Research article

On multivalued maps for $ \varphi $-contractions involving orbits with application

  • Received: 12 November 2020 Accepted: 06 May 2021 Published: 08 May 2021
  • MSC : 47H10, 54H25

  • In [14], Proinov established the existence of fixed point theorems regarding as a generalization of the Banach contraction principle (BCP) of self mapping under an influence of gauge function (GF). In this paper, we develop some existence results on $ \varphi $-contraction for multivalued maps via $ b $-Bianchini-Grandolfi gauge function (B-GGF) in class of $ b $-metric spaces and consequently assure the existence results in the module of simulation function as well $ \alpha $-admissible mapping. An extensive set of nontrivial example is given to justify our claim. At the end, we give an application to prove the existence behavior for the system of integral inclusion.

    Citation: Amjad Ali, Muhammad Arshad, Awais Asif, Ekrem Savas, Choonkil Park, Dong Yun Shin. On multivalued maps for $ \varphi $-contractions involving orbits with application[J]. AIMS Mathematics, 2021, 6(7): 7532-7554. doi: 10.3934/math.2021440

    Related Papers:

  • In [14], Proinov established the existence of fixed point theorems regarding as a generalization of the Banach contraction principle (BCP) of self mapping under an influence of gauge function (GF). In this paper, we develop some existence results on $ \varphi $-contraction for multivalued maps via $ b $-Bianchini-Grandolfi gauge function (B-GGF) in class of $ b $-metric spaces and consequently assure the existence results in the module of simulation function as well $ \alpha $-admissible mapping. An extensive set of nontrivial example is given to justify our claim. At the end, we give an application to prove the existence behavior for the system of integral inclusion.



    加载中


    [1] A. Ali, H. Işık, H. Aydi, E. Ameer, J. Lee, M. Arshad, On multivalued Suzuki-type $\theta$-contractions and related applications, Open Math., 18 (2020), 386–399. doi: 10.1515/math-2020-0139
    [2] A. Ali, H. Işık, F. Uddin, M. Arshad, Fixed point results for Su-type contractive mappings with an application, JLTA, 9 (2020), 53–65.
    [3] A. Ali, F. Uddin, M. Arshad, M. Rashid, Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application, Physica A, 538 (2020), 122669. doi: 10.1016/j.physa.2019.122669
    [4] A. Asif, M. Alansari, N. Hussain, M. Arshad, A. Ali, Iterating fixed point via generalized Mann's iteration in convex $b$-metric spaces with application, Complexity, 2021 (2021), 8534239.
    [5] M. U. Ali, T. Kamran, E. Karapınar, A new approach to $(\alpha, \psi)$-contractive nonself multivalued mappings, J. Inequal. Appl., 2014 (2014), 1–9. doi: 10.1186/1029-242X-2014-1
    [6] S. Aleksić, H. Huang, Z. D. Mitrović, S. Radenovic, Remarks on some fixed point results in $b$-metric spaces, J. Fix. Point Theory A., 20 (2018), 1–17. doi: 10.1007/s11784-018-0489-6
    [7] R. M. Bianchini, M. Grandolfi, Trasformazioni di tipo contrattivo generalizzato in uno spazio metrico, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., 45 (1968), 212–216.
    [8] S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti. Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276.
    [9] Y. U. Gaba, E. Karapinar, A. Petruşel, S. Radenović, New results on start-points for multi-valued maps, Axioms, 9 (2020), 1–11. doi: 10.30821/axiom.v9i1.7235
    [10] S. Ivković, On upper triangular operator $2 \times 2$ matrices over $C^*$-algebras, Filomat, 34 (2020), 691–706. doi: 10.2298/FIL2003691I
    [11] F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theoremetric space via simulation functions, Filomat, 29 (2015), 1189–1194. doi: 10.2298/FIL1506189K
    [12] X. D. Liu, S. S. Chang, Y. Xiao and L. C. Zhao, Some fixed point theorems concerning $(\psi, \phi)$-type contraction in complete metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4127–4136. doi: 10.22436/jnsa.009.06.56
    [13] S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. doi: 10.2140/pjm.1969.30.475
    [14] P. D. Proinov, A generalization of the Banach contraction principle with high order of convergence of successive approximations, Nonlinear Anal. Theor., 67 (2007), 2361–2369. doi: 10.1016/j.na.2006.09.008
    [15] H. Qawaqneh, M. S. Noorani, W. Shatanawi, H. Aydi, H. Alsamir, Fixed point results for multi-valued contractions in $b$-metric spaces, Mathematics, 7 (2019), 1–13.
    [16] M. Samreen, Q. Kiran, T. Kamran, Fixed point theorems for $ \varphi$-contractions, J. Inequal. Appl., 2014 (2014), 1–16. doi: 10.1186/1029-242X-2014-1
    [17] H. Sahin, M. Aslantas, I. Altun, Feng-Liu type approach to best proximity point results for multivalued mappings, J. Fix. Point Theory A., 22 (2020), 1–13. doi: 10.1007/s11784-019-0746-3
    [18] V. Todorčević, Harmonic quasiconformal mappings and hyperbolic type metrics, Springer International Publishing, 2019.
    [19] F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math., 31 (2015), 403–410. doi: 10.37193/CJM.2015.03.18
    [20] M. Zoran D., V. Parvaneh, N. Mlaiki, N. Hussain, S. Radenović, On some new generalizations of Nadler contraction in $b$-metric spaces, Cogent Mathematics & Statistics, 7 (2020), 1760189.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2296) PDF downloads(124) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog