Research article Special Issues

Characterization of imbricate-ruled surfaces via rotation-minimizing Darboux frame in Minkowski 3-space $ \mathrm{E}_1^3 $

  • Received: 23 December 2023 Revised: 23 March 2024 Accepted: 26 March 2024 Published: 08 April 2024
  • MSC : 53A04, 53A05, 53A35

  • Using a common tangent vector field to a surface along a curve, in this study we discussed a new Darboux frame that we referred to as the rotation-minimizing Darboux frame (RMDF) in Minkowski 3-space. The parametric equation resulting from the RMDF frame for an imbricate-ruled surface was then provided. As a result, minimal (or maximal for timelike surfaces) ruled surfaces were derived, along with the necessary and sufficient criteria for imbricate-ruled surfaces to be developable. The surfaces also described the parameter curves of these surfaces' asymptotic, geodesic, and curvature lines. We also gave an example to emphasize the most significant results.

    Citation: Emad Solouma, Ibrahim Al-Dayel, Meraj Ali Khan, Youssef A. A. Lazer. Characterization of imbricate-ruled surfaces via rotation-minimizing Darboux frame in Minkowski 3-space $ \mathrm{E}_1^3 $[J]. AIMS Mathematics, 2024, 9(5): 13028-13042. doi: 10.3934/math.2024635

    Related Papers:

  • Using a common tangent vector field to a surface along a curve, in this study we discussed a new Darboux frame that we referred to as the rotation-minimizing Darboux frame (RMDF) in Minkowski 3-space. The parametric equation resulting from the RMDF frame for an imbricate-ruled surface was then provided. As a result, minimal (or maximal for timelike surfaces) ruled surfaces were derived, along with the necessary and sufficient criteria for imbricate-ruled surfaces to be developable. The surfaces also described the parameter curves of these surfaces' asymptotic, geodesic, and curvature lines. We also gave an example to emphasize the most significant results.



    加载中


    [1] M. P. Do Carmo, Differential geometry of curves and surfaces: Revised and updated second edition, Courier Dover Publications, 2016.
    [2] T. Shifrin, Differential geometry: A first course in curves and surfaces, University of Georgia, Preliminary Version, 2018.
    [3] M. T. Aldossary, R. A. Abdel-Baky, Sweeping surface due to rotation minimizing Darboux frame in Euclidean 3-space $\mathbb{E}^3$, AIMS Math., 8 (2023), 447–462. https://doi.org/10.3934/math.2023021 doi: 10.3934/math.2023021
    [4] C. Sun, K. Yao, D. Pei, Special non-lightlike ruled surfaces in Minkowski 3-space, AIMS Math., 8 (2023), 26600–26613. https://doi.org/10.3934/math.20231360 doi: 10.3934/math.20231360
    [5] M. Dede, M. C. Aslan, M. C. Ekici, On a variational problem due to the $B$-Darboux frame in Euclidean 3-space, Math. Method. Appl. Sci., 44 (2021), 12630–12639. https://doi.org/10.1002/mma.7567 doi: 10.1002/mma.7567
    [6] E. Solouma, M. Abdelkawy, Family of ruled surfaces generated by equiform Bishop spherical image in Minkowski 3-space, AIMS Math., 8 (2023), 4372–4389. https://doi.org/10.3934/math.2023218 doi: 10.3934/math.2023218
    [7] E. Solouma, On geometry of equiform Smarandache ruled surfaces via equiform frame in Minkowski 3-Space, Appl. Appl. Math., 18 (2023), 1.
    [8] E. Solouma, I. Al-Dayel, M. A. Khan, M. Abdelkawy, Investigation of special type-$II$ smarandache ruled surfaces due to rotation minimizing Darboux frame in $E^3$, Symmetry, 15 (2023), 2207. https://doi.org/10.3390/sym15122207 doi: 10.3390/sym15122207
    [9] F. Mofarreh, Timelike-ruled and developable surfaces in Minkowski 3-Space $\mathbb{E}_1^3$, Front. Phys., 10 (2022), 838957. https://doi.org/10.3389/fphy.2022.838957 doi: 10.3389/fphy.2022.838957
    [10] I. AL-Dayel, E. Solouma, M. Khan, On geometry of focal surfaces due to B-Darboux and type-2 Bishop frames in Euclidean 3-space, AIMS Math., 7 (2022), 13454–13468. https://doi.org/10.3934/math.2022744 doi: 10.3934/math.2022744
    [11] G. U. Kaymanli, Characterization of the evolute offset of ruled surfaces with $B$-Darboux frame, J. New Theor., 33 (2020), 50–55.
    [12] S. Ouarab, A. O. Chahdi, M. Izid, Ruled surface generated by a curve lying on a regular surface and its characterizations, J. Geom. Graph., 24 (2020), 257–267.
    [13] E. M. Solouma, I. AL-Dayel, Harmonic evolute surface of tubular surfaces via $B$-Darboux frame in Euclidean 3-space, Adv. Math. Phys., 2021 (2021), 5269655. https://doi.org/10.1155/2021/5269655 doi: 10.1155/2021/5269655
    [14] S. Hu, Z. Wang, X. Tang, Tubular surfaces of center curves on spacelike surfaces in Lorentz-Minkowski 3-space, Math. Method. Appl. Sci., 42 (2019), 3136–3166. https://doi.org/10.1002/mma.5574 doi: 10.1002/mma.5574
    [15] Y. Li, F. Mofarreh. R. A. Abdel-Baky, Timelike circular surfaces and singularities in Minkowski 3-Space, Symmetry, 14 (2022), 1914. https://doi.org/10.3390/sym14091914 doi: 10.3390/sym14091914
    [16] Y. Li, Z. Chen, S. H. Nazra, R. A. Abdel-Baky, Singularities for timelike developable surfaces in Minkowski 3-Space, Symmetry, 15 (2023), 277. https://doi.org/10.3390/sym15020277 doi: 10.3390/sym15020277
    [17] G. Darboux, Leçons sur la theorie Generale des surfaces, Gauthier-Villars, 1896.
    [18] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic press, 1983.
    [19] R. López, Differential geometry of curves and surfaces in Lorentz-Minlowski space, Int. Electron. J. Geom., 7 (2014), 44–107. https://doi.org/10.36890/iejg.594497 doi: 10.36890/iejg.594497
    [20] K. E. Özen, M. Tosun, A new moving frame for trajectories with non-vanishing angular Momentum, J. Math. Sci. Model., 4 (2021), 7–18. https://doi.org/10.33187/jmsm.869698 doi: 10.33187/jmsm.869698
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(639) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog