The objective of this research is to establish new results for set-valued dominated mappings that meet the criteria of advanced locally contractions in a complete extended b-metric space. Additionally, we intend to establish new fixed point outcomes for a couple of dominated multi-functions on a closed ball that satisfy generalized local contractions. In this study, we present novel findings for dominated maps in an ordered complete extended b-metric space. Additionally, we introduce a new concept of multi-graph dominated mappings on a closed ball within these spaces and demonstrate some original results for graphic contractions equipped with a graphic structure. To demonstrate the uniqueness of our new discoveries, we verify their applicability in obtaining a joint solution of integral and functional equations. Our findings have also led to modifications of numerous classical and contemporary results in existing research literature.
Citation: Tahair Rasham, Najma Noor, Muhammad Safeer, Ravi Prakash Agarwal, Hassen Aydi, Manuel De La Sen. On dominated multivalued operators involving nonlinear contractions and applications[J]. AIMS Mathematics, 2024, 9(1): 1-21. doi: 10.3934/math.2024001
The objective of this research is to establish new results for set-valued dominated mappings that meet the criteria of advanced locally contractions in a complete extended b-metric space. Additionally, we intend to establish new fixed point outcomes for a couple of dominated multi-functions on a closed ball that satisfy generalized local contractions. In this study, we present novel findings for dominated maps in an ordered complete extended b-metric space. Additionally, we introduce a new concept of multi-graph dominated mappings on a closed ball within these spaces and demonstrate some original results for graphic contractions equipped with a graphic structure. To demonstrate the uniqueness of our new discoveries, we verify their applicability in obtaining a joint solution of integral and functional equations. Our findings have also led to modifications of numerous classical and contemporary results in existing research literature.
[1] | Ö. Acar, G. Durmaz, G. Minak, Generalized multivalued F-contractions on complete metric spaces, Bull. Iranian Math. Soc., 40 (2014), 1469–1478. |
[2] | R. P. Agarwal, U. Aksoy, E. Karapınar, I. M. Erhan, F-contraction mappings on metric-like spaces in connection with integral equations on time scales, RACSAM, 114 (2020), 147. https://doi.org/10.1007/s13398-020-00877-5 doi: 10.1007/s13398-020-00877-5 |
[3] | J. Ahmad, A. Al-Rawashdeh, A. Azam, Some new fixed point theorems for generalized contractions in complete metric spaces. Fixed Point Theory Appl., 2015 (2015), 80. https://doi.org/10.1186/s13663-015-0333-2 doi: 10.1186/s13663-015-0333-2 |
[4] | B. Alqahtani, H. Aydi, E. Karapınar, V. Rakočević, A Solution for Volterra fractional integral equations by hybrid contractions, Mathematics, 7 (2019), 694. https://doi.org/10.3390/math7080694 doi: 10.3390/math7080694 |
[5] | M. U. Ali, T. Kamran, E. Karapınar, Further discussion on modified multivalued α*-ψ-contractive type mapping, Filomat, 29 (2015), 1893–1900. https://doi.org/10.2298/FIL1508893A doi: 10.2298/FIL1508893A |
[6] | H. H. Alsulami, E., Karapinar, H. Piri, Fixed points of modified F-contractive mappings in complete metric-like spaces, J. Funct. Space., 2015 (2015), 270971. https://doi.org/10.1155/2015/270971 doi: 10.1155/2015/270971 |
[7] | S. Al-Sadi, M. Bibi, M. Muddassar, S. Kermausuor, Generalized m-preinvexity on fractal set and related local fractional integral inequalities with applications, J. Math. Comput. Sci., 30 (2023), 352–371. https://doi.org/10.22436/jmcs.030.04.05 doi: 10.22436/jmcs.030.04.05 |
[8] | I. Altun, G. Mınak, M. Olgun, Fixed points of multivalued nonlinear F-contractions on complete metric spaces, Nonlinear Anal. Model., 21 (2016), 201–210. https://doi.org/10.15388/NA.2016.2.4 doi: 10.15388/NA.2016.2.4 |
[9] | E. Ameer, M. Arshad, Two new generalization for F-contraction on closed ball and fixed point theorem with applications, J. Math. Ext., 11 (2017), 43–67. |
[10] | H. Aydi, E. Karapinar, H. Yazidi, Modified F-contractions via α-admissible mappings and application to integral equations, Filomat, 31 (2017), 1141–1148. https://doi.org/10.2298/FIL1705141A doi: 10.2298/FIL1705141A |
[11] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181 |
[12] | I. A. Bakhtin, The contraction mapping principle in almost quasispaces, Funkts. Anal., 30 (1989), 26–37. |
[13] | L. B. Ciric, Fixed point for generalized multivalued contractions, Mat. Vesnik., 9 (1972), 265–272. |
[14] | M. Cosentino, M. Jleli, B. Samet, C. Vetro, Solvability of integrodifferential problems via fixed point theory in b-metric spaces, Fixed Point Theory Appl., 2015 (2015), 70. https://doi.org/10.1186/s13663-015-0317-2 doi: 10.1186/s13663-015-0317-2 |
[15] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[16] | S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276. |
[17] | G. J. de Cabral-García, K. Baquero-Mariaca, J. Villa-Morales, A fixed point theorem in the space of integrable functions and applications, Rend. Circ. Mat. Palerm., 72 (2023), 655–672. https://doi.org/10.1007/s12215-021-00714-7 doi: 10.1007/s12215-021-00714-7 |
[18] | M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b-simulation functions, Iran. J. Math. Sci. Inform., 11 (2016), 123–136. https://doi.org/10.7508/ijmsi.2016.01.011 doi: 10.7508/ijmsi.2016.01.011 |
[19] | G. M. A. Elhamed, Fixed point results for $ (\beta, \alpha)$-implicit contractions in two generalized b-metric spaces, J. Nonlinear Sci. Appl., 14 (2021), 39–47. https://doi.org/10.22436/jnsa.014.01.05 doi: 10.22436/jnsa.014.01.05 |
[20] | Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103–112. https://doi.org/10.1016/j.jmaa.2005.12.004 doi: 10.1016/j.jmaa.2005.12.004 |
[21] | J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. https://doi.org/10.1090/S0002-9939-07-09110-1 doi: 10.1090/S0002-9939-07-09110-1 |
[22] | M. Jleli, B. Samet, C. Vetro, F. Vetro, Fixed points for multivalued mappings in b-metric spaces, Abstr. Appl. Anal., 2015 (2015), 718074. https://doi.org/10.1155/2015/718074 doi: 10.1155/2015/718074 |
[23] | T. Kamran, M. Samreen, Q. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019 |
[24] | E. Karapınar, M. A. Kutbi, H. Piri, D. O'Regan, Fixed points of conditionally F-contractions in complete metric-like spaces, Fixed Point Theory Appl., 2015 (2015), 126. https://doi.org/10.1186/s13663-015-0377-3 doi: 10.1186/s13663-015-0377-3 |
[25] | E. Karapınar, A. Fulga, M. Rashid, L. Shahid, H. Aydi, Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations, Mathematics, 7 (2019), 444. https://doi.org/10.3390/math7050444 doi: 10.3390/math7050444 |
[26] | Q. Kiran, N. Alamgir, N. Mlaiki, H.Aydi, On some new fixed point results in complete extended b-metric space. Mathematics, 7 (2019), 476. https://doi.org/10.3390/math7050476 doi: 10.3390/math7050476 |
[27] | G. Minak, M. Olgun, I. Altun, A new approach to fixed point theorems for multivalued contractive maps, Carpathian J. Math., 31 (2015), 241–248. |
[28] | S. B. Nadler, Multivalued contraction mappinġs, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475 |
[29] | L. N. Mishra, V. Dewangan, V. N. Mishra, S. Karateke, Best proximity points of admissible almost generalized weakly contractive mappings with rational expressions on b-metric spaces, J. Math. Comput. Sci., 22 (2021); 97–109. https://doi.org/10.22436/jmcs.022.02.01 doi: 10.22436/jmcs.022.02.01 |
[30] | H. K. Nashine, L. K. Dey, R. W. Ibrahim, S. Radenovic, Feng-Liu-type fixed point result in orbital b-metric spaces and application to fractal integral equation, Nonlinear Anal. Model., 26 (2021), 522–533. https://doi.org/10.15388/namc.2021.26.22497 doi: 10.15388/namc.2021.26.22497 |
[31] | H. K. Nashine, Z. Kadelburg, Cyclic generalized ϕ-contractions in b-metric spaces and an application to integral equations, Filomat, 28 (2014), 2047–2057. https://doi.org/10.2298/FIL140047N doi: 10.2298/FIL140047N |
[32] | M. Nazam, C. Park, M. Arshad, Fixed point problems for generalized contractions with applications, Adv. Difffer. Equ., 2021 (2021), 247. https://doi.org/10.1186/s13662-021-03405-w doi: 10.1186/s13662-021-03405-w |
[33] | J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. https://doi.org/10.1007/s11083-005-9018-5 doi: 10.1007/s11083-005-9018-5 |
[34] | A. Padcharoen, D. Gopal, P. Chaipunya, P. Kumam, Fixed point and periodic point results for α-type F-contractions in modular metric spaces, Fixed Point Theory Appl., 2016 (2016), 39. https://doi.org/10.1186/s13663-016-0525-4 doi: 10.1186/s13663-016-0525-4 |
[35] | T. Rasham, A. Shoaib, N. Hussain, M. Arshad, S. U. Khan, Common fixed point results for new Ciric-type rational multivalued F-contraction with an application, J. Fixed Point Theory. Appl., 20 (2018), 45. https://doi.org/10.1007/s11784-018-0525-6 doi: 10.1007/s11784-018-0525-6 |
[36] | T. Rasham, M. S. Shabbir, P. Agarwal, S. Momani, On a pair of fuzzy dominated mappings on closed ball in the multipli-cative metric space with applications, Fuzzy Set Syst., 437 (2022), 81–96. https://doi.org/10.1016/j.fss.2021.09.002 doi: 10.1016/j.fss.2021.09.002 |
[37] | T. Rasham, M. D. La Sen, A novel study for hybrid pair of multivalued dominated mappings in b-multiplicative metric space with applications, J. Inequal. Appl., 2022 (2022), 107. https://doi.org/10.1186/s13660-022-02845-6 doi: 10.1186/s13660-022-02845-6 |
[38] | T. Rasham, A. Shoaib, G. Marino, B. A. S. Alamri, M. Arshad, Sufficient conditions to solve two systems of integral equations via fixed point results, J. Inequal. Appl., 2019 (2019), 182. https://doi.org/10.1186/s13660-019-2130-7 doi: 10.1186/s13660-019-2130-7 |
[39] | T. Rasham, G. Marino, A. Shahzad, C. Park, A. Shoaib, Fixed point results for a pair of fuzzy mappings and related applications in b-metric like spaces, Adv. Differ. Equ., 2021 (2021), 259. https://doi.org/10.1186/s13662-021-03418-5 doi: 10.1186/s13662-021-03418-5 |
[40] | N. A. Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory Appl., 2013 (2013), 277. https://doi.org/10.1186/1687-1812-2013-277 doi: 10.1186/1687-1812-2013-277 |
[41] | M. Sgroi, C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat, 27 (2013), 1259–1268. https://doi.org/10.2298/FIL1307259S doi: 10.2298/FIL1307259S |
[42] | D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[43] | K. Zhang, J. Xu, Solvability for a system of Hadamard-type hybrid fractional differential inclusions, Demonstr. Math., 56 (2023), 20220226. https://doi.org/10.1515/dema-2022-0226 doi: 10.1515/dema-2022-0226 |