In [
Citation: Amjad Ali, Muhammad Arshad, Awais Asif, Ekrem Savas, Choonkil Park, Dong Yun Shin. On multivalued maps for $ \varphi $-contractions involving orbits with application[J]. AIMS Mathematics, 2021, 6(7): 7532-7554. doi: 10.3934/math.2021440
In [
[1] | A. Ali, H. Işık, H. Aydi, E. Ameer, J. Lee, M. Arshad, On multivalued Suzuki-type $\theta$-contractions and related applications, Open Math., 18 (2020), 386–399. doi: 10.1515/math-2020-0139 |
[2] | A. Ali, H. Işık, F. Uddin, M. Arshad, Fixed point results for Su-type contractive mappings with an application, JLTA, 9 (2020), 53–65. |
[3] | A. Ali, F. Uddin, M. Arshad, M. Rashid, Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application, Physica A, 538 (2020), 122669. doi: 10.1016/j.physa.2019.122669 |
[4] | A. Asif, M. Alansari, N. Hussain, M. Arshad, A. Ali, Iterating fixed point via generalized Mann's iteration in convex $b$-metric spaces with application, Complexity, 2021 (2021), 8534239. |
[5] | M. U. Ali, T. Kamran, E. Karapınar, A new approach to $(\alpha, \psi)$-contractive nonself multivalued mappings, J. Inequal. Appl., 2014 (2014), 1–9. doi: 10.1186/1029-242X-2014-1 |
[6] | S. Aleksić, H. Huang, Z. D. Mitrović, S. Radenovic, Remarks on some fixed point results in $b$-metric spaces, J. Fix. Point Theory A., 20 (2018), 1–17. doi: 10.1007/s11784-018-0489-6 |
[7] | R. M. Bianchini, M. Grandolfi, Trasformazioni di tipo contrattivo generalizzato in uno spazio metrico, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., 45 (1968), 212–216. |
[8] | S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti. Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276. |
[9] | Y. U. Gaba, E. Karapinar, A. Petruşel, S. Radenović, New results on start-points for multi-valued maps, Axioms, 9 (2020), 1–11. doi: 10.30821/axiom.v9i1.7235 |
[10] | S. Ivković, On upper triangular operator $2 \times 2$ matrices over $C^*$-algebras, Filomat, 34 (2020), 691–706. doi: 10.2298/FIL2003691I |
[11] | F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theoremetric space via simulation functions, Filomat, 29 (2015), 1189–1194. doi: 10.2298/FIL1506189K |
[12] | X. D. Liu, S. S. Chang, Y. Xiao and L. C. Zhao, Some fixed point theorems concerning $(\psi, \phi)$-type contraction in complete metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4127–4136. doi: 10.22436/jnsa.009.06.56 |
[13] | S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. doi: 10.2140/pjm.1969.30.475 |
[14] | P. D. Proinov, A generalization of the Banach contraction principle with high order of convergence of successive approximations, Nonlinear Anal. Theor., 67 (2007), 2361–2369. doi: 10.1016/j.na.2006.09.008 |
[15] | H. Qawaqneh, M. S. Noorani, W. Shatanawi, H. Aydi, H. Alsamir, Fixed point results for multi-valued contractions in $b$-metric spaces, Mathematics, 7 (2019), 1–13. |
[16] | M. Samreen, Q. Kiran, T. Kamran, Fixed point theorems for $ \varphi$-contractions, J. Inequal. Appl., 2014 (2014), 1–16. doi: 10.1186/1029-242X-2014-1 |
[17] | H. Sahin, M. Aslantas, I. Altun, Feng-Liu type approach to best proximity point results for multivalued mappings, J. Fix. Point Theory A., 22 (2020), 1–13. doi: 10.1007/s11784-019-0746-3 |
[18] | V. Todorčević, Harmonic quasiconformal mappings and hyperbolic type metrics, Springer International Publishing, 2019. |
[19] | F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math., 31 (2015), 403–410. doi: 10.37193/CJM.2015.03.18 |
[20] | M. Zoran D., V. Parvaneh, N. Mlaiki, N. Hussain, S. Radenović, On some new generalizations of Nadler contraction in $b$-metric spaces, Cogent Mathematics & Statistics, 7 (2020), 1760189. |