ1)+130k2δ2μ(8αbkμ8akμ)=0, (8.5)

    and

    JB=130k2δ221αbk2μ221a k2μ28αbδkμ8aδkμ+5abω25acλ2+5b2ω35bcλ3+5bω15cλ1)+130k2δ2μ(42αbk2μ42ak2μ8αbδk8aδk)=0. (8.6)

    Solve the Eqs (8.5) and (8.6), become

    δ=±212  abω2acλ2+b2ω3bcλ3+bω1cλ1  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1),    (8.7)
    μ=±121  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)(αb+a)k.

    The condition can be obtained as below

    (αb+a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)<0. (8.8)

    Finally, the solitary solution received by utilizing of SIVP can be reached as

    Ψ(x,y,z,t)=δ sech[kμ(x+ay+bzct)]. (8.9)

    We utilize the bright wave function as the following

    u(ξ)=δ sech2(μξ). (8.10)

    Hence, the stationary integral transforms to

    J=  2δ2μ(120αbk2μ2+120ak2μ2+35αbδkμ+35aδkμ14abω2  105+14acλ214b2ω3+14bcλ314bω1+14cλ1)105. (8.11)

    Based on the SIVP and using derivative J respect to A and B, one get

    JA=  4δμ(120αbk2μ2+120ak2μ2+35αbδkμ+35aδkμ14abω2+14acλ2  105+14b2ω3+14bcλ314bω1+14cλ1)2δ2μ(35αbkμ+35akμ)105=0. (8.12)

    and

    JB=  2δ2(120αbk2μ2+120a k2μ2+35αbδkμ+35aδkμ14abω2+14acλ214b2ω3  105++14bcλ314bω1+14cλ1)2δ2μ(240αbk2μ+240ak2μ+35αbδk+35aδk)105=0. (8.13)

    Solve the Eqs (8.12) and (8.13), become

    δ=±485  abω2acλ2+b2ω3bcλ3+bω1cλ1  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1),    (8.14)
    μ=±130  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)(αb+a)k.

    The condition of definition of the above relations can be expressed as

    (αb+a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)<0. (8.15)

    Finally, the solitary solution gained by utilizing of SIVP will be as

    Ψ(x,y,z,t)=δ sech2[kμ(x+ay+bzct)]. (8.16)

    Assume the dark soliton wave solution be as the below case as

    u(ξ)=δ tanh2(μξ). (8.17)

    Hence, the stationary integral transforms to

    J=  2δ2μ(120αbk2μ2120ak2μ2+35αbδkμ+35aδkμ+14abω2  105+14acλ2+14b2ω314bcλ3+14bω114cλ1)105. (8.18)

    Based on the SIVP and using derivative J respect to A and B, one get

    Jδ=  4δμ(120αbk2μ2120ak2μ2+35αbδkμ+35aδkμ+14abω214acλ2  105++14b2ω314bcλ3+14bω114cλ1)+2δ2μ(35αbkμ+35akμ)105=0, (8.19)

    and

    Jμ=  2δ2(120αbk2μ2120a k2μ2+35αbδkμ+35aδkμ+14abω214acλ2+105+14b2ω314bcλ3+14bω114cλ1)+2δ2μ(240αbk2μ240ak2μ+35αbδk+35aδk)105=0. (8.20)

    Solve the Eqs (8.19) and (8.20), one get

    δ=485  abω2acλ2+b2ω3bcλ3+bω1cλ1  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1),    (8.21)
    μ=±130  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)(αb+a)k.

    The condition of definition of the above relations can be presented the following form

    (αb+a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)<0. (8.22)

    Finally, the dark solution acquired by utilizing of SIVP will be as

    Ψ(x,y,z,t)=δ tanh2[kμ(x+ay+bzct)]. (8.23)

    Let the singular soliton wave solution be as the below case as

    u(ξ)=δ csch2(μξ). (8.24)

    Then, the stationary integral transforms to

    J=  2δ2μ(120αbk2μ2120ak2μ270αbδkμ70aδkμ+14abω2  105+14acλ2+14b2ω314bcλ3+14bω114cλ1)105. (8.25)

    Based on the SIVP and using derivative J respect to A and B, become

    Jδ=  4δμ(120αbk2μ2120ak2μ270αbδkμ70aδkμ+14abω214acλ2105++14b2ω314bcλ3+14bω114cλ1)2δ2μ(70αbkμ70akμ)105=0 (8.26)

    and

    Jμ=  2δ2(120αbk2μ2120ak2μ270αbδkμ70aδkμ+14abω214acλ2+14b2ω3  105+14bcλ3+14bω114cλ1)2δ2μ(240αbk2μ240ak2μ70αbδk70aδk)105=0. (8.27)

    Solve the Eqs (8.26) and (8.27), one get

    δ=±245  abω2acλ2+b2ω3bcλ3+bω1cλ1  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1),    (8.28)
    μ=±130  (21αb+21a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)(αb+a)k.

    The condition of definition of the above relations can be presented as the below form as

    (αb+a)(abω2acλ2+b2ω3bcλ3+bω1cλ1)<0. (8.29)

    Finally, the singular solution acquired by utilizing of SIVP will be as

    Ψ(x,y,z,t)=δ csch2[kμ(x+ay+bzct)]. (8.30)

    In this article, the MEFM employed for searching the MSSs for the gKP equation, which contains 1-wave, 2-wave, and 3-wave solutions. The periodic wave, cross-kink, and solitary wave solutions have been obtained. In continuing, the modulation instability applied to discuss the stability of earned solutions. It is quite visible that these novel schemes have plenty of family solutions containing rational exponential, hyperbolic, and periodic functions with selecting particular parameters. Also, the semi-inverse variational principle will be used for the gKP equation. Four major cases containing the solitary, bright, dark and singular wave solutions were studied from four different ansatzes.

    By means of symbolic computation, these analytical solutions and corresponding rogue waves are obtained. Via various curve plots, density plot and three-dimensional plots, dynamical characteristics of these rouge waves are exhibited. Because of the strong nonlinear characteristic of Hirota bilinear method, the test function constructed by the Hirota operator, which can be regarded as the test function constructed by considered model. The results are beneficial to the study of the plasma, optics, acoustics, fluid dynamics and fluid mechanics. All computations in this paper have been employed quickly with the help of the Maple 18. Moreover, the method applied in this paper provides an effective tool to obtain exact solutions of nonlinear system and can in common use for other NLEEs.

    This work is supported by the Education and scientific research project for young and middle-aged teachers of Fujian Province (No. JAT.190666-No.JAT200469)

    The authors declare that there is no conflict of interests regarding the publication of this paper.



    [1] S. T. R. Rizvi, K. Ali, M. Ahmad, Optical solitons for Biswas-Milovic equation by new extended auxiliary equation method, Optik, 204 (2020), 164181. doi: 10.1016/j.ijleo.2020.164181
    [2] B. Nawaz, K. Ali, S. O. Abbas, S. T. R. Rizvi, Q. Zhou, Optical solitons for non-Kerr law nonlinear Schrödinger equation with third and fourth order dispersions, Chinese J. Phys., 60 (2019), 133-140. doi: 10.1016/j.cjph.2019.05.014
    [3] M. Dehghan, J. M. Heris, A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int. J. Num. Meth. Heat, 21 (2011), 736-753. doi: 10.1108/09615531111148482
    [4] M. Dehghan, J. Manafian, A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Num. Meth. Part. D. E., 26 (2010), 448-479. doi: 10.1002/num.20460
    [5] M. Dehghan, J. Manafian, The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method, Z. Naturforsch. A, 64 (2009), 420-430. doi: 10.1515/zna-2009-7-803
    [6] J. Manafian, S. Heidari, Periodic and singular kink solutions of the Hamiltonian amplitude equation, Adv. Math. Mod. Appl., 4 (2019), 134-149.
    [7] A. R. Seadawy, J. Manafian, New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod, Results Phys., 8 (2018), 1158-1167. doi: 10.1016/j.rinp.2018.01.062
    [8] J. Manafian, Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations, Comput. Math. Appl., 76 (2018), 1246-1260. doi: 10.1016/j.camwa.2018.06.018
    [9] W. X. Ma, Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Diff. Eq., 264 (2018), 2633-2659. doi: 10.1016/j.jde.2017.10.033
    [10] W. X. Ma, A search for lump solutions to a combined fourthorder nonlinear PDE in (2+1)-dimensions, J. Appl. Anal. Comput., 9 (2019), 1319-1332.
    [11] W. X. Ma, Interaction solutions to Hirota-Satsuma-Ito equation in (2+1)-dimensions, Front. Math. China, 14 (2019), 619-629. doi: 10.1007/s11464-019-0771-y
    [12] J. Manafian, B. Mohammadi-Ivatlo, M. Abapour, Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation, Appl. Math. Comput., 356 (2019), 13-41.
    [13] O. A. Ilhan, J. Manafian, Periodic type and periodic cross-kink wave solutions to the (2+1)-dimensional breaking soliton equation arising in fluid dynamics, Mod. Phys. Lett. B, 33 (2019), 1950277.
    [14] W. X. Ma, Y. Zhou, R. Dougherty, Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations, Int. J. Mod. Phys. B, 30 (2016), 1640018. doi: 10.1142/S021797921640018X
    [15] J. Q. Lü, S. Bilige, X. Q. Gao, Y. X. Bai, R. F. Zhang, Abundant lump solution and interaction phenomenon to Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation, J. Appl. Math. Phys., 6 (2018), 1733-1747. doi: 10.4236/jamp.2018.68148
    [16] J. H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20 (2006), 1141-1199. doi: 10.1142/S0217979206033796
    [17] J. H. He, A modified Li-He's variational principle for plasma, Int. J. Numer. Meth. Heat, 31 (2021), 1369-1372.
    [18] S. S. Chen, B. Tian, L. Liu, Y. Q. Yuan, C. R. Zhang, Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrödinger system, Chaos Solitons Frac., 118 (2019), 337-346. doi: 10.1016/j.chaos.2018.11.010
    [19] X. X. Du, B. Tian, X. Y. Wu, H. M. Yin, C. R. Zhang, Lie group analysis, analytic solutions and conservation laws of the (3+1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electronpositron- ion plasma, Eur. Phys. J. Plus, 133 (2018), 378. doi: 10.1140/epjp/i2018-12239-y
    [20] S. S. Ray, On conservation laws by Lie symmetry analysis for (2+1)-dimensional Bogoyavlensky-Konopelchenko equation in wave propagation, Comput. Math. Appl., 74 (2017), 1158-1165. doi: 10.1016/j.camwa.2017.06.007
    [21] X. H. Zhao, B. Tian, X. Y. Xie, X. Y. Wu, Y. Sun, Y. J. Guo, Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth, Wave Random Complex, 28 (2018), 356-366. doi: 10.1080/17455030.2017.1348645
    [22] J. Manafian, An optimal galerkin-homotopy asymptotic method applied to the nonlinear second-order bvps, Proc. Inst. Math. Mech., 47 (2021), 156-182.
    [23] Q. L. Zha, A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems, Comput. Math. Appl., 75 (2018), 3331-3342. doi: 10.1016/j.camwa.2018.02.001
    [24] W. H. Liu, Y. F. Zhang, Multiple rogue wave solutions for a (3+1)-dimensional Hirota bilinear equation, Appl. Math. Lett., 98 (2019), 184-190. doi: 10.1016/j.aml.2019.05.047
    [25] H. M. Baskonus, H. Bulut, Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics, Wave Random Complex, 26 (2016), 189-196. doi: 10.1080/17455030.2015.1132860
    [26] M. Inc, A. I. Aliyu, A. Yusuf, D. Baleanu, Optical solitary waves, conservation laws and modulation instabilty analysis to nonlinear Schrödinger's equations in compressional dispersive Alfvan waves, Optik, 155 (2018), 257-266. doi: 10.1016/j.ijleo.2017.10.109
    [27] B. B. Kadomtsev, V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Dokl. Akad. Nauk SSSR, 192 (1970), 753-756.
    [28] A. M. Wazwaz, Multi-front waves for extended form of modified Kadomtsev-Petviashvili equations, Appl. Mech. Engl. Ed. 32 (2011), 875-880.
    [29] T. Xiao, Y. B. Zeng, A new constrained mKP hierarchy and the generalized Darboux transformation for the mKP equation with self-consistent sources, Phys. A, 353 (2005), 38-60. doi: 10.1016/j.physa.2005.02.043
    [30] W. X. Ma, T. C. Xia, Pfaffianized systems for a generalized Kadomtsev-Petviashvili equation, Phys. Scr., 87 (2013), 055003. doi: 10.1088/0031-8949/87/05/055003
    [31] W. X. Ma, Z. N. Zhu, Solving the (3+1)-dimensional generalized KP and BKP equations by the multi expfunction algorithm, Appl. Math. Comput., 218 (2012), 11871-11879.
    [32] R. Hirota, The Direct Method in Soliton Theory, Cambridge: Cambridge University Press, 2004,198.
    [33] A. M. Wazwaz, S. A. El-Tantawy, A new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Nonlinear Dyn., 84 (2016), 1107-1112. doi: 10.1007/s11071-015-2555-6
    [34] X. F. Cao, Lump Solutions to the (3+1)-Dimensional Generalized B-Type Kadomtsev-Petviashvili Equation, Adv. Math. Phys., 2018 (2018), 7843498.
    [35] X. Guan, W. J. Liu, Q. Zhou, A. Biswas, Some lump solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Appl. Math. Comput., 366 (2020), 124757.
    [36] J. G. Liu, Y. He, Abundant lump and lump-kink solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Nonlinear Dyn., 92 (2018), 1103-1108. doi: 10.1007/s11071-018-4111-7
    [37] J. Manafian, M. Lakestani, Interaction among a lump, periodic waves, and kink solutions to the fractional generalized CBS-BK equation, Math. Meth. Appl. Sci., 44 (2021), 1052-1070. doi: 10.1002/mma.6811
    [38] J. Manafian, B. M. Ivatloo, M. Abapour, Breather wave, periodic, and cross-kink solutions to the generalized Bogoyavlensky-Konopelchenko equation, Math. Meth. Appl. Sci., 43 (2020), 1753-1774. doi: 10.1002/mma.6000
    [39] J. Manafian, O. A. Ilhan, L. Avazpour, A. Alizadeh, N-lump and interaction solutions of localized waves to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise from a model for an incompressible fluid, Math. Meth. Appl. Sci., 43 (2020), 9904-9927. doi: 10.1002/mma.6665
    [40] X. Y. Gao, Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas, Appl. Math. Lett., 91 (2019), 165-172. doi: 10.1016/j.aml.2018.11.020
    [41] K. S. Nisar, O. A. Ilhan, S. T. Abdulazeez, J. Manafian, S. A. Mohammed, M.S. Osman, Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method, Results Phys., 21 (2021), 103769. doi: 10.1016/j.rinp.2020.103769
    [42] J. Zhao, J. Manafian, N. E. Zaya, S. A. Mohammed, Multiple rogue wave, lump-periodic, lump-soliton, and interaction between k-lump and k-stripe soliton solutions for the generalized KP equation, Math. Meth. Appl. Sci., 44 (2021), 5079-5098. doi: 10.1002/mma.7093
    [43] C. Q. Dai, Y. Fan, N. Zhang, Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method, Appl. Math. Lett., 96 (2019), 20-26. doi: 10.1016/j.aml.2019.04.009
    [44] H. Q. Sun, A. H. Chen, Lump and lump-kink solutions of the (3+1)-dimensional Jimbo-Miwa and two extended Jimbo-Miwa equations, Appl. Math. Lett., 68 (2017), 55-61. doi: 10.1016/j.aml.2016.12.008
    [45] B. Q. Li, Y. L. Ma, Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid, Comput. Math. Appl., 76 (2018), 204-214. doi: 10.1016/j.camwa.2018.04.015
    [46] Y. Zhang, H. H. Dong, X. E. Zhang, H. W. Yang, Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation, Comput. Math. Appl., 73 (2017), 246-252. doi: 10.1016/j.camwa.2016.11.009
    [47] M. Hamid, M. Usman, T. Zubair, R. U. Haq, A. Shafee, An efficient analysis for N-soliton, Lump and lump-kink solutions of time-fractional (2+1)-Kadomtsev-Petviashvili equation, Phys. A, 528 (2019), 121320. doi: 10.1016/j.physa.2019.121320
    [48] A. R. Adem, The generalized (1+1)-dimensional and (2+1)-dimensional Ito equations: Multiple exp-function algorithm and multiple wave solutions, Comput. Math. Appl., 71 (2016), 1248-1258. doi: 10.1016/j.camwa.2016.02.005
    [49] Y. Long, Y. H. He, S. L. Li, Multiple soliton solutions for a new generalization of the associated camassa-holm equation by exp-function method, Math. Prob. Eng., 2014 (2014), 418793.
    [50] J. G. Liu, L. Zhou, Y. He, Multiple soliton solutions for the new (2+1)-dimensional Korteweg-de Vries equation by multiple exp-function method, Appl. Math. Lett., 80 (2018), 71-78. doi: 10.1016/j.aml.2018.01.010
    [51] J. P. Yu, J. Jing, Y. L. Sun, S. P. Wu, (n+1)-Dimensional reduced differential transform method for solving partial differential equations, Appl. Math. Comput., 273 (2016), 697-705.
    [52] J. P. Yu, Y. L. Sun, Study of lump solutions to dimensionally reduced generalized KP equations, Nonlinear Dyn., 87 (2017), 2755-2763. doi: 10.1007/s11071-016-3225-z
  • This article has been cited by:

    1. Chaudry Masood Khalique, Oke Davies Adeyemo, Kentse Maefo, Symmetry solutions and conservation laws of a new generalized 2D Bogoyavlensky-Konopelchenko equation of plasma physics, 2022, 7, 2473-6988, 9767, 10.3934/math.2022544
    2. K. Hosseini, D. Baleanu, S. Rezapour, S. Salahshour, M. Mirzazadeh, M. Samavat, Multi-complexiton and positive multi-complexiton structures to a generalized B-type Kadomtsev−Petviashvili equation, 2022, 24680133, 10.1016/j.joes.2022.06.020
    3. Abdul-Majid Wazwaz, Naisa S. Alatawi, Wedad Albalawi, S. A. El-Tantawy, Painlevé analysis for a new (3 +1 )-dimensional KP equation: Multiple-soliton and lump solutions, 2022, 140, 0295-5075, 52002, 10.1209/0295-5075/aca49f
    4. Yan Zhu, Chuyu Huang, Junjie Li, Runfa Zhang, Lump solitions, fractal soliton solutions, superposed periodic wave solutions and bright-dark soliton solutions of the generalized (3+1)-dimensional KP equation via BNNM, 2024, 112, 0924-090X, 17345, 10.1007/s11071-024-09911-2
    5. Adisie Fenta Agmas, Fasika Wondimu Gelu, Meselech Chima Fino, A robust, exponentially fitted higher-order numerical method for a two-parameter singularly perturbed boundary value problem, 2025, 10, 2297-4687, 10.3389/fams.2024.1501271
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3341) PDF downloads(127) Cited by(5)

Figures and Tables

Figures(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog